Electromagnetic effects in the K + π + π 0 π 0 decay

Size: px
Start display at page:

Download "Electromagnetic effects in the K + π + π 0 π 0 decay"

Transcription

1 Electromagnetic effects in the K + π + π 0 π 0 decay arxiv:hep-ph/ v3 10 Jan 2007 S.R.Gevorkyan, A.V.Tarasov, O.O.Voskresenskaya March 11, 2008 Joint Institute for Nuclear Research, Dubna, Russia Abstract The final state interactions of pions in decay K + π + π 0 π 0 is considered using the methods of quantum mechanics. We show how incorporate the electromagnetic effects in the amplitude of this decay and work out the relevant expressions valid both above and below the two charged pion production threshold M = 2m. The electromagnetic corrections are given as evaluated in a potential model. The ππ scattering at low energies provides a testing ground for strong interaction study [1]. As the free pion targets cannot be created the experimental evaluation of ππ scattering characteristics is restricted to the study of a dipion system in a final state of more complicated reactions. One of the most suitable reactions for such study are charged kaons decays to three pions K ± π ± π 0 π 0, (1) K ± π ± π + π. (2) The final state interaction of pions in these decays gives a valuable information on the S wave ππ scattering lengths a 0 and a 2 [2, 3]. From the other hand the Chiral Perturbation Theory (ChPT) (see, for instance, [4]) predicts their values with high precision. Recently, in the NA 48/2 experiment at CERN SPS the high quality data On leave of absence from Yerevan Physics Institute On leave of absence from Siberian Physical Technical Institute 1

2 on decay (1) have been obtained [5]. The dependence of decay rate on invariant mass of neutral pions M 2 = (p 1 + p 2 ) 2 reveals the anomaly ( cusp ) at the threshold of two charged pions M 2 = 4m 2. N. Cabibbo proposed the simple re-scattering model [6], in which the cusp is an effect due to charge exchange scattering process π + π π 0 π 0 in decay (2). According to the model [6] the amplitude of the decay (1) consists from two terms T = T 0 + 2ika x T + (3) where T 0, T + are unperturbated amplitudes for decays (1) and (2) respectively and k = 1 2 M2 4m 2 is momentum of charged pion. The second term in (3) is proportional to the difference of scattering lengths a x = (a 0 a 2 )/3 and flips from dispersive to absorptive at the charged pions threshold. As a result, the decay probability under threshold depends on the scattering lengths difference linearly, which allows one to extract the S wave scattering lengths from experimental data with high accuracy. The next important step in this direction has been done in [7], where the amplitude T was obtained including second order in scattering lengths terms using the unitarity of the S matrix. The results of [7] were supported by more rigorous approaches [8, 9], whose authors investigated the decay (1) in the framework of effective field theory and ChPT. The results from [7] were used in fitting procedure of experimental data [5], allowing to extract the difference a 0 a 2 with high accuracy. It is commonly believed that the tiny discrepancy between theoretical predictions and experimental data near threshold [5] is a result of disregard of electromagnetic effects in final state interaction. In view of importance of knowledge of scattering lengths with most possible accuracy the consideration of electromagnetic corrections in decay (1) becomes an actual issue. Later on we discuss the problem of Coulomb interaction among the charged pions using the methods of nonrelativistic quantum mechanics, which are completely suitable for considered case 1. We obtain the compact expressions for the amplitude 2 of the decay (1) with regard to the electromagnetic corrections which is valid both below and above the charged pions production threshold M = 2m. Leaving the strict derivation for separate publication, let us shortly discuss how to involve the electromagnetic effects in the considered problem and relevant modifications, which have to be done in the amplitude of decay (1). 1 The effects of radiation of real photons are out of the scope of present consideration and will be treated later on. 2 As the K decays are counterparts to the K + decays they are not treated separately. 2

