arxiv:hep-ph/ v1 10 Aug 2005

Size: px
Start display at page:

Download "arxiv:hep-ph/ v1 10 Aug 2005"

Transcription

1 Extraction of the K K isovector scattering length from pp dk + K0 data near threshold arxiv:hep-ph/ v1 10 Aug 2005 M. Büscher 1, A. Dzyuba 2, V. Kleber 1, S. Krewald 1, R. H. Lemmer 1, 3, and F. P. Sassen 1 1 Institut für Kernphysik, Forschungszentrum Jülich, D Jülich, Germany 2 High Energy Physics Department, Petersburg Nuclear Physics Institute, , Gatchina, Russia 3 Max Planck Institut für Kernphysik, Postfach , D 69029, Heidelberg, Germany. (Dated: February 19, 2008) Abstract The results of a recent experiment measuring the reaction pp dk + K0 near threshold are interpreted in terms of a spectator model that encapsulates the main features of the observed K + K0 invariant mass distribution. A χ 2 fit to this data determines the imaginary part of the isovector scattering length in the K K channel as Im(a 1 ) = (0.61 ± 0.05) fm. We then use the Flatté representation of the scattering amplitude to infer a value Re(a 1 ) = (0.02 ± 0.03) fm for the real part under the assumption that scaling (Baru et al.[17]) is approximately satisfied. PACS numbers: n, Cs, Ve Corresponding author: R H Lemmer Electronic address: rh lemmer@mweb.co.za 1

2 1. Introduction The reaction pp dk + K0 has been measured at an excess energy of Q = 46 MeV with the spectrometer ANKE at the cooler synchrotron COSY-Jülich[1]. This experiment has achieved a resolution of 1 8 MeV for the invariant mass spectrum of the K K system which considerably improves the data base. Therefore it is timely to investigate what information regarding the K K scattering length can be extracted from this data. A model-independent analysis of the angular distributions shows a dominance of an s wave between the two kaons accompanied by a p wave deuteron with respect to the mesons. This has been interpreted as evidence for a dominant production of the a 0 (980) near threshold [1, 2]. Detailed calculations of the reaction pp dk + K0 performed by Grishina et al.[3] confirm this conclusion. In particular the non resonant K + K0 production is shown to be small below excess energies of Q = 100 MeV. The final state interaction in the Kd system reduces the cross section, but leaves the invariant mass distributions virtually unaffected [3]. A. Sibirtsev et al. [4] have extracted limits for the Kd scattering length from the data of Ref. [1] and found the magnitudes of both the real and imaginary parts of this quantity to be less than 1.3 fm. A chiral approach to the reaction pp dk + K0 has been formulated by Oset, Oller and Meissner [5] that suggests a potentially large sensitivity of the data to the Kd scattering length. A recent study [6] based on this formalism finds an optimal fit to the COSY data for a purely imaginary Kd scattering length of a Kd = (0.0 + i1.0) fm. The relatively small influence of the antikaon deuteron final state interaction on the shape of the measured invariant mass distributions as indicated in Refs. [3, 4, 6] encourages us to explore the working assumption that the deuteron s role is simply that of a spectator, and that the K + K0 production in pp dk + K0 is dominated by final state interactions in the meson meson channels only, and so can proceed via the resonant intermediate mode π + η a + 0 K + K0 with a cross section proportional to the I = 1, I 3 = 1 cross section σ a (π + η K + K0 ). This is our basic assumption. The approximation should be particularly appropriate in the vicinity of the K K threshold. Note further that this model cannot make any predictions about the three additional measured angular distributions or the d K 0 invariant mass distribution reported in Ref.[1]. However it does allow one to extract the imaginary part of the K K isovector scattering length a 1 as described below. 2. Spectator model calculation The low energy isospin one amplitude for K K scattering at low relative momentum k in the CM system has the form f(θ) = a 1 (1 ika 1 + ) 3c 1 k 2 cosθ + (1) where a 1 and c 1 are the (complex) s and p wave scattering length and volume respectively. Using the optical theorem, the s and p wave annihilation cross sections are obtained from and σ (s) a (K + K0 π + η) = σ (s) tot σ (s) elas 4π k Im(a 1)[1 + 2Im(a 1 )k] (2) σ (p) a (K+ K0 π + η) 12πkIm(c 1 ) (3) 2

3 in this approximation after dropping the O(k 4 ) elastic correction from the latter expression for consistency. It is clear from these expressions that the spectator model is limited to fixing only Im(a 1 ) and Im(c 1 ) in the effective range approximation to this order in k. Due to phase space restrictions the kaon pair invariant mass window that is sampled in the experiment is quite restrictive. Hence the k dependence featured in Eqs. (2) and (3) turns out to be quite adequate to describe the important features in the experimental data. Using two channel unitarity, one now has p 2 σ (l) a (π + η K + K0 ) = k 2 σ (l) a (K + K0 π + η), l = 0, 1 (4) where p is the CM momenta in the πη channel. The relative momenta p and k are related to the invariant K K mass P 0 according to k = 1 2 P 0 p = 1 2 P 0 [ (M K + M 1 K 0)2 ] 1/2 [ (M K + + M 1 K 0)2 ] 1/2 (5) P 2 0 [ (M π M η ) 2 ] 1/2 [ (M π + M η ) 2 ] 1/2 1 1 (6) P 2 0 We now assume that the l th partial wave single differential cross section dσ (l) /dp 0 for the pp dk + K three body decay is given by the proportionality dσ (l) /dp 0 tmax t min P 2 0 dtσ (l) a (π+ η K + K0 ) = C l k 2 p 2 σ(l) a (K+ K0 π + η) t (7) with t equal to the difference in limits of the phase space integration, t = t max t min P 2 0 (s (m D + P 0 ) 2 )(s (m D P 0 ) 2 ); (8) s = (p A + p B ) 2 is the invariant mass of the colliding protons, and C l a constant of proportionality that will depend on specific assumptions about the transfer reaction mechanism. In principle C l could also depend on P 0 : we take it to be a constant for simplicity. For the three body collision the K K invariant mass is thus restricted to the range from threshold (P 0 ) min = (M K + + M K0) to (P 0 ) max = ( s m D ) so that t vanishes at the upper limit; m D is the deuteron mass. At the COSY proton beam energy of T p = 2.65 GeV (p p = 3.46 GeV/c) at which the experiment was performed, these limits are (P 0 ) min = GeV and (P 0 ) max = GeV resp. This restricts the K + K0 and π + η CM momenta to lie in the very limited intervals 0 < k < 0.15 GeV and 0.33 < p < 0.36 GeV respectively. With the aid of Eq. (2) the s wave contribution to the cross section can be reformulated as dσ (s) /dp 0 = C s k t p [1 2β sk]; β 2 s = Im(a 1 ) > 0 (9) after redefining C s C s = 4πIm(a 1)C s. The P 0 dependence of the cross section is thus completely determined by the variation of k, p and t with P 0 as fixed by Eqs. (5), (6) and (8). The corresponding expression for p waves is k 3 dσ (p) /dp 0 C p t (10) p2 3

