The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel

Size: px
Start display at page:

Download "The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel"

Transcription

1 The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel In with: Andrew Baggaley (Glasgow, UK) 20 September 2013, Université Paris Diderot, France

2 Classical vs quantum turbulence Classical theory of turbulence Kolmogorov Energy flows to small scales removed by viscous Constant flux of energy through an range of scales Energy spectrum E = C 2/3 5/3 Quantum Turbulence Super- cooled Bose gases: e.g. helium 4 below 2.17K Consists of normal and superfluid components Bul superfluid flow is irrota@onal Vor@city confined to 1D topological defects Quan@zed vortex lines Vor@city discre@zed in units of apple = h/m 4 QT consists of a tangle of quan@zed vor@ces K41 energy spectrum s@ll observed at large scales Polarized vortex bundles mimic classical vortex tubes Baggaley, JL, Barenghi, PRL, 109, , (2012)

3 Quantum turbulence at small scales Finite temperature quantum turbulence Interloced normal and superfluid components via mutual Normal fluid dissipates energy through viscosity At zero temperature the normal fluid vanishes What happens to energy at zero temperature? Vortex bundles only mae sense at the scales larger than the inter- vortex distance can reconnect Kelvin- waves Kelvin- waves propagate along vortex lines with dispersion = apple2 ln (a)+c 4 Hypothesis: Wealy nonlinear Kelvin- wave interac@ons transfer energy to even smaller scales Energy dissipa@on mechanism High frequency Kelvin- waves excite phonons that dissipate energy in terms of heat How do Kelvin- waves interact?

4 Kelvin- wave turbulence theory of vortex lines are governed by the Biot- Savart law ṡ = apple 4 Hamiltonian descrip@on Svistunov, PRB, 52, 3647, (1995) Wea nonlinearity expansion I L r s r s 3 dr Consider a single, periodic in z, straight vortex line aligned along x = y =0 Parametrise 2D perturba@ons by s =[x(z),y(z),z] Define a complex canonical variable: w(z) = H Z w H = apple2 1 + Re [w 0 (z 1 )w 0 (z 2 )] dz 1 dz 2 4 q(z 1 z 2 ) 2 + w(z 1 ) w(z 2 ) 2 H = H 2 + H 4 + H 6 + O(" 8 ) " = w(z 1) w(z 2 ) z 1 z 2 1

5 ṅ = 6 The six- wave ine@c equa@on There are no nontrivial four- wave resonances Leading order are resonant six- wave interac@ons Z W,1,2 3,4,5 2 n n 1 n 2 n 3 n 4 n 5 n 1 + n n2 1 n3 1 n4 1 n g ( ) (! +! 1 +! 2! 3! 4! 5 ) d 1 d 2 d 3 d 4 d 5 Interac@on Kernel: W,1,2 3,4,5 / G Kozi, Svistunov, PRL, 92, , (2004) Non- equilibrium Kolmogorov- Zaharov spectra 1. Constant flux of energy: n / apple 2/5 1/5 17/5 Kozi- Svistunov spectrum 2. Constant flux of wave ac@on: n / apple 1/5 1/5 1/5 3

6 The four- wave Locality of wave turbulence theory Kolmogorov- Zaharov spectra only exist if wave are local Collision integral must be convergent Collision integral shown to diverge in the limit of two long Kelvin- waves JL, L vov, Rudeno, Nazareno, PRB, 81, , (2010) Local four- wave ine@c equa@on L vov, Nazareno, JETP, 91, 428, (2010) ṅ = 12 Z n V 1,2,3 2 n 1 n 2 n 3 n n 1 n1 1 n2 1 n3 1 ( ) (!! 1! 2! 3 ) +3 V,2,3 1 2 n 1 n 2 n 3 n n 1 1 n 1 n 1 2 n 1 3 ( ) (! 1!! 2! 3 ) Interac@on Kernel: V 1,2,3 / = 1 apple New scaling for constant energy flux Kolmogorov- Zaharov solu@on Z 2 n d o d 1 d 2 d 3 n / 1/3 2/3 11/3 L vov- Nazareno spectrum

7 History of Kelvin- wave Vinen, Tsubota, Mitani, PRL, 91, 13501, (2003) Model Biot- Savart law (VFM) Forcing type Excite vortex line at specific Kelvin- wave frequency type Smoothing of highest harmonic 3

8 History of Kelvin- wave Kozi, Svistunov, PRL, 94, , (2005) Model Biot- Savart Hamiltonian with scale- scheme Forcing type None (decaying) type Periodically set high harmonics to zero