3 Using the methods of nonrelativistic quantum mechanics it can be shown that the result of N. Cabibbo [6] can be generalized accounting the ππ scattering in the charge-exchange part of amplitude (second term in (3)) to all orders in scattering lengths T = T 0 + 2ikf x T +, f x = a x /D, D = (1 ik 1 R 11 )(1 ik 2 R 22 ) + k 1 k 2 R (4) Here k 1 = 1 2 M2 4m 2 0 ; k 2 = k = 1 2 M2 4m 2 are the neutral and charged pions momenta respectively. The elements of R matrix are real and in the isotopic symmetry limit can be expressed through the combinations of scattering lengths [7, 8] a x = (a 2 a 0 )/3; a 00 = (a 0 + 2a 2 )/3; a ± = (2a 0 + a 2 )/6 corresponding to inelastic and elastic pion-pion scattering as R 12 = 2a x ; R 11 = a 00 ; R 22 = 2a ±. (5) The replacement a x f x has small numerical impact on results of previous calculations done according [7, 8] in the dominant part of phase space, but as we will see is very crucial for inclusion of the electromagnetic interactions under threshold,were the formation of bound states (π + π atoms) can take place. The next step of our prescription is inclusion in expression (4) properly electromagnetic effects. The general receipt is known for many years (see for instance the textbook [10]) and implies the replacement of charged pion momenta k by logarithmic derivative of pion wave function in the Coulomb potential at the boundary of strong field r 0 i.e. ik τ = d log[g 0(kr) + if 0 (kr)] dr. (6) r=r0 Here F 0, G 0 are the regular and irregular solutions of the Coulomb problem. In the region kr 0 1 where the electromagnetic effects can be significant the above replacement gives [ ( τ = ik αm log( 2ikr 0 ) + 2C + ψ 1 imα )] = Re(τ) + iim(τ), [ Re(τ) = αm log(2kr 0 ) + 2C + Re ψ Im(τ) = ika 2, ( πξ A = exp 2 ) Γ(1 + iξ), 2k ( 1 imα 2k )], ξ = αm 2k where C = 0.577, α = 1/137 are Euler and fine structure constants, whereas ψ is digamma function. 3 (7)

4 To go under threshold it is enough to do the common replacement k iκ in the above expression [ ( τ = κ αm log(2κr 0 ) + 2C + ψ 1 mα )]. (8) 2κ At κ n = αm/(2n) where n is an integer, τ goes to infinity which correspond to Coulombic bound states in considered approach. On the other hand, the product κf x defining the amplitude behaviour under threshold remains finite due to the presence of dependence from τ in the denominator D in expression (4). This explains why the inclusion of electromagnetic effects can be done only after sum up all terms of infinite series in perturbation expansion. It is easy to see that the product κf x possess a resonance structure placed at the positions M n with relevant width = 2m κ2 n m, κ n = αm 2(n δ), δ = 1 [ π arctan, = αm a 22 k2 1 a ] 11a k1a Γ n = 4πk 1a 2 12 κ 3 n (10) m(1 + k1 2a2 11 ). The physical reason of resonance origin is transparent. Due to the process π + π ππ the Coulombic bound states of π + π system (A 2π atoms) becomes unstable 3. The considered effect of A 2π atoms creation in decay (1) is not the only contribution from electromagnetic interaction of pions. Outside of the resonance region the Coulomb interaction leads to the essential difference between the τ values calculated with electromagnetic corrections and without it. In particular, the nonzero contribution of the Coulomb corrections to the Re τ above the threshold leads to the interference term in decay rate provided by direct and charge-exchange contributions from (4). Thus above the threshold the interference is nonzero even at the lowest order in scattering lengths, unlike the original approach proposed by N. Cabibbo [6]. The further improvement of the theory consists in account of final state interactions in the direct term from (4). This can be done by simple substitution (9) T 0 T 0 (1 + ik 1 f 00 ) (11) 3 We don t discuss here the instability of exited states caused by there transition to ground state. Obviously this effect is very small and can safely be neglected. 4