4 with C p = 12πIm(c 1)C p. The scale constants C s[µb GeV 2 ] and C p[µb GeV 4 ] control the absolute value of the cross section; the parameter β s = Im(a 1 ) determines the skewness of the s wave contribution. The fits to the various data shown in Ref.[1] employ a six parameter transition matrix[7] fitted simultaneously to the two invariant mass distributions K + K0 and d K 0, plus three angular distributions. In order to compare the cross section given by the spectator model with their result for the K + K0 invariant mass distribution, we have determined the pair of s wave constants [C s, β s] by performing a χ 2 fit to the data points in Fig. 1 that lie above threshold, using the sum of Eqs. (9) and (10) with the scale constant C p adjusted to reproduce the p wave partial cross section given in Ref.[1]. One then finds C s = (2.39 ± 0.32)µb GeV 2, together with an imaginary part of the scattering length of β s = Im( a 1 ) = (0.61 ± 0.05) fm at χ 2 min = 0.81, while C p = 16.03µb GeV 4. Note that the uncertainties in the β s parameter also include the systematic uncertainties of the data of Ref.[1] not shown in Fig. 1. The fit to experiment for this parameter set is shown in Fig. 1. By integrating out over the allowed range of P 0, one obtains a total cross section of σ(pp dk + K0 ) = [36 ± 9] nb, in agreement with the experimental cross section [38 ± 2(stat) ± 14(syst)] nb reported in [1]. 3. Flatté parametrization for scattering length As pointed out below Eq. (3) the spectator model only fixes the imaginary part of the scattering length: it does not allow one to extract the real part directly. In order to make further progress one therefore has to introduce specific model dependent assumptions regarding the structure of the K K scattering amplitude in the isovector channel that describe the formation and decay of the a 0 (980). There is little experimental information available on the K K scattering length. However, within the last decade the production of πη pairs have been studied experimentally in proton antiproton annihilation, pion proton reactions and in Φ decay, and analysed using either Flatté distributions[8, 9, 10, 11], or other approaches[12, 13, 14]. The Flatté scattering amplitude[15] near the K K threshold takes on the form S K K 1 iḡ K Kk ǫ a0 + i 2 (ḡ K Kk + ḡ πη p) (11) where k and p are the CM momenta defined in Eqs. (5) and (6), while the a 0 (980) partial decay widths Γ πη = ḡ πη p and Γ K K = ḡ K Kk define the dimensionless coupling constants (ḡ πη, ḡ K K); ǫ a0 = M a0 (M K + + M K0) is the (real or virtual) binding energy of the a 0 (980) relative to the K K threshold. Eq. (11) leads to the following result for the K K isovector scattering length[16] a 1 = 1 2ḡK K ǫ a0 + i 2 Γ πη = R α + i p 1 th (12) when rewritten in terms of the dimensionless ratios[17] R = ḡ K K/ḡ πη and α = 2ǫ a0 /Γ πη instead of the individual coupling constants and energy parameters. Here p th = p[(p 0 ) min ] = 0.33 GeV = 1.65 fm 1 is the threshold momentum for K K production in the πη channel. The R and α are seen to be invariant under a scaling ḡ K K λḡ K K etc. of the original Flatté parameters. Table I shows a compendium of mass, width and coupling constant 4

5 values for a 0 (980) taken from the recent literature[8, 9, 10, 11, 12, 13, 14] and as partially summarised in [16, 17]. We have also used Eq. (12) to extend the calculations given in [16] for the scattering lengths associated with these paramaters. The results are displayed in order of increasing α in Table I. From Eq. (12) one sees that there is a linear relation between the real and imaginary parts of the (Flatté) scattering lengths, Re( a 1 ) = Im( a 1 )α (13) If we now take Im( a 1 ) = 0.61 fm from the spectator model fit, this fixes the slope of the straight line in Eq. (13). The result can then be compared with the values of Re( a 1 ) calculated from Eq. (12) at the values of α and R given in Table I. This comparison is shown in Fig. 2. The spectator model fit is seen to be consistent with all of the data (except perhaps that of Ref. [13]) once the uncertainties in α and hence Re( a 1 ) due to the experimental error in the a 0 (980) mass are taken into account. It has also been pointed out[17] that direct measurements of the K K elastic scattering cross section near threshold would serve to determine both R and α independently, and thus the scattering length as given by Eq. (12). Such data is not available yet. However, by assuming that scale invariance is valid, one can infer a value for α to be used in Eq. (13) by arguing as follows: the combinations α in Table I would have appeared as a common constant α c had the data satisfied scaling exactly. It is therefore reasonable to estimate this unknown constant by the mean of the α s given in Table I, weighted by the inverse of the average error introduced into each α by the uncertainty in the a 0 (980) mass value used to calculate it. The resultant mean and its standard deviation is then α c = ± Inserting this estimate into Eq. (13) one obtains Re( a 1 ) = (0.02 ± 0.03) fm. The final result for our extracted isovector scattering length thus reads a 1 = [(0.02 ± 0.03) + i(0.61 ± 0.05)]fm (14) Note that this result relies on two very different sources of information: (i) a direct determination of Im(a 1 ) based on the spectator model fit of the pp dk + K0 data, and (ii), an inferred estimate of Re(a 1 ) based on the assumption that scaling is approximately valid for the experimental parameters extracted assuming a Flatté distribution. Acknowledgments One of us (RHL) would like to thank the Ernest Oppenheimer Memorial Trust for research support in the form of a Harry Oppenheimer Fellowship. Thanks are also due to the Institut für Kernphysik, Forschungszentrum, Jülich, and the Max Planck Institut für Kernphysik, Heidelberg for their kind hospitality. The authors would also like to acknowledge C. Hanhart for critical discussions. 5