9 History of Kelvin- wave Boué, Dasgupta, JL, L vov, Nazareno, Procaccia, PRB, 84, , (2011) Model Local- nonlinear equa@on (nonlocal limit of Biot- Savart law) Forcing type Addi@ve forcing at large- scales Dissipa@on type Large- scale fric@on and hyper- viscosity A = 11/3 N ~ ~ ~ ~ ~ ~ A = 11/3 N = 3.2 ~ ~ N = -17/ ~ Analy@cal and numerical measurement of spectrum pre- factor C LN =0.304 n = C LN 1/3 2/3 11/3

10 History of Kelvin- wave Krstulović, PRE, 86, , (2012) Model Gross- Pitaevsii Forcing type None (decaying) type None but contains phonon emission b) RUN I RUN II RUN III RUN IV n ± ±

11 Why another None have been universally accepted in the community Because debate Model Decaying Poor and/or What is different? 1. Full Biot- Savart without any nonlocal 2. Localised forcing and range) 3. True non- equilibrium steady state (forced and dissipated) 4. to between predicted spectra

12 Our vortex filament model setup ṡ i = apple 4 ln p`i`i+1 a! s 0 i s 00 i + apple 4 I r s i L 0 r s i 3 dr + F s i+1 s i Local contribu@on (LIA) Nonlocal contribu@on (Biot- Savart) s i 1 s i 2 Ini@al straight vortex line periodic along z Third- order Runge- stepping scheme Re- mesh vortex line onto uniform grid aner step Allows us to exponen@ally filter high and low Fourier harmonics Localized (in Fourier space) addi@ve forcing F =[Re(f), Im(f), 0], f = X A exp (iz + i ) 9apple apple11

13 Results β =11/3 β =17/5 β =3 n β L w (z) t z

14 Conclusions New of wealy Kelvin- waves in the vortex filament model Biot- Savart without Non- equilibrium steady state achieved Local (in Fourier space) forcing and range) Evidence for nonlocal theory Clear between predicted wave spectra Bemer agreement with L vov- Nazareno spectrum Spectrum not everything Measurement of energy flux Es@mate numerical pre- factor of spectrum (,!) - plot Strong wave turbulence

15 Than you

The Kelvin-wave cascade in the vortex filament model

The Kelvin-wave cascade in the vortex filament model The Kelvin-wave cascade in the vortex filament model Andrew W. Baggaley 1, and Jason Laurie 2, 1 School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, United Kingdom 2 Department

More information

A note on the propagation of quantized vortex rings through a quantum turbulence tangle: Energy transport or energy dissipation?

A note on the propagation of quantized vortex rings through a quantum turbulence tangle: Energy transport or energy dissipation? A note on the propagation of quantized vortex rings through a quantum turbulence tangle: Energy transport or energy dissipation? Jason Laurie 1, Andrew W. Baggaley 2 1 Department of Physics of Complex

More information

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Faculty of Science, Osaka City University Michikazu Kobayashi May 25, 2006, Kansai Seminar House Contents 1. 2. 3. 4. 5. Introduction - history

More information

Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids

Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids PHYSICAL REVIEW B 84, 64516 (211) Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids Laurent Boué, 1 Ratul Dasgupta, 1 Jason Laurie, 2,3 Victor L vov, 1 Sergey Nazareno, 3

More information

Quantum Turbulence, and How it is Related to Classical Turbulence

Quantum Turbulence, and How it is Related to Classical Turbulence Quantum Turbulence, and How it is Related to Classical Turbulence Xueying Wang xueying8@illinois.edu University of Illinois at Urbana-Champaign May 13, 2018 Abstract Since the discovery of turbulence in

More information

Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids

Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids Laurent Boué, Ratul Dasgupta, Jason Laurie, Victor L vov, Sergey Nazareno and Itamar Procaccia Department of Chemical Physics,

More information

Bottleneck crossover between classical and quantum superfluid turbulence

Bottleneck crossover between classical and quantum superfluid turbulence between classical and quantum superfluid turbulence Mathematics Institute University of Warwick Joint work with V.Lvov and O.Rudenko (Weizmann). Inertial-Range Dynamics and Mixing Workshop, INI-Cambridge,

More information

Quantum vortex reconnections

Quantum vortex reconnections Quantum vortex reconnections A.W. Baggaley 1,2, S. Zuccher 4, Carlo F Barenghi 2, 3, A.J. Youd 2 1 University of Glasgow 2 Joint Quantum Centre Durham-Newcastle 3 Newcastle University 4 University of Verona

More information

Slide of the Seminar

Slide of the Seminar Slide of the Seminar! Dynamics of the Vortex Lines Density in Superfluid Turbulence!! Prof. Anna Pomyalov ERC Advanced Grant (N. 339032) NewTURB (P.I. Prof. Luca Biferale)! Università degli Studi di Roma

More information

arxiv: v1 [quant-ph] 1 May 2009

arxiv: v1 [quant-ph] 1 May 2009 Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades Jeffrey Yepez 1, George Vahala 2, Linda Vahala 3, Min Soe 4 1 Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts

More information

A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation?