5 where f 00 is the amplitude of π 0 π 0 scattering. It can be shown that 1 + ik 1 f 00 = 1 τa 22. (12) (1 ik 1 R 11 )(1 τa 22 ) ik 1 τa 2 12 To estimates the contribution from electromagnetic effects to decay rate of process (1) we introduce the ratio R(%) = ( T c 2 T 2 )/ T 2 where the amplitude T is given by expression (4),while the amplitude T c accounting for electromagnetic effects is given by expressions (4,11) with relevant modifications discussed above. The dotted line on the Fig. 1 gives the contribution of electromagnetic effects without bound states (pionium) corrections. The dashed line represent the same quantity, but with corresponding amplitude averaged using gaussian distribution [5] with expected mass resolution near threshold r.m.s. = 0.56 Mev. The solid line gives the contribution of all electromagnetic effects (bound states included) averaged as in the previous case with gaussian distribution. From this plot one concludes that after relevant averaging the essential contribution to the decay rate comes from the electromagnetic interactions don t leading to bound states. The developed approach allows to takes into account electromagnetic effects in the decay (1) and estimate their impact on decay rate of the process under consideration. We are grateful to V. Kekelidze and J. Manjavidze who draw our attention to the problem and advice during the work. We would like also to thank D. Madigozhin for many stimulating discussions. References [1] J. Gasser, H. Leutwyler, Ann. Phys. 158 (1984) 158. [2] V.N. Gribov, Nucl. Phys. 5 (1958) 653. [3] V.N. Gribov, ZhETF 41 (1961) [4] U.-G. Meissner, Rep. Prog. Phys. 56 (1993) 903. [5] J.R. Batley et al., Phys. Lett. B 633 (2006) 173. [6] N. Cabibbo, Phys. Rev. Lett. 93 (2004) [7] N. Cabibbo, G. Isidori, JHEP 03 (2005) 021. [8] G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, Phys. Lett. B 638 (2006)

6 [9] E. Gamiz, J. Prades, I. Sciemi, hep-ph/ [10] A.I. Baz, Ya.B. Zeldovich, A.M. Perelomov, Scattering, reactions and decays in nonrelativistic quantum mechanics (Nauka, Moscow, 1971). 6

7 R 2,6 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0, M 2 [Gev 2 ] 0.08 Figure 1: The dependence of R on the square of invariant mass of neutral pions. 7

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy experiment Scuola Normale Superiore & INFN Pisa - Italy E-mail: gianluca.lamanna@cern.ch The main goal of the NA48/2 experiment was to measure the CP violating asymmetry in the charged kaon decay in three

More information

Cusp effects in meson decays

Cusp effects in meson decays Cusp effects in meson decays Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany Few-Body 2009 Bonn, 3/9/2009 B. Kubis,

More information

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000

When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/ v1 27 Jun 2000 CPHT S758.0100 When Is It Possible to Use Perturbation Technique in Field Theory? arxiv:hep-ph/000630v1 7 Jun 000 Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F9118 Palaiseau, France

More information

arxiv:hep-ph/ v1 13 Oct 2000

arxiv:hep-ph/ v1 13 Oct 2000 DIRECT CP VIOLATION IN NONLEPTONIC KAON DECAYS BY AN EFFECTIVE CHIRAL LAGRANGIAN APPROACH AT O(p 6 ) 1 A.A. Bel kov 1, G. Bohm 2, A.V. Lanyov 1 and A.A. Moshkin 1 (1) Particle Physics Laboratory, Joint

More information

Different approaches to calculate the K ± π ± π 0 e + e decay width

Different approaches to calculate the K ± π ± π 0 e + e decay width Eur. Phys. J. C 014 74:860 DOI 10.1140/epjc/s1005-014-860-0 Regular Article - Theoretical Physics Different approaches to calculate the K ± ± 0 e + e decay width S. R. Gevorkyan a,m.h.misheva Joint Institute

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

arxiv: v1 [hep-ph] 24 Aug 2011

arxiv: v1 [hep-ph] 24 Aug 2011 Roy Steiner equations for γγ ππ arxiv:1108.4776v1 [hep-ph] 24 Aug 2011 Martin Hoferichter 1,a,b, Daniel R. Phillips b, and Carlos Schat b,c a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

pion pion scattering lengths measurement at NA48-CERN

pion pion scattering lengths measurement at NA48-CERN measurement at NA48-CERN Dip. di Fisica dell università di Pisa and member of NA48-CERN collaboration E-mail: sergio.giudici@cern.ch Recent experimental and theoretical works allowed the measurement of

More information

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations

Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations CPHT S758.0100 Dispersion Relation Analyses of Pion Form Factor, Chiral Perturbation Theory and Unitarized Calculations Tran N. Truong Centre de Physique Théorique, Ecole Polytechnique F91128 Palaiseau,

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

arxiv:hep-ph/ v2 9 Jan 2007

arxiv:hep-ph/ v2 9 Jan 2007 The mass of the σ pole. D.V. Bugg 1, Queen Mary, University of London, London E14NS, UK arxiv:hep-ph/0608081v2 9 Jan 2007 Abstract BES data on the σ pole are refitted taking into account new information

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC)

pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) pipi scattering from partial wave dispersion relation Lingyun Dai (Indiana University & JPAC) Outlines 1 Introduction 2 K-Matrix fit 3 poles from dispersion 4 future projects 5 Summary 1. Introduction

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

Meson-baryon interactions and baryon resonances

Meson-baryon interactions and baryon resonances Meson-baryon interactions and baryon resonances Tetsuo Hyodo Tokyo Institute of Technology supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2011, June 16th 1 Contents Contents

More information

Pion-nucleon sigma-term - a review

Pion-nucleon sigma-term - a review Pion-nucleon sigma-term - a review M.E. Sainio Helsinki Institute of Physics, and Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland (Received: December 5, 2001) A brief

More information

Production of e + e pairs to all orders in Zα for collisions of high-energy muons with heavy nuclei

Production of e + e pairs to all orders in Zα for collisions of high-energy muons with heavy nuclei UL NTZ 14/98 Production of e + e pairs to all orders in Zα for collisions of high-energy muons with heavy nuclei arxiv:hep-ph/9807311v1 9 Jul 1998 D. Ivanov 1,2, E.A. Kuraev 3, A. Schiller 1, and V.G.

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Kaon Decays in the Standard Model

Kaon Decays in the Standard Model Kaon Decays in the Standard Model Helmut Neufeld University of Vienna 13 December 2012, Wien Review: Kaon Decays in the Standard Model V. Cirigliano, G. Ecker, H. N., A. Pich, J. Portoles, Rev. Mod. Phys.

More information

arxiv:hep-ph/ v2 24 Sep 1996

arxiv:hep-ph/ v2 24 Sep 1996 NUC MINN 96/11 T A New Approach to Chiral Perturbation Theory with Matter Fields Hua-Bin Tang arxiv:hep-ph/9607436v 4 Sep 1996 School of Physics and Astronomy University of Minnesota, Minneapolis, MN 55455

More information

arxiv: v1 [hep-ph] 31 Jul 2009

arxiv: v1 [hep-ph] 31 Jul 2009 arxiv:0907.5540v1 [hep-ph] 31 Jul 2009 Frascati Physics Series Vol. XLVIII (2009), pp. 19-24 Young Researchers Workshop: Physics Challenges in the LHC Era Frascati, May 11 and 14, 2009 HADRONIC τ DECAYS

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

PoS(DIS2017)184. η/η decays at BESIII. Isabella GARZIA Universitá degli studi di Ferrara and INFN-Sezione di Ferrara

PoS(DIS2017)184. η/η decays at BESIII. Isabella GARZIA Universitá degli studi di Ferrara and INFN-Sezione di Ferrara Universitá degli studi di Ferrara and INFN-Sezione di Ferrara E-mail: garzia@fe.infn.it Decays of both η and η mesons provide an unique laboratory to study and understand low-energy QCD, and search for