6 References ( ) Present address: Physikalisches Institut, Universität Bonn, Nussallee 12,D 53115, Bonn, Germany. ( ) Permanent address: School of Physics, University of the Witwatersrand, Johannesburg, Private Bag 3, WITS 2050, South Africa. [1] V. Kleber et al., Phys. Rev. Lett. 91, (2003) [2] C. Hanhart, Phys. Rep. 397, (2004) 155. [3] V. Yu. Grishina et al., Eur. Phys. J. A21, (2004) 507. [4] A. Sibirtsev et al., Phys. Lett. B601, (2004) 132. [5] E. Oset, J. A. Oller and U. G. Meissner, Eur. Phys. J. A12, (2001) 435. [6] F. P. Sassen, PhD dissertation, University of Bonn (2004); to be published. [7] V. Yu. Grishina et al., Phys. Lett. B 521, (2001) 217; V. Chernyshev et al., nucl th/ ; A. E. Kudryavtsev et al., Phys. Rev. C 66, (2002) [8] A. Aloisio et al. (The KLOE Collaboration), Phys. Lett. B536, (2002) 209. [9] N. N. Achasov and A. N. Kiselev, Phys. Rev. D 68, (2003) [10] S. Teige et al., Phys. Rev. D 59, (1999) [11] M. N. Achasov et al., Phys. Lett. B479, (2000) 53. [12] D. V. Bugg, V. V. Anisovich, A. Sarantsev, and B. S. Zou, Phys. Rev. D 50, (1994) [13] M. Bargiotti et al. (The OBELIX Collaboration), Eur. Phys. J C 26, (2003) 371. [14] A. Abele, et al., Phys. Rev. D 57, (1998) [15] S. Flatté, Phys. Lett. 63B, (1976) 224. [16] V. Baru et al., Phys. Lett. B 586, (2004) 53. [17] V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, and U. G. Meissner, Eur. Phys. J. A23, (2005)

7 FIG. 1: The invariant mass cross section for the production of K + K0 in pp dk K. The solid line denotes a χ 2 fit to the data[1] using the spectator model. The broken curve shows the corresponding fit calculated in [1] using a six parameter transition amplitude squared. Shown separately are the p wave contributions to the cross section obtained from the spectator model, Eq. (10) (solid curve), and the fit (broken curve) given in [1]. The error bars show the statistical uncertainties of the data. 7

8 FIG. 2: Plot of Re( a 1 ) (filled circles) versus the dimensionless parameter α = 2ε 0 /Γ πη. The plotted points have been tagged by the corresponding references in Table I. The horizontal and vertical error bars show the errors introduced into α, and hence Re( a 1 ), by the uncertainties in the associated a 0 (980) mass values. The heavy straight line shows the calculated value of Re( a 1 ) using Eq. (13) for the particular value Im( a 1 ) = 0.61 fm extracted from the spectator model fit. 8

9 TABLE I: Summary of calculated values of the isovector scattering length a 1 taken from Eq. (12), arranged in order of increasing α = 2ε 0 /Γ πη, for the various mass, width and coupling constants for the a 0 (980) as extracted[17] from the literature. Ref. M a0 (MeV) ε a0 (MeV) Γ πη (MeV) ḡ πη ḡ K K R α a 1 (fm) [8] i [9] i [11] i [12] i [9] i [14] i [10] i [13] i 9

arxiv:hep-ph/ v2 24 Mar 2006

arxiv:hep-ph/ v2 24 Mar 2006 Extraction of the K K isovector scattering length from pp dk + K0 data near threshold arxiv:hep-ph/0508118v2 24 Mar 2006 R. H. Lemmer Institut für Kernphysik, Forschungszentrum Jülich, D 52425 Jülich,

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Status of the data analysis on KK pair production

Status of the data analysis on KK pair production Status of the data analysis on KK pair production Alexey Dzyuba (PNPI, Gatchina) for the ANKE collaboration Scalar mesons a 0 /f 0 (980) Scientific program ANKE spectrometer pp dk + K 0 pn dk + K - dd

More information

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn

NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION γd π + nn MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany NEUTRON-NEUTRON SCATTERING LENGTH FROM THE REACTION

More information

arxiv:hep-ph/ v1 12 Aug 2003

arxiv:hep-ph/ v1 12 Aug 2003 FZJ IKP(TH) 2003 13 Evidence that the a 0 (980) and f 0 (980) are not elementary particles arxiv:hep-ph/0308129v1 12 Aug 2003 V. Baru 1,2, J. Haidenbauer 2, C. Hanhart 2 Yu. Kalashnikova 1, A. Kudryavtsev

More information

MESON PRODUCTION IN NN COLLISIONS

MESON PRODUCTION IN NN COLLISIONS MENU 07 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 07 IKP, Forschungzentrum Jülich, Germany MESON PRODUCTION IN NN COLLISIONS K. Nakayama a,b,1,

