Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016

Size: px
Start display at page:

Download "Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016"

Transcription

1 Vladimir Zhdankin, JILA/CU-Boulder US-Japan Magne>c Reconnec>on Workshop, 3/7/2016 Stanislav Boldyrev (UW-Madison), Dmitri Uzdensky (CU-Boulder), Steve Tobias (U-Leeds), Jean Carlos Perez (FIT) 1

2 I. Introduc>on: intermivent energy dissipa>on in turbulence II. Methodology: sta>s>cal analysis of dissipa>ve structures III. Spa>al analysis: current sheets (spanning many scales) IV. Temporal analysis: flare events (i.e., evolving current sheets) V. Conclusions 2

3 1. Randomness and irreversibility 2. Fluctua>ons over many scales 3. Energy transfer across many scales Energy in at large scales, cascades to small scales, then dissipates Z Solar wind (Sahraoui et al. 2010) v(k) = d 3 xv(x)e ik x E(k) v(k) 2 4 k 2 Kolmogorov 1941: Scale invariance + dimensional analysis -> E(k) k 5/3 3

4 Random fluctua>ons in turbulent cascade cause energy dissipa>on to be inhomogeneous in space and in >me IntermiVency breaks scale invariance: as spa>al resolu>on is increased, quan>>es such as the local energy dissipa>on rate become increasingly inhomogeneous Consequences: non-gaussian sta>s>cs, coherent structures Standard methods (e.g., structure func>ons) have limita>ons - need new, more robust and informa>ve methods Sreenivasan 1999 Kira & Miura 1998 Leung et al

5 IntermiVent structures are sites of localized hea>ng, par>cle accelera>on, magne>c reconnec>on, etc. Vor>city filaments in hydrodynamics, current/vor>city sheets in plasmas Sta>s>cal analysis of intermivent structures is robust methodology for inves>ga>ng dynamics in numerical simula>ons and observa>ons Hydrodynamic turbulence: Jiménez et al. 1993, Moisy & Jiménez 2004, Leung et al MHD turbulence: Servidio et al , Uritsky et al. 2010, Zhdankin et al , Momferratos et al. 2014, Wan et al. 2014, Makwana et al Douady et al

6 2D MHD turbulence: reconnec>on occurs in Sweet-Parker-like current sheets Servidio et al. PRL 2009, PoP 2010 Zoom in on a current sheet... Local reconnec>on rate Major remaining ques>on: how does this change in 3D? 6

7 In 3D reduced MHD turbulence (Zhdankin et al. 2013, Wan et al. 2014): Many current sheets are not associated with X-type null points, and many X-points are not associated with current sheets Most intense current sheets have tendency to include X-point Unclear whether Sweet-Parker model is valid Wan et al. ApJ 2014 Zhdankin et al. ApJ

8 Dynamics governing inhomogeneous dissipa>on in solar corona are poorly understood; self-organized cri>cality and turbulence may play roles Solar flares exhibit power-law distribu>ons for size, dura>on, peak intensity, and energy released E: If α < 2.0, then strongest flares dominate If α > 2.0, then weakest flares dominate (nanoflare hea>ng; Parker 1983) E tot P (E) / E Z Emax E min EP(E)dE E2 max E 2 min 2 P (E) Aschwanden et al Solar flare observa>ons measure α 1.8, making nanoflare hea>ng douboul E 8

9 What is morphology of intermivent structures? (filament, sheet, etc.) What are sizes and dura>ons of dissipa>ve events? How are they related? Is energy dissipa>on dominated by weak or strong (small or large) structures/events? ( coherent structures or nanoflares?) How do results scale in limit of large Reynolds numbers? Do dissipa>ve events exhibit any substan>al temporal asymmetry? Can turbulence explain flares in astrophysical systems? (e.g., corona) To what extent are intermivent current sheets associated with magne>c reconnec>on? To answer these ques>ons, will perform a sta>s>cal analysis of intermivent current sheets in numerical simula>ons of driven MHD turbulence 9

10 Reduced MHD: incompressible MHD in limit of strong uniform background magne>c field and anisotropic gradients: B = B 0 ẑ + b B 0 b rms Valid at scales small rela>ve to driving scale, but large rela>ve to kine>c scales k? k t + v r? = B z + r t! + v r?! b r? j = B z j + r 2?! Periodic box, large-scale driving Pm = =1 b =ẑ r j = r 2? v =ẑ r! = r 2? Compensated magne>c energy spectrum Re = v 0L = B 0 /b rms 5 Dissipa>on rates:, j 2! 2 Details on simula>ons: Perez et al

11 Re = 1000 Re = 3200 Re = 9000 Current density contours in plane perpendicular to guide field 11

12 12

13 Iden>fy 3D intermivent current sheets in each snapshot by applying threshold j thr >j rms and finding sets of connected points with j >j thr j thr 6.4j rms j thr 4.3j rms j thr 2.1j rms For each structure, measure size in 3 direc>ons: Z Also measure energy dissipa>on rate: E = dv j 2 L>W >T 13

14 Energy dissipated in structures Number of structures Volume occupied 50% of resis>ve energy dissipa>on in 3% of s volume E tot Insensi>ve to Re when threshold rescaled to rms: j rms = Re 1/2 V tot 14

15 E = Z dv j 2 Compensated E Power law tail with index very close to cri>cal value of -2.0 Weak and strong structures both contribute equally to overall energy dissipa>on rate Energy dissipa>on is spread across a con>nuum of scales 15

16 Distribu>ons for spa>al scales Length Width Thickness Dissipa>on-weighted distribu>ons for spa>al scales E(X)dX = energy dissipa>on rate from all structures with scale between X and X + dx 16

17 Rescaled dissipa>on-weighted distribu>ons L 2/3 W 2/3 T 2/3 Distribu>ons coincide when rescaled rela>ve to dissipa>on scale Goldreich & Sridhar 1995: l?, 3/4 l k, 1/2 With scale-dependent dynamic alignment (Boldyrev 2005, 2006): l 1/3 2/3 1/2 Measurements consistent with indices ranging from 1/2 to 3/4 17

18 Vor>city and Elsasser vor>city structures Can apply same methodology to vor>city structures and Elsasser vor>city structures by seung thresholds on or! =ẑ r v Sta>s>cs are nearly iden>cal as for current sheets!! ± =! ± j Elsasser vor>city structures can be understood by phenomenology (Zhdankin et al arxiv) 18

19 Dissipa>ve processes (flare events): 4D spa>otemporal objects consis>ng of points connected in space and in >me which exceed current density threshold In general, each process represents a set of structures interac>ng through mergers and divisions Iden>fica>on method: iden>fy spa>al structures in series of snapshots and track them across >me Zhdankin et al. PRL 2015, ApJ

20 Series of snapshots from simula>ons dumped at cadence (Δt) -1 Iden>fy all processes (using 4D threshold algorithm) and measure: Dura>on : >me from beginning of process to end of process Maximum spa>al scales: length, width, and thickness Peak energy dissipa>on rate: Z Dissipated energy: E = L max W max T max E max Z dt dv j 2 (integra>on across process) 20

21 Dura>on 0.5 Sta>s>cal asymmetry: more divisions than mergers 21

22 22

23 Longest process Averaged evolu>on Average evolu>on is (t/ )E(t)dt t/ E = R nearly symmetric: 0 E(t)dt R 0 23

24 Dura>on Maximum length Dissipated energy α 1.75 Peak energy dissipa>on rate 24

25 T const. (dissipa>on scale) L max W max j j thr (iner>al range) (current densi>es near threshold) E max jthrl 2 max W max T max 2 E E max 3 25

26 Despite physical and methodological differences, sta>s>cs of dissipated energies and sizes are similar to solar flare observa>ons (e.g., Uritsky et al. 2007, Uritsky et al. 2013, Aschwanden et al. 2014) Sta>s>cs of dura>ons differ and solar flares are more asymmetric (e.g., Christe et al. 2008) More work needed to establish whether turbulence is responsible for similari>es, or is coincidental 26

27 Sta>s>cal analysis of dissipa>ve structures is a robust and informa>ve methodology for studying intermivency and magne>c reconnec>on in MHD turbulence Instantaneously, energy dissipa>on is evenly spread among current sheets spanning many iner>al-range scales and dissipa>on rates When the temporal dynamics are accounted for, energy dissipa>on is dominated by intense, large-scale dissipa>ve events (α 1.75) Dissipa>ve events have dura>ons propor>onal to maximum length Minor temporal asymmetry is observed, evidently due to energy cascade Promising comparison to solar flare sta>s>cs needs to be bever understood Connec>on between intermivent current sheets and magne>c reconnec>on in 3D turbulence remains unclear: X-points and current sheets do not necessarily coincide Zhdankin, V., Uzdensky, D.A., Perez, J.C. & Boldyrev, S. (2013) ApJ, 771, 124 Zhdankin, V., Boldyrev, S., Perez, J.C. & Tobias, S.M. (2014) ApJ, 795, 127 Zhdankin, V., Uzdensky, D.A., Boldyrev, S. (2015) PRL, 114, Zhdankin, V., Uzdensky, D.A., Boldyrev, S. (2015) ApJ, 881, 6 Zhdankin, V., Boldyrev, S. & Uzdensky, D.A. (2016) arxiv: (to appear in PoP) 27

28 PIC simula>ons reveal intermivency at kine>c scales (e.g., Wan et al. 2012, 2015; Leonardis et al. 2013, Karimabadi et al. 2013, TenBarge & Howes 2013) Decaying turbulence in PIC simula>ons of collisionless pair plasma are similar to MHD simula>ons at large scales (Makwana, VZ, et al. PoP 2015) MHD PIC Makwana et al

29 Current sheet size comparison Lengths Widths Thicknesses Iner>al-range scales are similar in both simula>ons Thickness scales with lauce in ideal MHD, but with ion skin depth in PIC

Collaborators: A. Almagri, C. Forest, M. Nornberg, K. Rahbarnia, J. Sarff UW Madison S. Prager, Y. Ren PPPL D. Hatch, F. Jenko IPP G.

Collaborators: A. Almagri, C. Forest, M. Nornberg, K. Rahbarnia, J. Sarff UW Madison S. Prager, Y. Ren PPPL D. Hatch, F. Jenko IPP G. Dissipa&on Range Turbulent Cascades in Plasmas P.W. Terry Center for Magne,c Self Organiza,on in Laboratory and Astrophysical Plasmas University of Wisconsin Madison Collaborators: A. Almagri, C. Forest,

More information

Magnetohydrodynamic Turbulence

Magnetohydrodynamic Turbulence Magnetohydrodynamic Turbulence Stanislav Boldyrev (UW-Madison) Jean Carlos Perez (U. New Hampshire), Fausto Cattaneo (U. Chicago), Joanne Mason (U. Exeter, UK) Vladimir Zhdankin (UW-Madison) Konstantinos

More information

Magnetohydrodynamic Turbulence: solar wind and numerical simulations

Magnetohydrodynamic Turbulence: solar wind and numerical simulations Magnetohydrodynamic Turbulence: solar wind and numerical simulations Stanislav Boldyrev (UW-Madison) Jean Carlos Perez (U. New Hampshire) Fausto Cattaneo (U. Chicago) Joanne Mason (U. Exeter, UK) Vladimir

More information

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators:

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators: Radia%ve Magne%c Reconnec%on collaborators: in Astrophysical Plasmas Dmitri Uzdensky (University of Colorado, Boulder) - B. CeruF *, G. Werner, K. Nalewajko, M. