p 3 A = 12 C s A = 16 O s d E η m η (MeV)

Size: px
Start display at page:

Download "p 3 A = 12 C s A = 16 O s d E η m η (MeV)"

Transcription

1 PRODUCTION AND DECAY OF ETA-MESIC NUCLEI A. I. L'VOV P. N. Lebedev Physical Institute, Russian Academy of Sciences Leninsky Prospect 5, Moscow 79, Russia Using the Green function method, binding eects on produced -mesons in the two-stage reaction + A! N + +(A )! N +(N) +(A ) are studied. The energy spectrum of the correlated N pairs which arise from decays of 's inside the nucleus is strongly aected by an attractive -nucleus optical potential. Its resonant behavior gives a clear signal of formating intermediate -mesic nuclei. It was found long ago that the S (55) resonance, which lies above the N threshold and is strongly coupled to the N channel, makes the low-energy N interaction attractive and leads to an existence of bound -nucleus systems, the so-called -mesic nuclei. This nding was later conrmed and even strengthened. With contemporary estimates of the N scattering length, ; the -mesic nuclei A are expected to exist for all A. ;5 Studies of the reactions like p + d! He + and d + d! He + have already provided an experimental evidence that the and the nucleus in the nal state experience a strong attraction which manifests itself in a near-threshold enhancement and in a rapid energy dependence of the cross section. 6;7 Nevertheless, a direct observation of bound rather than free etas would be more convincing for a discovery of -mesic nuclei. Since the bound eventually decays through the subprocess N! N, a clear signal for a presence of the stopped etas in nuclei would be in an observation of nal pions and nucleons with almost opposite momenta, with the kinetic energies of about 00 MeV and 00 MeV, respectively, and with the total energy close to m + m N. 8 In the present work, production of such pairs is studied within a simple model which is aimed at learning how the attraction between the eta and the nucleus aects characteristics of the pairs. In accordance with the original suggestion, 8 we consider the two-stage reaction + A! N + +(A )! N +(N )+(A ); () in which the fast nucleon N knocked out in the subprocess (k)+n!(e )+N () escapes from the nucleus, whereas the collides with another nucleon N in

2 the nucleus and perishes producing a pair which also escapes: + N! + N : () Considering the rest of the nucleus as frozen, we write the matrix element of () as T = F (k)f (E ) ZZ e i~ k~r (~r ) ( ) N (~r ) (~r ) ( ) (~r ) ( ) N (~r ) G(~r ;~r ;E )d~r d~r : () Here, are the wave functions of the bound nucleons with the binding energies, and N, N, are the wave functions of the nal particles. F, F are the amplitudes of the reactions () and () which, at energies considered, are approximated by s-waves. The Green function G gives the amplitude of with the energy E = E + E kin N = E + E kin N (5) to propagate from ~r to ~r in the mean eld V (r) of the intermediate nucleus (A ) which can be assumed to be independent on. In the following we also neglect the dependence of E on the hole states, and replace, by their Fermi-gas average hi ' MeV. When a single bound state 0 of the (complex) energy E 0 dominates, the Green function takes the separable form G(~r ;~r ;E ) ' + 0 (~r ) 0 (~r ) ; (6) E E0 which results in the Breit-Wigner resonant behavior of the pair production through the intermediate -mesic nucleus. In such an approximation, the amplitude () depends on the overlap of 0 (r) with the nucleus's nucleons and typically the total cross section of the -mesic nucleus formation by photons is 5{0 b for A = to 6. 9 With the realistic optical potential strength, however, there are several bound states of which are strongly overlapped and act coherently. Also, there is a non-resonance background which describes the process!! in the nucleus with unbound etas. For these reasons Eq. (6) is generally insucient and the full Green function has to be used to describe the reaction (). As an illustration of what may happen, we discuss here the spectral function 0 S(E )=ZZ (~r )(~r )jg(~r ;~r ;E )j d~r d~r ; (7)