More information

Sub Threshold strange hadron production in UrQMD

Sub Threshold strange hadron production in UrQMD Sub Threshold strange hadron production in UrQMD Jan Steinheimer and Marcus Bleicher 10.05.2016 Jan Steinheimer and Marcus Bleicher (FIAS) 10.05.2016 1 / 26 Motivation Recent measurements on near and below

More information

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,#

PROGRESS IN NN NNπ. 1 Introduction. V. Baru,1, J. Haidenbauer %, C. Hanhart %, A. Kudryavtsev, V. Lensky,% and U.-G. Meißner %,# MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PROGRESS IN NN NNπ V. Baru,1, J. Haidenbauer

More information

Role of Spin in NN NNπ

Role of Spin in NN NNπ Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660061 (6 pages) c The Author(s) DOI: 10.1142/S2010194516600612 Role of Spin in NN NNπ Vadim Baru Institut

More information

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths

Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths Isospin breaking in pion deuteron scattering and the pion nucleon scattering lengths source: https://doi.org/10.789/boris.4584 downloaded: 13.3.017, ab Vadim Baru, cd Christoph Hanhart, e Bastian Kubis,

More information

Isospin-breaking corrections to the pion nucleon scattering lengths

Isospin-breaking corrections to the pion nucleon scattering lengths Isospin-breaking corrections to the pion nucleon scattering lengths Helmholtz Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

More information

Search for the η-mesic Helium bound state with the WASA-at-COSY facility

Search for the η-mesic Helium bound state with the WASA-at-COSY facility Search for the η-mesic Helium bound state with the WASA-at-COSY facility Magdalena Skurzok 1, Wojciech Krzemień 2, Oleksandr Rundel 1 and Pawel Moskal 1 for the WASA-at-COSY Collaboration 1 M. Smoluchowski

More information

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2

PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION THEORY UP TO ORDER χ 3/2 MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany PION DEUTERON SCATTERING LENGTH IN CHIRAL PERTURBATION

More information

arxiv: v1 [nucl-th] 14 Aug 2012

arxiv: v1 [nucl-th] 14 Aug 2012 Origin of the second peak in the cross section of the K + Λ photoproduction T. Mart and M. J. Kholili Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia (Dated: May 24, 2018) arxiv:1208.2780v1

More information

arxiv: v2 [nucl-ex] 17 Jul 2014

arxiv: v2 [nucl-ex] 17 Jul 2014 Determination of the η -proton scattering length in free space arxiv:44.5436v2 [nucl-ex] 7 Jul 24 E. Czerwiński,, P. Moskal, M. Silarski, S. D. Bass, 2 D. Grzonka, 3 B. Kamys, A. Khoukaz, 4 J. Klaja, W.

More information

ISOSPIN RESOLVED DOUBLE PION PRODUCTION AT CELSIUS

ISOSPIN RESOLVED DOUBLE PION PRODUCTION AT CELSIUS Vol. 29 (1998) ACTA PHYSICA POLONICA B No 11 ISOSPIN RESOLVED DOUBLE PION PRODUCTION AT CELSIUS M. Andersson a, Chr. Bargholtz a, E. Fumero a, K. Fransson a L. Holmberg a, K. Lindh a, L. Mårtensson a,

More information

Symmetries and in-medium effects

Symmetries and in-medium effects Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20147806003 EPJ Web of Conferences 78, 06003 ( 2014) DOI: 10.1051/ epjconf/ 20147806003 C Owned by the authors,

More information

arxiv:nucl-th/ v1 22 Jun 1999

arxiv:nucl-th/ v1 22 Jun 1999 ω- and φ-meson production in pn dm reactions near threshold and OZI-rule violation V.Yu. Grishina a,1, L.A. Kondratyuk b,1 and M. Büscher c,1 arxiv:nucl-th/9906064v1 22 Jun 1999 a Institute for Nuclear

More information

Department of Physics, Liaoning Normal University, Dalian , China

Department of Physics, Liaoning Normal University, Dalian , China The a (40) peak as the special decay mode of the a (60) Department of Physics, Liaoning Normal University, Dalian 609, China E-mail: dailr@lnnu.edu.cn Eulogio Oset Departamento de Física Teórica and IFIC,

More information

ISR physics at BABAR

ISR physics at BABAR SLAC-PUB-499 ISR physics at BABAR S.Serednyakov, Budker Institute of Nuclear Physics, Novosibirsk, Russia Abstract A method of measuring e+e- annihilation cross sections at low energy s < 5 GeV, using

More information

Physik Department, Technische Universität München D Garching, Germany. Abstract

Physik Department, Technische Universität München D Garching, Germany. Abstract TUM/T39-96-19 Diffractive ρ 0 photo- and leptoproduction at high energies ) G. Niesler, G. Piller and W. Weise arxiv:hep-ph/9610302v1 9 Oct 1996 Physik Department, Technische Universität München D-85747

More information

Studying η-meson Decays with WASA-at-COSY

Studying η-meson Decays with WASA-at-COSY Studying η-meson Decays with WASA-at-COSY Daniel Lersch 1, for the WASA-at-COSY Collaboration 1 Juelich Research Center, Germany Abstract. The η-meson is a unique tool in a way that it provides access

More information

arxiv: v1 [nucl-th] 23 Feb 2016

arxiv: v1 [nucl-th] 23 Feb 2016 September 12, 2018 Threshold pion production in proton-proton collisions at NNLO in chiral EFT arxiv:1602.07333v1 [nucl-th] 23 Feb 2016 V. Baru, 1, 2 E. Epelbaum, 1 A. A. Filin, 1 C. Hanhart, 3 H. Krebs,

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Strangeness production in selected proton-induced processes at COSY-ANKE