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

arxiv:hep-ph/ v3 2 Jan 2001

arxiv:hep-ph/ v3 2 Jan 2001 Thermalization temperature in Pb+Pb collisions at SpS energy from hadron yields and midrapidity p t distributions of hadrons and direct photons D. Yu. Peressounko and Yu. E. Pokrovsky Russian Research

More information

arxiv: v3 [hep-ph] 28 Apr 2010

arxiv: v3 [hep-ph] 28 Apr 2010 TUM-HEP-751/10 On ɛ beyond lowest order in the Operator Product Expansion Andrzej J. Buras a,b, Diego Guadagnoli c, and Gino Isidori b,d arxiv:100.361v3 [hep-ph] Apr 010 a Physik-Department, Technische

More information

arxiv:hep-ph/ v1 25 Jun 1999

arxiv:hep-ph/ v1 25 Jun 1999 DESY 99 077 TTP99 29 June 1999 arxiv:hep-ph/9906503v1 25 Jun 1999 Azimuthal Asymmetries in Hadronic Final States at HERA M. Ahmed a,b and T. Gehrmann c a II. Institut für Theoretische Physik, Universität

More information

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam

Pion-Kaon interactions Workshop, JLAB Feb , From πk amplitudes to πk form factors (and back) Bachir Moussallam Pion-Kaon interactions Workshop, JLAB Feb. 14-15, 2018 From πk amplitudes to πk form factors (and back) Bachir Moussallam Outline: Introduction ππ scalar form factor πk: J = 0 amplitude and scalar form

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Pomeron-Odderon interference in production of

Pomeron-Odderon interference in production of LPT-ORSAY 08-86 CPHT-PC 08.1008 Pomeron-Odderon interference in production of π + π pairs in ultraperipheral collisions arxiv:08155v1 [hep-ph] 3 Nov 008 B. Pire, F. Schwennsen,, L. Szymanowski and S. Wallon

More information

The Hadronic Decay Ratios of η 5π at NLO in χpt

The Hadronic Decay Ratios of η 5π at NLO in χpt EJTP 11, No. 1 (2014) 11 140 Electronic Journal of Theoretical Physics The Hadronic Decay Ratios of η 5π at NLO in χpt M. Goodarzi and H. Sadeghi Department of Physics, Faculty of Science, Arak University,

More information

PION PHYSICS FROM LATTICE QCD

PION PHYSICS FROM LATTICE QCD MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION PHYSICS FROM LATTICE QCD Jie Hu,1, Fu-Jiun

More information

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths source: https://doi.org/10.789/boris.4584 downloaded: 13.3.017, ab Vadim Baru, cd Christoph Hanhart, e Bastian Kubis,

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

DEEP INELASTIC SCATTERING

DEEP INELASTIC SCATTERING DEEP INELASTIC SCATTERING Electron scattering off nucleons (Fig 7.1): 1) Elastic scattering: E = E (θ) 2) Inelastic scattering: No 1-to-1 relationship between E and θ Inelastic scattering: nucleon gets

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Evaluation of Triangle Diagrams

Evaluation of Triangle Diagrams Evaluation of Triangle Diagrams R. Abe, T. Fujita, N. Kanda, H. Kato, and H. Tsuda Department of Physics, Faculty of Science and Technology, Nihon University, Tokyo, Japan E-mail: csru11002@g.nihon-u.ac.jp

More information

Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences

Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences TPI-MINN-92/69-T BUTP-93/2 Estimates of m d m u and dd ūu from QCD sum rules for D and D isospin mass differences V.L. Eletsky, Theoretical Physics Institute, University of Minnesota Minneapolis, MN 55455,

More information

Low mass dileptons from Pb + Au collisions at 158 A GeV

Low mass dileptons from Pb + Au collisions at 158 A GeV PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 2003 physics pp. 1073 1077 Low mass dileptons from Pb + Au collisions at 158 A GeV SOURAV SARKAR 1, JAN-E ALAM 2;Λ and T HATSUDA 2 1