A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation? JLowTempPhys(2015)180:95 108 DOI 10.1007/s10909-015-1287-9 A Note on the Propagation of Quantized Vortex Rings Through a Quantum Turbulence Tangle: Energy Transport or Energy Dissipation? Jason Laurie

More information

Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation

Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation Quantum Lattice Gas Algorithm for Quantum Turbulence and Vortex Reconnection in the Gross-Pitaevskii Equation George Vahala 1, Jeffrey Yepez 1,2 and Linda Vahala 3 1 Dept. of Physics, William & Mary, Williamsburg,

More information

Weak turbulence of Kelvin waves in superfluid He

Weak turbulence of Kelvin waves in superfluid He Weak turbulence of Kelvin waves in superfluid He Victor S. L vov and Sergey Nazarenko Citation: Low Temperature Physics 36, 785 (010); doi: 10.1063/1.34994 View online: http://dx.doi.org/10.1063/1.34994

More information

An introduction to superfluidity and quantum turbulence

An introduction to superfluidity and quantum turbulence An introduction to superfluidity and quantum turbulence Acknowledgments: Joy Allen, Andrew Baggaley, Nick Parker, Nick Proukakis, Yuri Sergeev, Nugzar Suramlishvili, Daniel Wacks, Angela White, Anthony

More information

Interaction of Kelvin waves and nonlocality of energy transfer in superfluids Laurie, J.; L'vov, V.S.; Nazarenko, S.; Rudenko, O.

Interaction of Kelvin waves and nonlocality of energy transfer in superfluids Laurie, J.; L'vov, V.S.; Nazarenko, S.; Rudenko, O. Interaction of Kelvin waves and nonlocality of energy transfer in superfluids Laurie, J.; L'vov, V.S.; Nazareno, S.; Rudeno, O. Published in: Physical Review B: Condensed Matter DOI: 0.0/PhysRevB.8.04526

More information

Imaging quantum turbulence in 3 He-B: Do spectral properties of Andreev reflection reveal properties of turbulence?

Imaging quantum turbulence in 3 He-B: Do spectral properties of Andreev reflection reveal properties of turbulence? Imaging quantum turbulence in 3 He-B: Do spectral properties of Andreev reflection reveal properties of turbulence? Andrew W. Baggaley and Carlo F. Barenghi (Newcastle University & JQC) Viktor Tsepelin,

More information

from Superfluid Helium to Atomic Bose-Einstein Condensates Makoto TSUBOTA Department of Physics, Osaka City University, Japan

from Superfluid Helium to Atomic Bose-Einstein Condensates Makoto TSUBOTA Department of Physics, Osaka City University, Japan from Superfluid Helium to Atomic Bose-Einstein Condensates Makoto TSUBOTA Department of Physics, Osaka City University, Japan Thanks to the many collaborators Review article M. Tsubota, J. Phys. Soc. Jpn.77

More information

SUPERFLUID TURBULENCE

SUPERFLUID TURBULENCE SUPERFLUID TURBULENCE Carlo F. Barenghi School of Mathematics, University of Newcastle Acknowledgments: Demos Kivotides, Daniel Poole, Anthony Youd and Yuri Sergeev (Newcastle), Joe Vinen (Birmingham),

More information

arxiv: v1 [cond-mat.quant-gas] 15 Jun 2010

arxiv: v1 [cond-mat.quant-gas] 15 Jun 2010 The approach to vortex reconnection Richard Tebbs 1, Anthony J. Youd 1, and Carlo F. Barenghi 1 1 School of Mathematics and Statistics, Newcastle University, arxiv:1006.3004v1 [cond-mat.quant-gas] 15 Jun

More information

(1) BEC (2) BEC (1) (BEC) BEC BEC (5) BEC (LT) (QFS) BEC (3) BEC. 3 He. 4 He. 4 He 3 He

(1) BEC (2) BEC (1) (BEC) BEC BEC (5) BEC (LT) (QFS) BEC (3) BEC. 3 He. 4 He. 4 He 3 He 22 (BEC) 4 He BEC We study theoretically and experimentally quantum hydrodynamics in quantum condensed phases at low temperature, namely superfluid helium and atomic Bose-Einstein condensates (BECs). Quantum

More information

Collaborators: A. Almagri, C. Forest, M. Nornberg, K. Rahbarnia, J. Sarff UW Madison S. Prager, Y. Ren PPPL D. Hatch, F. Jenko IPP G.