3 which describes a global nuclear dependence of the matrix element () squared and averaged over the nuclear states and momenta of the outgoing particles. S(E ) characterizes the nuclear dependence of the total cross section of the two-step transition!! in nuclei. It is proportional to the number of nucleons hit by 's produced somewhere inside the nucleus. This number increases when the has the energy close to a resonance level; such 's are captured by the nucleus and pass a few times across the nucleus before they annihilate or escape. In actual calculations of G and S(E )we use the simple rst-order energydependent potential E V (r;e )= ( p s=m N )f N (E ) (r) with the N scattering amplitude taken from Ref. and with the square-well nuclear density (r) =0:75 0 at r<r A,R A =:A = fm. Such a potential gives the energy of the ground state and its width close to those found in a recent analysis. Typically, the widths are 0 MeV and far less than those found in an older work which seems to overestimate the width's broadening due to the two-nucleon absorption NN! NN in the nucleus. A = C s p A = 6 O s p d E η m η (MeV) E η m η (MeV) Figure : The normalized spectral function S(E) = (6 R A =A )S(E) for the square-well potential representing the carbon and oxygen. Dashed lines: the optical potential is switched o; then S(E) = 9 above the threshold. Dotted lines: the absorption Im V (r) is on. Solid lines: both the attraction Re V (r) and the absorption Im V (r) are on. The resonance-like structures are composed of s, p, d resonances in the -nucleus system. In the absence of the potential V (r), the Green function reads G = e iqr =(r), where r = j~r ~r j and q = E m. Accordingly, S(E )does

4 not depend on E when E >m. At sub-threshold energies, when cannot propagate far from the production point, S(E ) rapidly vanishes. When the absorptive part Im V (r) of the optical potential is taken into account, S(E ) falls down as well. However, it strongly enhances when the attraction Re V (r) is on and the bound states appear. In fact, the resonance-like structure of S(E ) consists of many s, p, d,...wave contributions. See Fig.. The practically important nding is that the non-resonance background in S(E ) is relatively small, so that most of produced N pairs with nearthreshold energies appear from the decay of the resonant -mesic states. Due to the spread in the separation energies,, the inclusive distribution of the total energy E + E N = E + m N + of the pairs is smeared and rather exhibits a single giant peak of the width 0 50 MeV. Such pairs have been recently observed in the experiment performed at Lebedev Institute. Further analysis of their energy distribution may hopefully reveal whether the -mesic nuclei were really found. This research was supported in part by the Russian Foundation for Basic Research, grant Useful discussions with G.A. Sokol are highly appreciated. References. Q. Haider and L. Liu, Phys. Lett. B 7, 57 (986); Phys. Rev. C, 85 (986).. M. Batinic et al., nucl-th/ A.M. Green and S. Wycech, Phys. Rev. C 55, R67 (997).. S.A. Rakityansky et al., Phys. Rev. C 5, R0 (996); S.A. Soanos and S.A. Rakityansky, nucl-th/ V.A. Tryasuchev, Yad. Fiz. [English transl.: Physics of Atomic Nuclei] 60, 5 (997). 6. C. Wilkin, Phys. Rev. C 7, R98 (99). 7. N. Willis et al., Phys. Lett. B 06, (997). 8. G.A. Sokol and V.A. Tryasuchev. Kratkie Soobsh. Fiz. [English transl.: Sov. Phys. { Lebedev Institute Reports], (99). 9. A.I. Lebedev and V.A. Tryasuchev, Yad. Fiz. 58, 6 (995); A.I. L'vov, in preparation. 0. O. Morimatsu and K. Yazaki, Nucl. Phys. A 5, 77 (985); A 8, 9 (988).. J. Kulpa, S. Wycech and A.M. Green, nucl-th/ H.C. Chiang, E. Oset and L.C. Liu, Phys. Rev. C, 595 (988).. G.A. Sokol et al., talk at the th Int. Seminar on High Energy Physics

5 Problems, 7{ August 998, Dubna; to appear in proceedings. 5

arxiv:nucl-th/ v1 27 Nov 2002

arxiv:nucl-th/ v1 27 Nov 2002 1 arxiv:nucl-th/21185v1 27 Nov 22 Medium effects to the N(1535) resonance and η mesic nuclei D. Jido a, H. Nagahiro b and S. Hirenzaki b a Research Center for Nuclear Physics, Osaka University, Ibaraki,

More information

Search for the η-mesic Helium bound state with the WASA-at-COSY facility

Search for the η-mesic Helium bound state with the WASA-at-COSY facility Search for the η-mesic Helium bound state with the WASA-at-COSY facility Magdalena Skurzok 1, Wojciech Krzemień 2, Oleksandr Rundel 1 and Pawel Moskal 1 for the WASA-at-COSY Collaboration 1 M. Smoluchowski

More information

NUCLEAR EFFECTS IN NEUTRINO STUDIES

NUCLEAR EFFECTS IN NEUTRINO STUDIES NUCLEAR EFFECTS IN NEUTRINO STUDIES Joanna Sobczyk June 28, 2017, Trento 1 OUTLINE Motivation: neutrino physics Neutrino oscillation experiments: why nuclear physics is important Lepton-nucleus scattering:

More information

arxiv: v1 [nucl-th] 11 Feb 2015

arxiv: v1 [nucl-th] 11 Feb 2015 Eta-nuclear interaction: optical vs. coupled channels J.A. Niskanen Helsinki Institute of Physics, PO Box 64, FIN-00014 University of Helsinki, Finland (Dated: February 17, 2015) Abstract The existence

More information

Eta-nuclear interaction: optical vs. coupled channels. Abstract

Eta-nuclear interaction: optical vs. coupled channels. Abstract Eta-nuclear interaction: optical vs. coupled channels J.A. Niskanen Helsinki Institute of Physics, PO Box 64, FIN-00014 University of Helsinki, Finland (Dated: November 26, 2015) Abstract The existence

More information

Interaction of antiprotons with nuclei

Interaction of antiprotons with nuclei Interaction of antiprotons with nuclei Jaroslava Hrtánková Nuclear Physics Institute, eº, Czech Republic (Nucl. Phys. A 945 (2016) 197) LEAP conference, Kanazawa, March 6-11, 2016 Introduction 2 Introduction

More information

arxiv: v3 [nucl-th] 28 Aug 2013

arxiv: v3 [nucl-th] 28 Aug 2013 η-nuclear bound states revisited E. Friedman a, A. Gal a,, J. Mareš b arxiv:1304.6558v3 [nucl-th] 28 Aug 2013 Abstract a Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel b Nuclear

More information

Correlations derived from modern nucleon-nucleon potentials

Correlations derived from modern nucleon-nucleon potentials Correlations derived from modern nucleon-nucleon potentials H. Müther Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany A. Polls Departament d Estructura i Costituents de

More information

COSY Proposal and Beam Time Request. Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE

COSY Proposal and Beam Time Request. Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE COSY Proposal and Beam Time Request Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE P. Goslawski, I. Burmeister, A. Khoukaz, M. Mielke, M. Papenbrock Institut für Kernphysik,

More information

Cyclotron Institute and Physics Department. Texas A&M University, College Station, Texas Abstract

Cyclotron Institute and Physics Department. Texas A&M University, College Station, Texas Abstract Subthreshold kaon production and the nuclear equation of state G. Q. Li and C. M. Ko Cyclotron Institute and Physics Department Texas A&M University, College Station, Texas 77843 Abstract We reexamine

More information

1p1/2 0d5/2. 2s1/2-0.2 Constant Bound Wave Harmonic Oscillator Bound Wave Woods-Saxon Bound Wave Radius [fm]

1p1/2 0d5/2. 2s1/2-0.2 Constant Bound Wave Harmonic Oscillator Bound Wave Woods-Saxon Bound Wave Radius [fm] Development of the Multistep Compound Process Calculation Code Toshihiko KWNO Energy Conversion Engineering, Kyushu University 6- Kasuga-kouen, Kasuga 86, Japan e-mail: kawano@ence.kyushu-u.ac.jp program

More information

PoS(Baldin ISHEPP XXI)102

PoS(Baldin ISHEPP XXI)102 Studies of eta-mesic nuclei at the LPI electron synchrotron V.A. Baskov, A.V. Koltsov, A.I. L vov, A.I. Lebedev, L.N. Pavlyuchenko,, E.V. Rzhanov, S.S. Sidorin, G.A. Sokol P.N. Lebedev Physical Institute,

More information

Simulated nucleon nucleon and nucleon nucleus reactions in the frame of the cascade exciton model at high and intermediate energies

Simulated nucleon nucleon and nucleon nucleus reactions in the frame of the cascade exciton model at high and intermediate energies PRAMANA c Indian Academy of Sciences Vol. 84, No. 4 journal of April 2015 physics pp. 581 590 Simulated nucleon nucleon and nucleon nucleus reactions in the frame of the cascade exciton model at high and

More information

Dirac-Brueckner mean fields and an effective* density-dependent DiracHartree-Fock interaction in nuclear. matter

Dirac-Brueckner mean fields and an effective* density-dependent DiracHartree-Fock interaction in nuclear. matter Dirac-Brueckner mean fields and an effective* density-dependent DiracHartree-Fock interaction in nuclear matter Brett V. Carlson Instituto Tecnológico de Aeronáutica, São José dos Campos Brazil and Daisy

More information

Search for the eta-mesic helium by means of WASA detector at COSY

Search for the eta-mesic helium by means of WASA detector at COSY by means of WASA detector at COSY IKP, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: p.moskal@uj.edu.pl W. Krzemień E-mail: wojciech.krzemien@if.uj.edu.pl M. Skurzok E-mail: magdalena.skurzok@uj.edu.pl

More information

arxiv:nucl-th/ v2 15 Apr 2003

arxiv:nucl-th/ v2 15 Apr 2003 The reaction pd (pp)n at high momentum transfer and short-range NN properties J. Haidenbauer a, Yu.N. Uzikov b 1 arxiv:nucl-th/0302063v2 15 Apr 2003 a Institut für Kernphysik, Forschungszentrum Jülich,

More information

On extraction of the total photoabsorption cross section on the neutron from data on the deuteron

On extraction of the total photoabsorption cross section on the neutron from data on the deuteron On extraction of the total photoabsorption cross section on the neutron from data on the deuteron A.I. L vov (Lebedev Phys Inst) & M.I. Levchuk (Inst Phys, Minsk) Motivation: GRAAL experiment (proton,

More information

Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential

Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential NUCLEAR THEORY, Vol. 32 (2013) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential K.V. Lukyanov 1, V.K.

More information

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire Quantum interference in the e + e, decays of - and!-mesons produced in, p reactions Madeleine Soyeur 1, Matthias Lutz 2 and Bengt Friman 2;3 1. Departement d'astrophysique, de Physique des Particules,

More information

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models J. Hrtánková, J. Mare² Nuclear Physics Institute, eº, Czech Republic 55th International Winter Meeting on Nuclear

More information

Scattering theory I: single channel differential forms

Scattering theory I: single channel differential forms TALENT: theory for exploring nuclear reaction experiments Scattering theory I: single channel differential forms Filomena Nunes Michigan State University 1 equations of motion laboratory Center of mass

More information

Static and covariant meson-exchange interactions in nuclear matter

Static and covariant meson-exchange interactions in nuclear matter Workshop on Relativistic Aspects of Two- and Three-body Systems in Nuclear Physics - ECT* - 19-23/10/2009 Static and covariant meson-exchange interactions in nuclear matter Brett V. Carlson Instituto Tecnológico

More information

Coherent and incoherent nuclear pion photoproduction

Coherent and incoherent nuclear pion photoproduction Coherent and incoherent nuclear pion photoproduction Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Gordon Conference on photonuclear reactions, August 2008

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Continuum Shell Model

Continuum Shell Model Continuum Shell Model Alexander Volya Florida State University This work was done with Vladimir Zelevinsky Supported by DOE and NSF. Outline Continuum Shell Model Basic Theory Reaction Formalism One-body

More information

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LNF-06/22 (P) 29 August 2006 HADRON PROPERTIES IN THE NUCLEAR MEDIUM THE PANDA PROGRAM WITH pa REACTIONS Olaf N. Hartmann INFN, Laboratori Nazionali di

More information

arxiv: v2 [nucl-th] 28 Aug 2014

arxiv: v2 [nucl-th] 28 Aug 2014 Pigmy resonance in monopole response of neutron-rich Ni isotopes? Ikuko Hamamoto 1,2 and Hiroyuki Sagawa 1,3 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, arxiv:1408.6007v2

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Pion Physics in the Meson Factory Era R. P. Redwine Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Bates Symposium 1 Meson Factories

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions

Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions EPJ Web of Conferences 3, 59 (6) DOI:.5/ epjconf/6359 MESON 6 Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions Mariola Kłusek-Gawenda, and ntoni Szczurek, Institute

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Sub-threshold strangeness and charm production (in UrQMD)

Sub-threshold strangeness and charm production (in UrQMD) Sub-threshold strangeness and charm production (in UrQMD) Marcus Bleicher and Jan Steinheimer Marcus Bleicher and Jan Steinheimer 1 / 24 Motivation Recent measurements on near and below threshold production.

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider

Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Recent results at the -meson region from the CMD-3 detector at the VEPP-2000 collider Vyacheslav Ivanov *1, Evgeny Solodov 1, Evgeny Kozyrev 1, and Georgiy Razuvaev 1 1 Budker Institute of Nuclear Physics,

More information

1 Geant4 to simulate Photoelectric, Compton, and Pair production Events

1 Geant4 to simulate Photoelectric, Compton, and Pair production Events Syed F. Naeem, hw-12, Phy 599 1 Geant4 to simulate Photoelectric, Compton, and Pair production Events 1.1 Introduction An Aluminum (Al) target of 20cm was used in this simulation to see the eect of incoming

More information

Alpha decay, ssion, and nuclear reactions

Alpha decay, ssion, and nuclear reactions Alpha decay, ssion, and nuclear reactions March 11, 2002 1 Energy release in alpha-decay ² Consider a nucleus which is stable against decay by proton or neutron emission { the least bound nucleon still

More information

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Photoabsorption and Photoproduction on Nuclei in the Resonance Region Photoabsorption and Photoproduction on Nuclei in the Resonance Region Susan Schadmand Institut für Kernphysik First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005 electromagnetic probes Hadron

More information

Beta and gamma decays

Beta and gamma decays Beta and gamma decays April 9, 2002 Simple Fermi theory of beta decay ² Beta decay is one of the most easily found kinds of radioactivity. As we have seen, this result of the weak interaction leads to

More information

Neutrino-Nucleus Interactions and Oscillations

Neutrino-Nucleus Interactions and Oscillations Neutrino-Nucleus Interactions and Oscillations Ulrich Mosel Long-Baseline Experiment: T2K and NOvA Future (2027): DUNE From: Diwan et al, Ann. Rev. Nucl. Part. Sci 66 (2016) DUNE, 1300 km HyperK (T2K)

More information

The Nuclear Many-Body problem. Lecture 3

The Nuclear Many-Body problem. Lecture 3 The Nuclear Many-Body problem Lecture 3 Emergent phenomena at the drip lines. How do properties of nuclei change as we move towards the nuclear driplines? Many-body open quantum systems. Unification of

More information

Nuclear Physics A 2943 (1997) 1{16. Electromagnetic couplings of nucleon resonances? T. Feuster 1, U. Mosel

Nuclear Physics A 2943 (1997) 1{16. Electromagnetic couplings of nucleon resonances? T. Feuster 1, U. Mosel Nuclear Physics A 943 (997) {6 Electromagnetic couplings of nucleon resonances? T. Feuster, U. Mosel Institut fur Theoretische Physik, Universitat Giessen, D-3539 Giessen, Germany Received 7 April 996;

More information

Medium Effects in ρ-meson Photoproduction

Medium Effects in ρ-meson Photoproduction Medium Effects in -Meson Photoproduction F. Riek a, R. Rapp a, T.-S. H. Lee b, Yongseok Oh a a Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843-3366, USA b

More information

q (a) (b) (c) (d) (e)

q (a) (b) (c) (d) (e) FTUV/97-40 IFIC/97-40 UG-DFM-5/97 Inclusive (e; e 0 N ), (e; e 0 NN), (e; e 0 )... reactions in nuclei A. Gil 1, J. Nieves 2 and E. Oset 1 1 Departamento de Fsica Teorica and IFIC, Centro Mixto Universidad

More information

Centrality Dependence of Rapidity Spectra of Negative Pions in 12 C+ 12 C and

Centrality Dependence of Rapidity Spectra of Negative Pions in 12 C+ 12 C and Centrality Dependence of Rapidity Spectra of Negative Pions in 12 C+ 12 C and 12 C+ 181 Ta Collisions at 4.2 GeV/c per Nucleon* Kh. K. Olimov 1),2) **, Sayyed A. Hadi 3) 1) *** and Mahnaz Q. Haseeb Abstract

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

Photopion photoproduction and neutron radii

Photopion photoproduction and neutron radii Photopion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Jefferson Lab PREX workshop, August 2008 Talk Outline Nuclear (π

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

arxiv:nucl-ex/ v1 27 May 2002

arxiv:nucl-ex/ v1 27 May 2002 1 MEASUREMENTS OF NUCLEAR LEVEL DENSITIES AND γ-ray STRENGTH FUNCTIONS AND THEIR INTERPRETATIONS M. Guttormsen, M. Hjorth-Jensen, J. Rekstad and S. Siem Department of Physics, University of Oslo, Box 1048

More information

On unitarity of the particle-hole dispersive optical model

On unitarity of the particle-hole dispersive optical model On unitarity of the particle-hole dispersive optical model M.L. Gorelik 1), S. Shlomo 2,3), B.A. Tulupov 4), M.H. Urin 5) 1) Moscow Economic School, Moscow 123022, Russia 2) Cyclotron Institute, Texas

More information

Spectral function at high missing energies and momenta

Spectral function at high missing energies and momenta PHYSICAL REVIEW C 70, 024309 (2004) Spectral function at high missing energies and momenta T. Frick, 1 Kh. S. A. Hassaneen, 1 D. Rohe, 2 and H. Müther 1 1 Institut für Theoretische Physik, Universität

More information

PoS(Baldin ISHEPP XXII)042

PoS(Baldin ISHEPP XXII)042 Multifragmentation of nuclei by photons: new approaches and results Institute for Nuclear Research RAS Prospect 60-let Octabra, 7A, 117312 Moscow, Russia E-mail: vladimir@cpc.inr.ac.ru A review on multifragmentation

More information

Optical theorem and unitarity

Optical theorem and unitarity Optical theorem and unitarity arxiv:403.3576v2 [hep-ph] 20 Mar 204 V.I.Nazaruk Institute for Nuclear Research of RAS, 60th October Anniversary Prospect 7a, 732 Moscow, Russia.* Abstract It is shown that

More information

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies A.B. Larionov Outline: 1) Motivation. 2) The GiBUU model: kinetic equations with relativistic mean

More information

Electromagnetic effects in the K + π + π 0 π 0 decay

Electromagnetic effects in the K + π + π 0 π 0 decay Electromagnetic effects in the K + π + π 0 π 0 decay arxiv:hep-ph/0612129v3 10 Jan 2007 S.R.Gevorkyan, A.V.Tarasov, O.O.Voskresenskaya March 11, 2008 Joint Institute for Nuclear Research, 141980 Dubna,

More information

Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay

Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay Commun. Theor. Phys. Beijing, China 46 26 pp. 57 53 c International Academic Publishers Vol. 46, No. 3, September 5, 26 Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay ZONG Yuan-Yuan,,2 SHEN Peng-Nian,,3,4

More information

arxiv:hep-ph/ v1 10 Aug 2005

arxiv:hep-ph/ v1 10 Aug 2005 Extraction of the K K isovector scattering length from pp dk + K0 data near threshold arxiv:hep-ph/0508118v1 10 Aug 2005 M. Büscher 1, A. Dzyuba 2, V. Kleber 1, S. Krewald 1, R. H. Lemmer 1, 3, and F.

More information

II. GAMMA-DECAY STRENGTH FUNCTION IN HEATED NUCLEI The gamma- decay strength function f E1 ( ) determines the -emission from heated nuclei [8]. It is

II. GAMMA-DECAY STRENGTH FUNCTION IN HEATED NUCLEI The gamma- decay strength function f E1 ( ) determines the -emission from heated nuclei [8]. It is An investigation of interplay between dissipation mechanisms in heated Fermi systems by means of radiative strength functions V.A. Plujko (Plyuyko) Abstract A simple analytical expression for the -decay

More information

On the two-pole interpretation of HADES data

On the two-pole interpretation of HADES data J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00

More information

arxiv: v1 [hep-ex] 22 Jun 2009

arxiv: v1 [hep-ex] 22 Jun 2009 CPC(HEP & NP), 29, 33(X): 1 7 Chinese Physics C Vol. 33, No. X, Xxx, 29 Recent results on nucleon resonance electrocouplings from the studies of π + π p electroproduction with the CLAS detector V. I. Mokeev

More information

Can We Measure an Annihilation Range of the Nucleon-Antinucleon System?

Can We Measure an Annihilation Range of the Nucleon-Antinucleon System? Can We Measure an Annihilation Range of the Nucleon-Antinucleon System? The range of the annihilation of the nucleon-antinucleon system is intimately related to our idea of the internal structure of the

More information

Photonuclear Reaction Cross Sections for Gallium Isotopes. Serkan Akkoyun 1, Tuncay Bayram 2

Photonuclear Reaction Cross Sections for Gallium Isotopes. Serkan Akkoyun 1, Tuncay Bayram 2 Photonuclear Reaction Cross Sections for Gallium Isotopes Serkan Akkoyun 1, Tuncay Bayram 2 1 Cumhuriyet University, Vocational School of Healt, Sivas, Turkey 2 Sinop University, Department of Physics,

More information

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses History of the Dalitz Plot Dalitz s original plot non-relativistic; in terms of kinetic energies applied to the τ-θ puzzle Modern-day

More information

arxiv: v1 [hep-ph] 2 Feb 2017

arxiv: v1 [hep-ph] 2 Feb 2017 Physical properties of resonances as the building blocks of multichannel scattering amplitudes S. Ceci, 1, M. Vukšić, 2 and B. Zauner 1 1 Rudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Coherent Neutrino Nucleus Scattering

Coherent Neutrino Nucleus Scattering 1 Coherent Neutrino Nucleus Scattering E.A. Paschos a and A. Kartavtsev b (presented by E.A. Paschos) a Universität Dortmund, D 441 Dortmund, Germany b Rostov State University, Rostov on Don, Russia We

More information

Ultrahigh Energy Cosmic Rays propagation I

Ultrahigh Energy Cosmic Rays propagation I Ultrahigh Energy Cosmic Rays propagation I Microwave background Energy loss processes for protons: - photoproduction interactions - pair production interactions - adiabatic loss due to the expansion of

More information

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary

PhD Thesis. Nuclear processes in intense laser eld. Dániel Péter Kis. PhD Thesis summary PhD Thesis Nuclear processes in intense laser eld PhD Thesis summary Dániel Péter Kis BME Budapest, 2013 1 Background Since the creation of the rst laser light, there has been a massive progress in the

More information

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev Theoretical studies of K - pp Akinobu Doté (KEK Theory Center) 1. Introduction 2. Recent results of various studies of K pp DHW (Variational with Chiral-based) vs AY (Variational with phenomenological)

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

arxiv: v2 [nucl-th] 1 Jul 2010

arxiv: v2 [nucl-th] 1 Jul 2010 Neutrino-nucleus scattering reexamined: Quasielastic scattering and pion production entanglement and implications for neutrino energy reconstruction T. Leitner and U. Mosel Institut für Theoretische Physik,

More information

Pion-Nucleon P 11 Partial Wave

Pion-Nucleon P 11 Partial Wave Pion-Nucleon P 11 Partial Wave Introduction 31 August 21 L. David Roper, http://arts.bev.net/roperldavid/ The author s PhD thesis at MIT in 1963 was a -7 MeV pion-nucleon partial-wave analysis 1. A major

More information

Hot Hypernucleus Formation in High-Energy Photonuclear Reactions

Hot Hypernucleus Formation in High-Energy Photonuclear Reactions Brazilian Journal of Physics, vol., no., September, 99 Hot Hypernucleus Formation in High-Energy Photonuclear Reactions M. Gonçalves, E.C. de Oliveira, E.L. Medeiros, S. de Pina, and S.B. Duarte Instituto

More information

determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A

determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A DESY 96015 4.5. TESTS OF THE LORENTZ STRUCTURE OF TAU DECAYS 99 determined b and has compared the value to the prediction of the KORALB Monte Carlo for a V ;A interaction of the ; vertex [224]: b meas

More information

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION

More information

Neutrino interactions and cross sections

Neutrino interactions and cross sections Neutrino interactions and cross sections ν scattering on a free nucleon ν electron scattering ν scattering on light nuclei at low energies ν quasielastic scattering ν pion production ν deep inelastic scattering

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

arxiv:hep-ph/ v3 2 Jan 2001

arxiv:hep-ph/ v3 2 Jan 2001 Thermalization temperature in Pb+Pb collisions at SpS energy from hadron yields and midrapidity p t distributions of hadrons and direct photons D. Yu. Peressounko and Yu. E. Pokrovsky Russian Research

More information

I=0 I=2. ππ S Wave Scattering Amplitude. [MeV] M ππ

I=0 I=2. ππ S Wave Scattering Amplitude. [MeV] M ππ Enhancement of A! A Threshold Cross Sections by In-Medium Final State Interactions R. Rapp 1, J.W. Durso ;3,. Aouissat 4, G. Chanfray 5, O. Krehl,P.Schuck 6,J.Speth and J. Wambach 4 1) Department of Physics

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Sub Threshold strange hadron production in UrQMD

Sub Threshold strange hadron production in UrQMD Sub Threshold strange hadron production in UrQMD Jan Steinheimer and Marcus Bleicher 10.05.2016 Jan Steinheimer and Marcus Bleicher (FIAS) 10.05.2016 1 / 26 Motivation Recent measurements on near and below

More information

The light nuclei spin structure from the hadronic interactions at intermediate energies

The light nuclei spin structure from the hadronic interactions at intermediate energies The light nuclei spin structure from the hadronic interactions at intermediate energies P.K. Kurilkin on behalf JINR-Japan collaboration Hadron 2011, June 13-17, München, Germany Collaboration Joint Institute