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

X Y Z. Are they cusp effects? Feng-Kun Guo. Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn X Y Z Are they cusp effects? Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn Hadrons and Hadron Interactions in QCD 2015 Feb. 15 Mar. 21, 2015, YITP Based on: FKG, C. Hanhart,

More information

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect Copyright c 2018 by Robert G. Littlejohn Physics 221B Spring 2018 Notes 34 The Photoelectric Effect 1. Introduction In these notes we consider the ejection of an atomic electron by an incident photon,

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Inelastic scattering on the lattice

Inelastic scattering on the lattice Inelastic scattering on the lattice Akaki Rusetsky, University of Bonn In coll with D. Agadjanov, M. Döring, M. Mai and U.-G. Meißner arxiv:1603.07205 Nuclear Physics from Lattice QCD, INT Seattle, March

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

arxiv: v1 [hep-ph] 13 Nov 2013

arxiv: v1 [hep-ph] 13 Nov 2013 euniversityofmanchester November 14, 2013 arxiv:1311.3203v1 [hep-ph] 13 Nov 2013 Odd- and even-parity charmed mesons revisited in heavy hadron chiral perturbation theory Mohammad Alhakami 1 School of Physics

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

arxiv:hep-ph/ v1 15 May 1997

arxiv:hep-ph/ v1 15 May 1997 Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints G. Wanders Institut de physique théorique, Université de Lausanne, arxiv:hep-ph/9705323v1 15 May 1997 CH-1015 Lausanne,

More information

p 3 A = 12 C s A = 16 O s d E η m η (MeV)

p 3 A = 12 C s A = 16 O s d E η m η (MeV) PRODUCTION AND DECAY OF ETA-MESIC NUCLEI A. I. L'VOV P. N. Lebedev Physical Institute, Russian Academy of Sciences Leninsky Prospect 5, Moscow 79, Russia Using the Green function method, binding eects

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

arxiv: v1 [hep-ph] 16 Oct 2016

arxiv: v1 [hep-ph] 16 Oct 2016 arxiv:6.483v [hep-ph] 6 Oct 6 Coupled-channel Dalitz plot analysis of D + K π + π + decay atoshi X. Nakamura Department of Physics, Osaka University E-mail: nakamura@kern.phys.sci.osaka-u.ac.jp We demonstrate

More information

arxiv:hep-ph/ v1 27 Mar 1998

arxiv:hep-ph/ v1 27 Mar 1998 EHU-FT/9803 The speed of cool soft pions J. M. Martínez Resco, M. A. Valle Basagoiti arxiv:hep-ph/9803472v 27 Mar 998 Departamento de Física Teórica, Universidad del País Vasco, Apartado 644, E-48080 Bilbao,

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen Diffractive electroproduction of ρ and φ mesons at Universiteit Antwerpen E-mail: xavier.janssen@ua.ac.be Diffractive electroproduction of ρ and φ mesons is measured at HERA with the detector in the elastic

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Improved dispersive analysis of the scalar form factor of the nucleon

Improved dispersive analysis of the scalar form factor of the nucleon Improved dispersive analysis of the scalar form factor of the nucleon, ab Christoph Ditsche, a Bastian Kubis, a and Ulf-G. Meißner ac a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Bethe

More information

Nucleon Electromagnetic Form Factors: Introduction and Overview

Nucleon Electromagnetic Form Factors: Introduction and Overview Nucleon Electromagnetic Form Factors: Introduction and Overview Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara Scattering and Annihilation Electromagnetic Processes Trento, 18- February 013

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

arxiv:hep-ph/ v1 1 Jun 1995

arxiv:hep-ph/ v1 1 Jun 1995 CHIRAL PREDICTION FOR THE πn S WAVE SCATTERING LENGTH a TO ORDER O(M 4 π ) V. Bernard a#1#2, N. Kaiser b#3, Ulf-G. Meißner c#4 arxiv:hep-ph/9506204v1 1 Jun 1995 a Centre de Recherches Nucléaires, Physique