Collaborators: A. Almagri, C. Forest, M. Nornberg, K. Rahbarnia, J. Sarff UW Madison S. Prager, Y. Ren PPPL D. Hatch, F. Jenko IPP G. Dissipa&on Range Turbulent Cascades in Plasmas P.W. Terry Center for Magne,c Self Organiza,on in Laboratory and Astrophysical Plasmas University of Wisconsin Madison Collaborators: A. Almagri, C. Forest,

More information

University of Warwick institutional repository:

University of Warwick institutional repository: University of Warwic institutional repository: http://go.warwic.ac.u/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please

More information

Hydrodynamics and turbulence in classical and quantum fluids V. Quantum turbulence experiments

Hydrodynamics and turbulence in classical and quantum fluids V. Quantum turbulence experiments Hydrodynamics and turbulence in classical and quantum fluids V. Quantum turbulence experiments grid RECALL flow (Approximately) homogeneous turbulence Energy Cascade E(k) = C 2/3 k -5/3 Recall quantized

More information

Tangled quantum vortices

Tangled quantum vortices (http://research.ncl.ac.uk/quantum-fluids/) Warning: vortices will interact! Wingtip vortices move down (Helmholtz Theorem: Vortex lines move with the fluid) Summary Part 1: quantum vortices Absolute zero

More information

More about simulations of quantum turbulence

More about simulations of quantum turbulence More about simulations of quantum turbulence Discussion session on Monday, May 2, 2011 Chair: Workshop on Classical and Quantum Turbulence, Abu Dhabi, 2-5 May 2011 Outline 1 Speeding up the simulations

More information

arxiv: v1 [cond-mat.stat-mech] 11 Oct 2011

arxiv: v1 [cond-mat.stat-mech] 11 Oct 2011 Coherent vortex structures in quantum turbulence arxiv:1110.2319v1 [cond-mat.stat-mech] 11 Oct 2011 A. W. Baggaley, 1, C. F. Barenghi, 1 A. Shukurov, 1 and Y. A. Sergeev 2 1 School of Mathematics and Statistics,

More information

Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions

Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions Kobayashi Maskawa Ins/tute Department of Physics, Nagoya University Chiho NONAKA December 13, 2013@KMI 2013, Nagoya Rela%vis%c Heavy Ion Collisions

More information

Modeling Kelvin Wave Cascades in Superfluid Helium

Modeling Kelvin Wave Cascades in Superfluid Helium J Low Temp Phys (2009) 156: 193 214 DOI 10.1007/s10909-009-9895-x Modeling Kelvin Wave Cascades in Superfluid Helium G. Boffetta A. Celani D. Dezzani J. Laurie S. Nazarenko Received: 6 April 2009 / Accepted:

More information

Publication P American Physical Society (APS) Reprinted by permission of American Physical Society.

Publication P American Physical Society (APS) Reprinted by permission of American Physical Society. Publication P3 V. B. Eltsov, A. I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V. S. L'vov, and R. E. Solntsev. 2007. Quantum turbulence in a propagating superfluid vortex front. Physical Review Letters,

More information

Comments on Black Hole Interiors

Comments on Black Hole Interiors Comments on Black Hole Interiors Juan Maldacena Ins6tute for Advanced Study Conserva6ve point of view Expansion parameter = geff 2 ld 2 p r D 2 h 1 S Informa6on seems to be lost perturba6vely. n point

More information

Gyrokine)c Phase space Turbulence and Energy Flows

Gyrokine)c Phase space Turbulence and Energy Flows Gyrokine)c Phase space Turbulence and Energy Flows Review, Progress and Open Problems Gabriel G. Plunk 2 August, 2010, Newton Ins)tute Tomo Tatsuno, M. Barnes, S. Cowley, W. Dorland, G. Howes, R. Numata,

More information

Bottleneck crossover between classical and quantum superfluid turbulence L'vov, V.S.; Nazarenko, S.; Rudenko, O.

Bottleneck crossover between classical and quantum superfluid turbulence L'vov, V.S.; Nazarenko, S.; Rudenko, O. Bottleneck crossover between classical and quantum superfluid turbulence L'vov, V.S.; Nazarenko, S.; Rudenko, O. Published in: Physical Review B DOI: 10.1103/PhysRevB.76.024520 Published: 01/01/2007 Document

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE DYNAMICS OF INTERACTING VORTEX RINGS IN SUPERFLUID HELIUM

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE DYNAMICS OF INTERACTING VORTEX RINGS IN SUPERFLUID HELIUM EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE DYNAMICS OF INTERACTING VORTEX RINGS IN SUPERFLUID HELIUM A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF MASTER OF PHILOSOPHY IN THE

More information

Quantum fluids are compressible In any compressible vortex cores have low density. Example: Tornados

Quantum fluids are compressible In any compressible vortex cores have low density. Example: Tornados KITP, Santa Barbara 15 February 2011 Vortex Stretching as a Mechanism for Quantum Kinetic Energy Decay Robert M. Kerr, Warwick University Left: Classical Euler, isosurfaces of high vorticity magnitude.