More information

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko PERSPECTIVE STUDY OF CHARMONIUM AND EXOTICS IN ANTIPRPOTON-PROTON ANNIHILATION AND PROTON-PROTON COLLSIONS M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko Joint Institute for Nuclear Research, Joliot-Curie

More information

Search for η-mesic 4 He with the WASA-at-COSY detector

Search for η-mesic 4 He with the WASA-at-COSY detector Jagiellonian University Institute of Physics arxiv:1202.5794v1 [nucl-ex] 26 Feb 2012 Search for η-mesic 4 He with the WASA-at-COSY detector Wojciech Krzemień A doctoral dissertation prepared at the Institute

More information

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio Impact of the in-medium conservation of energy on the π /π + multiplicity ratio M.D. Cozma IFIN-HH, Reactorului 30, 077125 Mǎgurele-Bucharest, Romania Abstract An upgraded version of the isospin dependent

More information

Collaborators: Prof. W. Sandhas and members of his group (Bonn),

Collaborators: Prof. W. Sandhas and members of his group (Bonn), Few Body Systems A1 Integral Equations (AGS) A2 Integro-differential equations (Hyperspherical Harmonics) A3 Time evolution methods A4 Supersymmetric Quantum Mechanics (SUSY) and Few-Body systems A5 Astrophysics

More information

Vladimir N. Gribov* L. D. Landau Institute for Theoretical Physics. Acad. of Sciences of the USSR, Leninsky pr. 53, Moscow, Russia.

Vladimir N. Gribov* L. D. Landau Institute for Theoretical Physics. Acad. of Sciences of the USSR, Leninsky pr. 53, Moscow, Russia. ORSAY LECTURES ON CONFINEMENT (I) by Vladimir N. Gribov* L. D. Landau Institute for Theoretical Physics Acad. of Sciences of the USSR, Leninsky pr. 53, 7 924 Moscow, Russia and KFKI Research Institute

More information

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics Philipp Dijkstal 12.05.2016 1 Introduction The talk on Similarity Renormalization Groups (SRG) from

More information

arxiv:astro-ph/ v1 7 Oct 1999

arxiv:astro-ph/ v1 7 Oct 1999 Search for high energy neutrinos with the BAIKAL underwater detector NT-96 arxiv:astro-ph/9910133v1 7 Oct 1999 V.A.Balkanov a,i.a.belolaptikov g, L.B.Bezrukov a, N.M.Budnev b, A.G.Chensky b, I.A.Danilchenko

More information

Feynman diagrams in nuclear physics at low and intermediate energies

Feynman diagrams in nuclear physics at low and intermediate energies «Избранные вопросы теоретической физики и астрофизики». Дубна: ОИЯИ, 2003. С. 99 104. Feynman diagrams in nuclear physics at low and intermediate energies L. D. Blokhintsev Skobeltsyn Institute of Nuclear

More information

Determination of the η -nucleus optical potential

Determination of the η -nucleus optical potential Determination of the η -nucleus optical potential M. Nanova II. Physikalisches Institut for the CBELSA/TAPS Collaboration Outline: motivation experimental approaches for determining the η -nucleus optical

More information

arxiv: v1 [hep-ph] 7 Jul 2015

arxiv: v1 [hep-ph] 7 Jul 2015 arxiv:1507.01916v1 [hep-ph] 7 Jul 2015 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA E-mail: tuchin@iastate.edu An essential part of experimental program at the future

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Coherent photo-production of ρ 0 mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by ALICE

Coherent photo-production of ρ 0 mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by ALICE EPJ Web of Conferences 8, 4) DOI:.5/ epjconf/ 4 8 C Owned by the authors, published by EDP Sciences, 4 Coherent photo-production of ρ mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by

More information

Mass of Higgs Boson and Branching Ratios

Mass of Higgs Boson and Branching Ratios Copyright 2015 by Sylwester Kornowski All rights reserved Mass of Higgs Boson and Branching Ratios Sylwester Kornowski Abstract: Within the Scale-Symmetric Theory we described mass spectrum of the composite

More information

Low mass dileptons from Pb + Au collisions at 158 A GeV

Low mass dileptons from Pb + Au collisions at 158 A GeV PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 5 journal of May 2003 physics pp. 1073 1077 Low mass dileptons from Pb + Au collisions at 158 A GeV SOURAV SARKAR 1, JAN-E ALAM 2;Λ and T HATSUDA 2 1

More information