More information

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not

Generalization to Absence of Spherical Symmetry p. 48 Scattering by a Uniform Sphere (Mie Theory) p. 48 Calculation of the [characters not Scattering of Electromagnetic Waves p. 1 Formalism and General Results p. 3 The Maxwell Equations p. 3 Stokes Parameters and Polarization p. 4 Definition of the Stokes Parameters p. 4 Significance of the

More information

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S. NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD Barabanov M.Yu., Vodopyanov A.S. Veksler-Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research Dubna, Moscow

More information

Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons

Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons Complete description of polarization effects in the nonlinear Compton scattering II. Linearly polarized laser photons arxiv:hep-ph/0311v 10 Dec 003 D.Yu. Ivanov 1, G.L. Kotkin, V.G. Serbo 1 Sobolev Institute

More information

Multi-Channel Systems in a Finite Volume

Multi-Channel Systems in a Finite Volume INT-12-2b Multi-Channel Systems in a Finite olume RaúL Briceño In collaboration with: Zohreh Davoudi (arxiv:1204.1110 Motivation: Scalar Sector The light scalar spectrum Its nature remains puzzling Pertinent

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

The estimation of production rates of π + K, π K + and π + π atoms in proton-nucleus interactions at 450 GeV/c

The estimation of production rates of π + K, π K + and π + π atoms in proton-nucleus interactions at 450 GeV/c EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH DIRAC Note 55 December 6, 5 The estimation of production rates of π + K, π K + and π + π atoms in protonnucleus interactions at 5 GeV/c O.Gorchakov, L.Nemenov

More information

Decays, resonances and scattering

Decays, resonances and scattering Structure of matter and energy scales Subatomic physics deals with objects of the size of the atomic nucleus and smaller. We cannot see subatomic particles directly, but we may obtain knowledge of their

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2 MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION

More information

Bernard Peyaud CEA Saclay, IRFU -SPP

Bernard Peyaud CEA Saclay, IRFU -SPP Measurements of pp scattering lengths from K ± decays Experimental studies of K 3p and K e4 decays with the NA48/2 experiment at CERN Bernard Peyaud CEA Saclay, IRFU -SPP On behalf of the NA48/2 collaboration:

More information

Α Dispersion Relation for Open Spiral Galaxies

Α Dispersion Relation for Open Spiral Galaxies J. Astrophys. Astr. (1980) 1, 79 95 Α Dispersion Relation for Open Spiral Galaxies G. Contopoulos Astronomy Department, University of Athens, Athens, Greece Received 1980 March 20; accepted 1980 April

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

arxiv: v1 [hep-ph] 22 Jun 2012

arxiv: v1 [hep-ph] 22 Jun 2012 Electroweak hadron structure in point-form dynamics heavy-light systems arxiv:1206.5150v1 [hep-ph] 22 Jun 2012 and Wolfgang Schweiger Institut für Physik, Universität Graz, A-8010 Graz, Austria E-mail:

More information

Calculation of Fragmentation Functions in Two-hadron Semi-inclusive Processes

Calculation of Fragmentation Functions in Two-hadron Semi-inclusive Processes Calculation of Fragmentation Functions in Two-hadron Semi-inclusive Processes A. Bianconi a, S. Boffi b, D. Boer c, R. Jaob d and M. Radici b arxiv:hep-ph/00032v 3 Oct 2000 a Dipartimento di Chimica e

More information

MEASUREMENT OF THE PROTON ELECTROMAGNETIC FORM FACTORS AT BABAR arxiv: v1 [hep-ex] 29 Nov 2013

MEASUREMENT OF THE PROTON ELECTROMAGNETIC FORM FACTORS AT BABAR arxiv: v1 [hep-ex] 29 Nov 2013 MEASUREMENT OF THE PROTON ELECTROMAGNETIC FORM FACTORS AT BABAR arxiv:1311.7517v1 [hep-ex] 29 Nov 213 V. P. Druzhinin, on behalf of the BABAR Collaboration Budker Institute of Nuclear Physics SB RAS, Novosibirsk

More information

PHL424: Feynman diagrams

PHL424: Feynman diagrams PHL424: Feynman diagrams In 1940s, R. Feynman developed a diagram technique to describe particle interactions in space-time. Feynman diagram example Richard Feynman time Particles are represented by lines

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Scalar mesons in three-flavor Linear Sigma Models

Scalar mesons in three-flavor Linear Sigma Models JLAB-THY-01-34 Scalar mesons in three-flavor Linear Sigma Models Deirdre Black a Amir H. Fariborz b Sherif Moussa a Salah Nasri a Joseph Schechter a a Department of Physics, Syracuse University, Syracuse,

More information

arxiv:hep-ph/ v1 22 Dec 2000

arxiv:hep-ph/ v1 22 Dec 2000 ON THE σ L /σ T RATIO IN POLARIZED VECTOR MESON PHOTOPRODUCTION S.V.Golosoov Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 980, Moscow region, Russia E-mail:

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

Comparative study of scattering by hard core and absorptive potential

Comparative study of scattering by hard core and absorptive potential 6 Comparative study of scattering by hard core and absorptive potential Quantum scattering in three dimension by a hard sphere and complex potential are important in collision theory to study the nuclear

More information

arxiv: v1 [nucl-th] 17 Apr 2013

arxiv: v1 [nucl-th] 17 Apr 2013 arxiv:134.4855v1 [nucl-th] 17 Apr 13 The Upper Energy Limit of HBChPT in Pion Photoproduction Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas,

More information

in Lattice QCD Abstract

in Lattice QCD Abstract FERMILAB-PUB-96/016-T January, 1996 Electromagnetic Splittings and Light Quark Masses arxiv:hep-lat/9602005v1 6 Feb 1996 in Lattice QCD A. Duncan 1, E. Eichten 2 and H. Thacker 3 1 Dept. of Physics and

More information

Pion polarizabilities: No conflict between dispersion theory and ChPT

Pion polarizabilities: No conflict between dispersion theory and ChPT : No conflict between dispersion theory and ChPT Barbara Pasquini a, b, and Stefan Scherer b a Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia, and INFN, Sezione di Pavia, Italy

More information

arxiv:hep-ph/ v1 13 Oct 2004

arxiv:hep-ph/ v1 13 Oct 2004 arxiv:hep-ph/0410184v1 13 Oct 2004 σ DIS (νn), NLO Perturbative QCD and O(1 GeV) Mass Corrections S. Kretzer a and M. H. Reno b a Physics Department and RIKEN-BNL Research Center, Bldg. 510a, Brookhaven

More information

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio Impact of the in-medium conservation of energy on the π /π + multiplicity ratio M.D. Cozma IFIN-HH, Reactorului 30, 077125 Mǎgurele-Bucharest, Romania Abstract An upgraded version of the isospin dependent

More information

Feynman diagrams in nuclear physics at low and intermediate energies

Feynman diagrams in nuclear physics at low and intermediate energies «Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 99 104. Feynman diagrams in nuclear physics at low and intermediate energies L. D. Blokhintsev Skobeltsyn Institute of Nuclear

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

arxiv:hep-ph/ v1 29 May 2000

arxiv:hep-ph/ v1 29 May 2000 Photon-Photon Interaction in a Photon Gas Markus H. Thoma Theory Division, CERN, CH-1211 Geneva, Switzerland and Institut für Theoretische Physik, Universität Giessen, 35392 Giessen, Germany arxiv:hep-ph/0005282v1

More information

Precision measurement of kaon radiative decays in NA48/2

Precision measurement of kaon radiative decays in NA48/2 Precision measurement of kaon radiative decays in NA48/2 INFN Sezione di Perugia E-mail: monica.pepe@pg.infn.it Kaon decays are an excellent laboratory to test low energy strong interaction perturbative

More information

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington formulate the NN interaction on the light front solve the Weinberg equation for the deuteron prescription from FS 81 review constructs

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information