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Week 12, Lecture 2 Nuclear Synthesis

Week 12, Lecture 2 Nuclear Synthesis Week 12, Lecture 2 Nuclear Synthesis Nuclear Reac*ons in Space - - Overview - - Observa

More information

Observation of acoustic turbulence in a system of nonlinear second sound waves in superfluid 4 He

Observation of acoustic turbulence in a system of nonlinear second sound waves in superfluid 4 He Fizika Nizkikh Temperatur, 2008, v. 34, Nos. 4/5, p. 367 372 Observation of acoustic turbulence in a system of nonlinear second sound waves in superfluid 4 He A.N. Ganshin 1, V.B. Efimov 1,2, G.V. Kolmakov

More information

arxiv: v2 [physics.flu-dyn] 22 Nov 2016

arxiv: v2 [physics.flu-dyn] 22 Nov 2016 arxiv:63.643v2 [physics.flu-dyn] 22 Nov 26 Leapfrogging Kelvin waves N. Hietala,, a) R. Hänninen, H. Salman, 2 and C. F. Barenghi 3 ) Low Temperature Laboratory, Department of Applied Physics, Aalto University,

More information

The nuclear many- body problem: an open quantum systems perspec6ve. Denis Lacroix GANIL- Caen

The nuclear many- body problem: an open quantum systems perspec6ve. Denis Lacroix GANIL- Caen The nuclear many- body problem: an open quantum systems perspec6ve Denis Lacroix GANIL- Caen Coll: M. Assié, S. Ayik, Ph. Chomaz, G. Hupin, K. Washiyama Trento, Decoherence -April 2010 The nuclear many-

More information

arxiv: v1 [cond-mat.quant-gas] 24 Sep 2013

arxiv: v1 [cond-mat.quant-gas] 24 Sep 2013 Quantum turbulence by vortex stirring in a spinor Bose-Einstein condensate B. Villaseñor, R. Zamora-Zamora, D. Bernal, and V. Romero-Rochín Instituto de Física, Universidad Nacional Autónoma de México.

More information

Nonequilibrium Response in a Model for Sensory Adapta8on

Nonequilibrium Response in a Model for Sensory Adapta8on The 7 th KIAS Conference on Sta8s8cal Physics, 4-7 July 2016 Nonequilibrium Sta8s8cal Physics of Complex Systems Nonequilibrium Response in a Model for Sensory Adapta8on Shouwen Wang and Lei- Han Tang

More information

Turbulence in fluid flows is universal, from galactic scales

Turbulence in fluid flows is universal, from galactic scales Vortex filament method as a tool for computational visualization of quantum turbulence Risto Hänninen a,1 and Andrew W. Baggaley b a O.V. Lounasmaa Laboratory, Aalto University, FI-00076, Aalto, Finland;

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules Natsumi Nagata Nagoya University Na1onal Taiwan University 5 November, 2012 J. Hisano, J. Y. Lee, N. Nagata, and Y. Shimizu, Phys. Rev.

More information

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics PART 2 Formalism of rela,vis,c ideal/viscous hydrodynamics Adver&sement: Lecture Notes Hydrodynamics Framework to describe space- &me evolu&on of thermodynamic variables Balance equa&ons (equa&ons of mo&on,

More information

The Sensitivity of the Vortex Filament Method to Different Reconnection Models

The Sensitivity of the Vortex Filament Method to Different Reconnection Models J Low Temp Phys (2012) 168:18 30 DOI 10.1007/s10909-012-0605-8 The Sensitivity of the Vortex Filament Method to Different Reconnection Models A.W. Baggaley Received: 3 November 2011 / Accepted: 10 February

More information

Ultra-cold (T 0 K) quantum gases in magnetic traps. Vortices. ρ = 0 black holes.

Ultra-cold (T 0 K) quantum gases in magnetic traps. Vortices. ρ = 0 black holes. FDRC, Warwick 11 February 2015 Quantum Turbulence Robert M. Kerr, Warwick University Abstract: If one cools any gas sufficiently it will become a liquid, and with sufficient pressure will become a solid.

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Condensation of classical nonlinear waves

Condensation of classical nonlinear waves Condensation of classical nonlinear waves Colm Connaughton 1, Christophe Josserand 2, Antonio Picozzi 3, Yves Pomeau 1 and Sergio Rica 4,1 1 Laboratoire de Physique Statistique, ENS-CNRS, 24 rue Lhomond,

More information

Andrew William Baggaley

Andrew William Baggaley Andrew William Baggaley Tel. +44 191 208 3485 Fax +44 191 208 8020, andrew.baggaley@newcastle.ac.uk http://abag.wikidot.com Employment 2015 present Lecturer of mathematics,, UK 2012 2015 Lecturer of mathematics,

More information

Magne&c Dissipa&on in Rela&vis&c Jets

Magne&c Dissipa&on in Rela&vis&c Jets Magne&c Dissipa&on in Rela&vis&c Jets Yosuke Mizuno Ins$tute for Theore$cal Physics Goethe University Frankfurt In Black Hole Cam collabora$on (Theory Team) Blazars through Sharp Mul$- Frequency Eyes,

More information

The decay of quantum turbulence energy in superfluid helium-4

The decay of quantum turbulence energy in superfluid helium-4 Workshop on Interpretation of measurements in 4He superfluid turbulence Saclay, France, Sept 14-18, 015 The decay of quantum turbulence energy in superfluid helium-4 Speaker: Dr. Wei Guo Assistant Professor

More information

Eirik Endeve. Simula'ons of SASI, turbulence, and magne'c field amplifica'on

Eirik Endeve. Simula'ons of SASI, turbulence, and magne'c field amplifica'on Simula'ons of SASI, turbulence, and magne'c field amplifica'on INT Program INT- 12-2a: Core- Collapse Supernovae: Models and Observable Signals Eirik Endeve Funding: DoE Office of Advanced Scien'fic Compu'ng

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Vortices, particles and superfluidity. K.R. Sreenivasan

Vortices, particles and superfluidity. K.R. Sreenivasan Vortices, particles and superfluidity K.R. Sreenivasan superfluidity [Helium II] possesses a number of peculiar properties, the most important of which is superfluidity discovered by P.L. Kapitza Landau

More information

arxiv: v2 [cond-mat.other] 12 Jul 2015

arxiv: v2 [cond-mat.other] 12 Jul 2015 Visualizing Pure Quantum Turbulence in Superfluid 3 He: Andreev Reflection and its Spectral Properties arxiv:1503.08157v2 [cond-mat.other] 12 Jul 2015 A.W.Baggaley, 1 V.Tsepelin, 2, C.F.Barenghi, 1 S.N.Fisher,

More information

The Turbulent Universe

The Turbulent Universe The Turbulent Universe WMAP Science Team J. Berges ALICE/CERN Universität Heidelberg JILA/NIST Festkolloquium der Karl Franzens Universität Graz FWF Doktoratskolleg Hadrons in Vacuum, Nuclei and Stars

More information

Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang. Raju Venugopalan

Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang. Raju Venugopalan Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang Raju Venugopalan Lecture iv, UCT, February 2012 Outline of lectures Lecture I: QCD and the Quark- Gluon Plasma

More information

Binary black holes and gravita4onal waves: Introduc4on to SpEC

Binary black holes and gravita4onal waves: Introduc4on to SpEC Binary black holes and gravita4onal waves: Introduc4on to SpEC Abdul Mroue Canadian Ins4tute for Theore4cal Astrophysics 2011 Interna4onal School on Numercical Rela4vity and Gravita4onal waves July 27-

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Vortex reconnection classical and superfluid turbulence compared and contrasted

Vortex reconnection classical and superfluid turbulence compared and contrasted Vortex reconnection classical and superfluid turbulence compared and contrasted K.R. Sreenivasan 4 September 2009 Fluid-Gravity Correspondence Arnold Sommerfeld Centre, LMU, Munich Two vortices of opposite

More information

Classical and quantum regimes of the superfluid turbulence.

Classical and quantum regimes of the superfluid turbulence. arxiv:cond-mat/0310021v4 20 Oct 2003 Classical and quantum regimes of the superfluid turbulence. G.E. Volovik Low Temperature Laboratory, Helsinki University of Technology P.O.Box 2200, FIN-02015 HUT,

More information

Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016

Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016 Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016 Stanislav Boldyrev (UW-Madison), Dmitri Uzdensky (CU-Boulder), Steve Tobias (U-Leeds), Jean Carlos Perez (FIT) 1 I. Introduc>on:

More information

Local normal-fluid helium II flow due to mutual friction interaction with the superfluid

Local normal-fluid helium II flow due to mutual friction interaction with the superfluid PHYSICAL REVIEW B VOLUME 62, NUMBER 5 1 AUGUST 2000-I Local normal-fluid helium II flow due to mutual friction interaction with the superfluid Olusola C. Idowu, Ashley Willis, Carlo F. Barenghi, and David

More information

Ravello GNFM Summer School September 11-16, Renzo L. Ricca. Department of Mathematics & Applications, U. Milano-Bicocca

Ravello GNFM Summer School September 11-16, Renzo L. Ricca. Department of Mathematics & Applications, U. Milano-Bicocca Ravello GNFM Summer School September 11-16, 2017 Renzo L. Ricca Department of Mathematics & Applications, U. Milano-Bicocca renzo.ricca@unimib.it Course contents 1. Topological interpretation of helicity

More information

Brownian shape mo.on: Fission fragment mass distribu.ons

Brownian shape mo.on: Fission fragment mass distribu.ons CNR*11: Interna/onal Workshop on Compound Nuclear Reac/ons and Related Topics Prague, Czech Republic, 19 23 September 11 Brownian shape mo.on: Fission fragment mass distribu.ons Jørgen Randrup, LBNL Berkeley,

More information

Interpretation of visualization experiments in 4 He

Interpretation of visualization experiments in 4 He Interpretation of visualization experiments in 4 He Yuri A. Sergeev, Carlo F. Barenghi Demos Kivotides (Imperial College London) Makoto Tsubota (Osaka City University) Yoshikazu Mineda (Osaka City University)

More information

arxiv: v2 [cond-mat.other] 7 Jun 2017

arxiv: v2 [cond-mat.other] 7 Jun 2017 Visualization of quantum turbulence in superfluid 3 He-B: Combined numerical/experimental study of Andreev reflection arxiv:176.1791v2 [cond-mat.other] 7 Jun 217 V. Tsepelin, 1, A.W. Baggaley, 2 Y.A. Sergeev,

More information

Measurement of the meridional flow from eigenfunc5on perturba5ons

Measurement of the meridional flow from eigenfunc5on perturba5ons Measurement of the meridional flow from eigenfunc5on perturba5ons Ariane Schad, Markus Roth Kiepenheuer- Ins5tut für Sonnenphysik Solar Subsurface Flows from Helioseismology: Problems and Prospects Helioseismology

More information

arxiv: v1 [cond-mat.other] 29 Jan 2009

arxiv: v1 [cond-mat.other] 29 Jan 2009 Contemporary Physics Vol. 00, No. 00, June 2008, 1 16 RESEARCH ARTICLE arxiv:0901.4600v1 [cond-mat.other] 29 Jan 2009 Quantum turbulence: From superfluid helium to atomic Bose-Einstein condensates Makoto

More information

arxiv: v2 [physics.flu-dyn] 9 May 2016

arxiv: v2 [physics.flu-dyn] 9 May 2016 Interactions between unidirectional quantized vorte rings T. Zhu, M. L. Evans, R. A. Brown, P. M. Walmsley, and A. I. Golov (Dated: May 10, 2016) arxiv:1603.04313v2 [physics.flu-dyn] 9 May 2016 We have

More information

An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing

An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Alexandre

More information

Vortices and turbulence in trapped atomic condensates

Vortices and turbulence in trapped atomic condensates Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Física e Ciências Materiais - IFSC/FCM Artigos e Materiais de Revistas Científicas - IFSC/FCM 2014-03 Vortices

More information

Advanced beam manipula/ons

Advanced beam manipula/ons Advanced beam manipula/ons Beam manipula+ons involves the interac+on of the beam with external fields: laser tailored RF field (e.g. mul+ frequency) external beams The beam manipula+ons topics explored

More information

Overview of recent theore.cal work on two-photon exchange

Overview of recent theore.cal work on two-photon exchange Overview of recent theore.cal work on two-photon exchange Peter Blunden University of Manitoba JPos17, September 12, 2017 in collaboration with Wally Melnitchouk, Jefferson Lab Assuming OPE Rosenbluth

More information

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer Steven W. Van Sciver Helium Cryogenics Second Edition 4) Springer Contents 1 Cryogenic Principles and Applications 1 1.1 Temperature Scale 2 1.2 Historical Background 4 1.3 Applications for Cryogenics

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Previous lecture: Elementary excitations above condensate are phonons in the low energy limit. This lecture Rotation of superfluid helium. Hess-Fairbank effect and persistent currents

More information

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on 12.- 1 A model for premixed turbulent combus7on, based on the non- reac7ng scalar G rather than on progress variable, has been developed

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Numerical Evolu.on of Soliton Stars Dr. Jayashree Balakrishna (HSSU Saint Louis, Missouri)

Numerical Evolu.on of Soliton Stars Dr. Jayashree Balakrishna (HSSU Saint Louis, Missouri) Numerical Evolu.on of Soliton Stars Dr. Jayashree Balakrishna (HSSU Saint Louis, Missouri) Collaborators: M. Bondarescu (Ole Miss. ), R. Bondarescu (Penn. State), G. Daues (N.C.S.A), F.S. Guzman (Mexico),

More information

Matrix models for the black hole informa4on paradox

Matrix models for the black hole informa4on paradox Matrix models for the black hole informa4on paradox Takuya Okuda, Perimeter Ins4tute Joint work with N. Iizuka and J. Polchinski o o Black hole informa4on paradox Hawking s paradox for evapora4ng black

More information

July Phase transitions in turbulence. N. Vladimirova, G. Falkovich, S. Derevyanko

July Phase transitions in turbulence. N. Vladimirova, G. Falkovich, S. Derevyanko July 212 Gross-Pitaevsy / Nonlinear Schrödinger equation iψ t + 2 ψ ψ 2 ψ = iˆf ψ No forcing / damping ψ = N exp( in t) Integrals of motion H = ( ψ 2 + ψ 4 /2 ) d 2 r N = ψ 2 d 2 r f n forcing damping

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

LHC Experiments: Hadronic Jet Physics

LHC Experiments: Hadronic Jet Physics LHC Experiments: Hadronic Jet Physics Jason Nielsen Santa Cruz Ins>tute for Par>cle Physics University of California, Santa Cruz Theore>cal Advanced Studies Ins>tute Boulder, Colorado June 2010 Jets as

More information

QCD Lagrangian. ψ qi. δ ij. ψ i L QCD. m q. = ψ qi. G α µν = µ G α ν ν G α µ gf αβγ G β µ G γ. G α t α f αβγ. g = 4πα s. (!

QCD Lagrangian. ψ qi. δ ij. ψ i L QCD. m q. = ψ qi. G α µν = µ G α ν ν G α µ gf αβγ G β µ G γ. G α t α f αβγ. g = 4πα s. (! QCD Lagrangian L QCD = ψ qi iγ µ! δ ij µ + ig G α µ t $ "# α %& ψ qj m q ψ qi ψ qi 1 4 G µν q ( ( ) ) ij L QED = ψ e iγ µ!" µ + iea µ # $ ψ e m e ψ e ψ e 1 4 F F µν µν α G α µν G α µν = µ G α ν ν G α µ

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Experimental results with the Cooled Lithium Limiter (CLL) on FTU

Experimental results with the Cooled Lithium Limiter (CLL) on FTU Experimental results with the Cooled Lithium Limiter (CLL) on FTU Giuseppe Mazzitelli ENEA Technological Fusion Division The First IAEA Technical Mee

More information

SPIN UP, SPIN DOWN AND PROPAGATION OF TURBULENT FRONTS IN SUPERFLUIDS

SPIN UP, SPIN DOWN AND PROPAGATION OF TURBULENT FRONTS IN SUPERFLUIDS SPIN UP, SPIN DOWN AND PROPAGATION OF TURBULENT FRONTS IN SUPERFLUIDS Vladimir Eltsov Low Temperature Laboratory, Aalto University ROTA group: Rob de Graaf, Petri Heikkinen, Jaakko Hosio, Risto Hänninen,

More information

Turbulence in quantum hydrodynamics

Turbulence in quantum hydrodynamics Turbulence in quantum hydrodynamics Michikazu Kobayashi Department Physics, Kyoto University By numerically solving the Gross-Piteavskii equation with the energy injection and dissipation, we study quantum

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks

A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks A characteriza+on/reliability oriented simula+on framework modeling charge transport and degrada+on in dielectric stacks Luca Larcher University of Modena and Reggio Emilia MDLab Italy Outline Simula=on

More information

Manuela Campanelli Rochester Ins4tute of Technology. Tes4ng GR with Numerical Studies of Black Hole Binaries

Manuela Campanelli Rochester Ins4tute of Technology. Tes4ng GR with Numerical Studies of Black Hole Binaries Manuela Campanelli Rochester Ins4tute of Technology Tes4ng GR with Numerical Studies of Black Hole Binaries Sackler 2012 Conference Ins2tute for Theory and Computa2on, Center for Astrophysics Harvard University

More information

Weak Turbulence of Gravity Waves

Weak Turbulence of Gravity Waves JETP Letters, Vol. 77, No. 0, 003, pp. 546 550. From Pis ma v Zhurnal Éksperimental noœ i Teoreticheskoœ Fiziki, Vol. 77, No. 0, 003, pp. 649 653. Original English Text Copyright 003 by Dyachenko, Korotkevich,

More information

Group B Heat Flow Across the San Andreas Fault. Chris Trautner Bill Savran

Group B Heat Flow Across the San Andreas Fault. Chris Trautner Bill Savran Group B Heat Flow Across the San Andreas Fault Chris Trautner Bill Savran Outline Background informa?on on the problem: Hea?ng due to fric?onal sliding Shear stress at depth Average stress drop along fault

More information

Turbulent Rankine Vortices

Turbulent Rankine Vortices Turbulent Rankine Vortices Roger Kingdon April 2008 Turbulent Rankine Vortices Overview of key results in the theory of turbulence Motivation for a fresh perspective on turbulence The Rankine vortex CFD

More information

Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems

Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems Cri$cal Casimir forces from the equa$on of state of quantum cri$cal systems A. Rançon D. Lopes Cardozo T. Roscilde P. Holdsworth Ecole Normale Superieure de Lyon F. Rose N. Dupuis LPTMC Paris 6 L.-P. Henry

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 204 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

Cosmological N-Body Simulations and Galaxy Surveys

Cosmological N-Body Simulations and Galaxy Surveys Cosmological N-Body Simulations and Galaxy Surveys Adrian Pope, High Energy Physics, Argonne Na3onal Laboratory, apope@anl.gov CScADS: Scien3fic Data and Analy3cs for Extreme- scale Compu3ng, 30 July 2012

More information