Strangeness production in selected proton-induced processes at COSY-ANKE Mitglied der Helmholtz-Gemeinschaft Strangeness production in selected proton-induced processes at COSY-ANKE Ph.D. Dissertation Defense QiujianYe Nov.11 th 2013 Mitglied der Helmholtz-Gemeinschaft Outline

More information

PoS(INPC2016)282. Meson Production In p-d Fusion To 3 HeX At Proton Beam Momenta Between pp = 1.60 GeV/c And pp = 1.74 GeV/c With WASA-at-COSY

PoS(INPC2016)282. Meson Production In p-d Fusion To 3 HeX At Proton Beam Momenta Between pp = 1.60 GeV/c And pp = 1.74 GeV/c With WASA-at-COSY Meson Production In p-d Fusion To 3 HeX At Proton Beam Momenta Between pp = 1.60 GeV/c And pp = 1.74 GeV/c With WASA-at-COSY WWU Münster / WASA-at-COSY Collaboration E-mail: n_hues02@uni-muenster.de Florian

More information

arxiv:nucl-ex/ v1 19 Jan 2004

arxiv:nucl-ex/ v1 19 Jan 2004 Energy dependence of the Λ/Σ 0 production cross section ratio in p p interactions. arxiv:nucl-ex/040020v 9 Jan 2004 P. Kowina, H.-H. Adam, A. Budzanowski, R. Czyżykiewicz, D. Grzonka, M. Janusz, L. Jarczyk,

More information

Heavy-quark spin-symmetry partners of hadronic molecules

Heavy-quark spin-symmetry partners of hadronic molecules Heavy-quark spin-symmetry partners of hadronic molecules Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Institute for Theoretical and Experimental Physics, B.

More information

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT

Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT Pion production in nucleon-nucleon collisions near threshold: complete NNLO calculation in chiral EFT a, V. Baru ab, E. Epelbaum a, C. Hanhart c, H. Krebs a, and F. Myhrer d a Institut für Theoretische

More information

arxiv:hep-ph/ v1 1 Jun 1995

arxiv:hep-ph/ v1 1 Jun 1995 CHIRAL PREDICTION FOR THE πn S WAVE SCATTERING LENGTH a TO ORDER O(M 4 π ) V. Bernard a#1#2, N. Kaiser b#3, Ulf-G. Meißner c#4 arxiv:hep-ph/9506204v1 1 Jun 1995 a Centre de Recherches Nucléaires, Physique

More information

COSY Proposal and Beam Time Request. Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE

COSY Proposal and Beam Time Request. Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE COSY Proposal and Beam Time Request Investigation of the η 3 H final state in deuteron-neutron collisions at ANKE P. Goslawski, I. Burmeister, A. Khoukaz, M. Mielke, M. Papenbrock Institut für Kernphysik,

More information

PoS(Bormio2012)013. K 0 production in pp and pnb reactions. Jia-Chii Berger-Chen

PoS(Bormio2012)013. K 0 production in pp and pnb reactions. Jia-Chii Berger-Chen Excellence Cluster Universe, Technische Universität München E-mail: jia-chii.chen@tum.de The kaon nucleus (KN) interaction in nuclear matter is predicted to be repulsive and dependent from the density.

More information

Hadronic 3 Heη production near threshold

Hadronic 3 Heη production near threshold PHYSICAL REVIEW C 75, 144 (27) Hadronic 3 Heη production near threshold H.-H. Adam, * I. Geck, A. Khoukaz, T. Lister, R. Santo, S. Steltenkamp, and A. Täschner Institut für Kernphysik, Universität Münster,

More information

arxiv: v1 [nucl-th] 6 Aug 2008

arxiv: v1 [nucl-th] 6 Aug 2008 Electromagnetic Productions of KΛ and KΣ on the Nucleons T. Mart arxiv:88.771v1 [nucl-th] 6 Aug 28 Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424, Indonesia Abstract. We briefly review the

More information

arxiv:nucl-th/ v1 3 Jul 1996

arxiv:nucl-th/ v1 3 Jul 1996 MKPH-T-96-15 arxiv:nucl-th/9607004v1 3 Jul 1996 POLARIZATION PHENOMENA IN SMALL-ANGLE PHOTOPRODUCTION OF e + e PAIRS AND THE GDH SUM RULE A.I. L VOV a Lebedev Physical Institute, Russian Academy of Sciences,

More information

arxiv:nucl-ex/ v2 17 Jun 2004

arxiv:nucl-ex/ v2 17 Jun 2004 EPJ manuscript No. (will be inserted by the editor) Near-threshold production of ω mesons in the pn dω reaction arxiv:nucl-ex/3531v2 17 Jun 24 S. Barsov 1, I. Lehmann 2, R. Schleichert 2a, C. Wilkin 3,

More information

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis? What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis? Eberhard Klempt Helmholtz-Institut für Strahlen und Kernphysik Universität Bonn Nußallee 4-6,

More information

Strangeness photoproduction at the BGO-OD experiment

Strangeness photoproduction at the BGO-OD experiment Strangeness photoproduction at the BGO-OD experiment Tom Jude On behalf of the BGO-OD Collaboration University of Bonn Supported by the DFG / SFB tr-16 NSTAR 215 Tom Jude (University of Bonn) Strangeness

More information

Meson production in pd fusion to ³HeX

Meson production in pd fusion to ³HeX Meson production in pd fusion to ³HeX with WASA-at-COSY Nils Hüsken for the WASA-at-COSY Collaboration Westfälische Wilhelms-Universität Münster, Institut für Kernphysik 25th International Nuclear Physics

More information

arxiv: v1 [nucl-ex] 29 Feb 2012

arxiv: v1 [nucl-ex] 29 Feb 2012 Measurement of the nuclear modification factor of electrons from heavy-flavour hadron decays in Pb Pb collisions at s NN =.76 ev with ALICE at the LHC arxiv:.65v [nucl-ex] 9 Feb Markus Fasel for the ALICE

More information

arxiv: v1 [hep-ex] 31 Dec 2014

arxiv: v1 [hep-ex] 31 Dec 2014 The Journal s name will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 5 arxiv:5.v [hep-ex] Dec 4 Highlights from Compass in hadron spectroscopy

More information

On the two-pole interpretation of HADES data

On the two-pole interpretation of HADES data J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00

More information

IMP's activities in COSY programs and the extension to HPLUS

IMP's activities in COSY programs and the extension to HPLUS 2nd WHAT @ Beijing, July 2010 IMP's activities in COSY programs and the extension to HPLUS Xiaohua Yuan Institute of Modern Physics (IMP) - CAS, Lanzhou 73000 & Institut für Kernphysik, Forschungszentrum

More information

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons February 5, 28 13:17 WSPC/INSTRUCTION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-th/7276v1 23 Feb 27 Pion-nucleon scattering within a gauged linear

More information

arxiv: v1 [nucl-ex] 9 Jul 2013

arxiv: v1 [nucl-ex] 9 Jul 2013 Study of the partial wave structure of π η photoproduction on protons A. Fix 1, V.L. Kashevarov 2,3, M. Ostrick 2 1 Tomsk Polytechnic University, Tomsk, Russia 2 Institut für Kernphysik, Johannes Gutenberg-Universität

More information

arxiv:nucl-th/ v1 28 Aug 2001

arxiv:nucl-th/ v1 28 Aug 2001 A meson exchange model for the Y N interaction J. Haidenbauer, W. Melnitchouk and J. Speth arxiv:nucl-th/1862 v1 28 Aug 1 Forschungszentrum Jülich, IKP, D-52425 Jülich, Germany Jefferson Lab, 1 Jefferson

More information

Predictions of striking energy and angular dependence in pp (pp) S-wave π 0 production

Predictions of striking energy and angular dependence in pp (pp) S-wave π 0 production Physics Letters B 642 (2006) 34 38 www.elsevier.com/locate/physletb Predictions of striking energy and angular dependence in pp (pp) S-wave π 0 production J.A. Niskanen Department of Physical Sciences,

More information

arxiv:nucl-th/ v2 15 Apr 2003

arxiv:nucl-th/ v2 15 Apr 2003 The reaction pd (pp)n at high momentum transfer and short-range NN properties J. Haidenbauer a, Yu.N. Uzikov b 1 arxiv:nucl-th/0302063v2 15 Apr 2003 a Institut für Kernphysik, Forschungszentrum Jülich,

More information

arxiv:hep-ph/ v2 9 Jan 2007

arxiv:hep-ph/ v2 9 Jan 2007 The mass of the σ pole. D.V. Bugg 1, Queen Mary, University of London, London E14NS, UK arxiv:hep-ph/0608081v2 9 Jan 2007 Abstract BES data on the σ pole are refitted taking into account new information

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

A method to polarise antiprotons in storage rings and create polarised antineutrons

A method to polarise antiprotons in storage rings and create polarised antineutrons EPJ manuscript No. (will be inserted by the editor) A method to polarise antiprotons in storage rings and create polarised antineutrons Berthold Schoch Physikalisches Institut, Universität, Bonn, D-53115

More information

Structure of near-threshold s-wave resonances

Structure of near-threshold s-wave resonances Structure of near-threshold s-wave resonances Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto 203, Sep. 0th Introduction Structure of hadron excited states Various excitations of baryons M

More information

Search for the eta-mesic helium by means of WASA detector at COSY

Search for the eta-mesic helium by means of WASA detector at COSY by means of WASA detector at COSY IKP, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: p.moskal@uj.edu.pl W. Krzemień E-mail: wojciech.krzemien@if.uj.edu.pl M. Skurzok E-mail: magdalena.skurzok@uj.edu.pl

More information

Triangle singularity in light meson spectroscopy

Triangle singularity in light meson spectroscopy Triangle singularity in light meson spectroscopy M. Mikhasenko, B. Ketzer, A. Sarantsev HISKP, University of Bonn April 16, 2015 M. Mikhasenko (HISKP) Triangle singularity April 16, 2015 1 / 21 New a 1-1

More information

PoS(CD09)065. Hadronic atoms

PoS(CD09)065. Hadronic atoms Vadim Baru Forschungszentrum Jülich, Institut für Kernphysik (Theorie), and Jülich Center for Hadron Physics, 52425 Jülich, Germany, and Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya

More information

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire

!-mesons produced in, p reactions. de Physique Nucleaire et de l'instrumentation Associee. Service de Physique Nucleaire Quantum interference in the e + e, decays of - and!-mesons produced in, p reactions Madeleine Soyeur 1, Matthias Lutz 2 and Bengt Friman 2;3 1. Departement d'astrophysique, de Physique des Particules,

More information

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni

LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni LNF-06/22 (P) 29 August 2006 HADRON PROPERTIES IN THE NUCLEAR MEDIUM THE PANDA PROGRAM WITH pa REACTIONS Olaf N. Hartmann INFN, Laboratori Nazionali di

More information

Can We Measure an Annihilation Range of the Nucleon-Antinucleon System?

Can We Measure an Annihilation Range of the Nucleon-Antinucleon System? Can We Measure an Annihilation Range of the Nucleon-Antinucleon System? The range of the annihilation of the nucleon-antinucleon system is intimately related to our idea of the internal structure of the

More information

General Introductory Remarks. gamardshoba. me war germaniidan CGSWHP 04. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

General Introductory Remarks. gamardshoba. me war germaniidan CGSWHP 04. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft General Introductory Remarks gamardshoba me mkwia me war germaniidan me wmuschaob Hans Ströher FZ Jülich CGSWHP 04 Forschungszentrum Jülich in der Helmholtz-Gemeinschaft General Introductory Remarks CGSWHP

More information

Physics Program at COSY-Jülich with Polarized Hadronic Probes

Physics Program at COSY-Jülich with Polarized Hadronic Probes Mitglied der Helmholtz-Gemeinschaft Physics Program at COSY-Jülich with Polarized Hadronic Probes Forschungszentrum Jülich October 9, 2008 Andro Kacharava (JCHP/IKP, FZ-Jülich) Overview COSY (Cooler Synchrotron)

More information

2 Meson Spectroscopy at LEAR with the Crystal Barrel. In collaboration with: Academy of Science (Budapest); Universities of Bochum, Bonn,

2 Meson Spectroscopy at LEAR with the Crystal Barrel. In collaboration with: Academy of Science (Budapest); Universities of Bochum, Bonn, 8 Meson Spectroscopy at LEAR with the Crystal Barrel 2 Meson Spectroscopy at LEAR with the Crystal Barrel C. Amsler, M. Buchler, P. Giarritta, M. Heinzelmann, F. Ould-Saada, C. Pietra, C. Regenfus and

More information

Sub-threshold strangeness and charm production (in UrQMD)

Sub-threshold strangeness and charm production (in UrQMD) Sub-threshold strangeness and charm production (in UrQMD) Marcus Bleicher and Jan Steinheimer Marcus Bleicher and Jan Steinheimer 1 / 24 Motivation Recent measurements on near and below threshold production.

More information

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen

PoS(DIS 2010)071. Diffractive electroproduction of ρ and φ mesons at H1. Xavier Janssen Universiteit Antwerpen Diffractive electroproduction of ρ and φ mesons at Universiteit Antwerpen E-mail: xavier.janssen@ua.ac.be Diffractive electroproduction of ρ and φ mesons is measured at HERA with the detector in the elastic

More information

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC High- Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC K. Reygers for the WA98 and the PHENIX collaboration Institut für Kernphysik der Universität Münster Wilhelm-Klemm-Str. 9, D-4849 Münster,

More information

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses History of the Dalitz Plot Dalitz s original plot non-relativistic; in terms of kinetic energies applied to the τ-θ puzzle Modern-day

More information

Complex amplitude phase motion in Dalitz plot heavy meson three body decay.

Complex amplitude phase motion in Dalitz plot heavy meson three body decay. Complex amplitude phase motion in Dalitz plot heavy meson three body decay. arxiv:hep-ph/0211078v1 6 Nov 2002 Ignacio Bediaga and Jussara M. de Miranda Centro Brasileiro de Pesquisas Físicas, Rua Xavier

More information

How to measure the parity of the Θ + in p p collisions

How to measure the parity of the Θ + in p p collisions Physics Letters B 59 (24) 39 44 www.elsevier.com/locate/physletb How to measure the parity of the Θ + in p p collisions C. Hanhart a,m.büscher a,w.eyrich b, K. Kilian a, U.-G. Meißner a,c, F. Rathmann

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

Line Shapes of the X(3872)

Line Shapes of the X(3872) 1 Line Shapes of the X(3872) Eric Braaten The Ohio State University collaborators Masaoki Kusunoki (postdoc at Arizona) Meng Lu (student at Ohio State) support: DOE, Division of High Energy Physics DOE,

More information

Analysis of diffractive dissociation of exclusive. in the high energetic hadron beam of the COMPASS-experiment

Analysis of diffractive dissociation of exclusive. in the high energetic hadron beam of the COMPASS-experiment Analysis of diffractive dissociation of exclusive K π`π events in the high energetic hadron beam of the -experiment Prometeusz K. Jasinski on behalf of the Collaboration Institut für Kernphysik Mainz Johann-Joachim-Becher-Weg

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

arxiv:hep-ph/ v1 18 Dec 2002

arxiv:hep-ph/ v1 18 Dec 2002 Interference of Conversion and Bremsstrahlung Amplitudes in the Decay K L µ + µ γ arxiv:hep-ph/22262v 8 Dec 22 P. Poulose and L. M. Sehgal Institute of Theoretical Physics E, RWTH Aachen, D-5256 Aachen,

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

arxiv:nucl-th/ v2 15 May 2005

arxiv:nucl-th/ v2 15 May 2005 FZJ IKPTH) 005 08, HISKP-TH-05/06 arxiv:nucl-th/0505039v 15 May 005 Precision calculation of γd π + nn within chiral perturbation theory V. Lensky 1,, V. Baru, J. Haidenbauer 1, C. Hanhart 1, A.E. Kudryavtsev,

More information

Nucleon Spectroscopy with CLAS

Nucleon Spectroscopy with CLAS Nucleon Spectroscopy with CLAS Steffen Strauch, for the CLAS Collaboration University of South Carolina, Columbia, SC 2928 Abstract. Meson photoproduction is an important tool in the study of nucleon resonances.

More information

Particle Physics with Electronic Detectors

Particle Physics with Electronic Detectors Particle Physics with Electronic Detectors This experiment performed by the Oxford group on the 7 GeV proton synchrotron, NIMROD, at the Rutherford Laboratory in 1967 gave the first usefully accurate measurement

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

Study of Bs J/ψη and Bs J/ψη' decays at LHCb

Study of Bs J/ψη and Bs J/ψη' decays at LHCb 21st International Conference on Supersymmetry and Unification of Fundamental Interactions ICTP Trieste, Italy, 26 31 August 2013 Study of Bs J/ψη and Bs J/ψη' decays at LHCb D. Savrina (ITEP&SINP MSU)

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

Physikalisches Institut Universität Bonn BOSEN Vera Kleber. Λ(1405) Photoproduction at CB-ELSA. Vera Kleber Bosen,

Physikalisches Institut Universität Bonn BOSEN Vera Kleber. Λ(1405) Photoproduction at CB-ELSA. Vera Kleber Bosen, BOSEN 2005 Λ(1405) Photoproduction at CB-ELSA Vera Kleber Physikalisches Institut Universität Bonn 1 Outline Motivation Access to Λ(1405) and available data Λ(1405) at CB-ELSA Outlook 2 What s known PDG

More information

Measurement of the η-mass from the reaction γp pη in threshold region

Measurement of the η-mass from the reaction γp pη in threshold region Measurement of the η-mass from the reaction γp pη in threshold region A. Nikolaev for the Crystal Ball @ MAMI und A collaborations Helmholtz Institut für Strahlen- und Kernphysik, University Bonn 11.07.007

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

LHCb Semileptonic Asymmetry

LHCb Semileptonic Asymmetry CERN E-mail: mika.vesterinen@cern.ch A recent measurement of the CP violating flavour specific asymmetry in B s decays, a s sl, is presented. This measurement is based on a data sample corresponding to

More information

arxiv: v1 [nucl-th] 17 Apr 2013

arxiv: v1 [nucl-th] 17 Apr 2013 arxiv:134.4855v1 [nucl-th] 17 Apr 13 The Upper Energy Limit of HBChPT in Pion Photoproduction Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas,

More information

TWO-PION-EXCHANGE EFFECTS IN

TWO-PION-EXCHANGE EFFECTS IN MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany TWO-PION-EXCHANGE EFFECTS IN pp ppπ 0 REACTION

More information

STUDY OF THE NEAR THRESHOLD TOTAL CROSS SECTIONS FOR THE QUASI-FREE pn pnη REACTION WITH THE COSY-11 DETECTOR

STUDY OF THE NEAR THRESHOLD TOTAL CROSS SECTIONS FOR THE QUASI-FREE pn pnη REACTION WITH THE COSY-11 DETECTOR STUDY OF THE NEAR THRESHOLD TOTAL CROSS SECTIONS FOR THE QUASI-FREE pn pnη REACTION WITH THE COSY-11 DETECTOR Joanna Klaja, Pawe l Moskal,$, Jaros law Zdebik on behalf of the COSY 11 collaboration Institute

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Photoabsorption and Photoproduction on Nuclei in the Resonance Region Photoabsorption and Photoproduction on Nuclei in the Resonance Region Susan Schadmand Institut für Kernphysik First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005 electromagnetic probes Hadron

More information

arxiv: v1 [hep-ph] 24 Aug 2011

arxiv: v1 [hep-ph] 24 Aug 2011 Roy Steiner equations for γγ ππ arxiv:1108.4776v1 [hep-ph] 24 Aug 2011 Martin Hoferichter 1,a,b, Daniel R. Phillips b, and Carlos Schat b,c a Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and

More information

Hadronic decays of the omega meson measured with WASA-at-COSY

Hadronic decays of the omega meson measured with WASA-at-COSY Hadronic decays of the omega meson measured with WASA-at-COSY Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, Uppsala, Sweden E-mail: lena.heijkenskjold@physics.uu.se In this

More information

arxiv: v1 [nucl-ex] 7 Sep 2012

arxiv: v1 [nucl-ex] 7 Sep 2012 In-medium Properties of Hadrons Volker Metag,a II. Physikalisches Institut, University of Giessen, Germany arxiv:9.539v [nucl-ex] 7 Sep Introduction bstract. n overview is given over recent results on

More information

arxiv:nucl-th/ v1 20 Aug 1996

arxiv:nucl-th/ v1 20 Aug 1996 Influence of spin-rotation measurements on partial-wave analyses of elastic pion-nucleon scattering I. G. Alekseev, V. P. Kanavets, B. V. Morozov, D. N. Svirida Institute for Theoretical and Experimental

More information

Exotic Quarkonium Spectroscopy and Production

Exotic Quarkonium Spectroscopy and Production University of Iowa, USA Mimar Sinan Fine Arts University, URKEY Email: eaa@cern.ch Using large data samples of dimuon events collected at s = 7 ev center of mass energy, CMS has performed detailed measurements

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

The physics program of PAX at COSY

The physics program of PAX at COSY Journal of Physics: Conference Series PAPER OPEN ACCESS The physics program of PAX at COSY To cite this article: Yury Valdau et al 2016 J. Phys.: Conf. Ser. 678 012027 View the article online for updates

More information

Molecular partners of the X(3872) from heavy-quark spin symmetry:

Molecular partners of the X(3872) from heavy-quark spin symmetry: Molecular partners of the X(387) from heavy-quark spin symmetry: a fresh look V. Baru 1,,a, E. Epelbaum 1, A. A. Filin 1, C. Hanhart 3, and A.V. Nefediev,4,5 1 Institut für Theoretische Physik II, Ruhr-Universität

More information

Photoproduction of the f 1 (1285) Meson

Photoproduction of the f 1 (1285) Meson Photoproduction of the f 1 (1285) Meson Reinhard Schumacher Ph.D. work of Ryan Dickson, completed 2011 October 21, 2015, CLAS Collaboration meeting Outline What are the f 1 (1285) and η(1295) mesons? Identification

More information

Experimental study of the pd 3 He K + K and pd 3 He φ reactions close to threshold

Experimental study of the pd 3 He K + K and pd 3 He φ reactions close to threshold PHYSICAL REVIEW C 75, 154 (7) Experimental study of the pd He K + K and pd He φ reactions close to threshold F. Bellemann, 1 A. Berg, 1 J. Bisplinghoff, 1 G. Bohlscheid, 1 J. Ernst, 1 C. Henrich, 1 F.

More information

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models Timo Scheib Goethe Universität Frankfurt am Main // Outline HADES at SIS Strangeness Production

More information

Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay

Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay Commun. Theor. Phys. Beijing, China 46 26 pp. 57 53 c International Academic Publishers Vol. 46, No. 3, September 5, 26 Re-study of Nucleon Pole Contribution in J/ψ N Nπ Decay ZONG Yuan-Yuan,,2 SHEN Peng-Nian,,3,4

More information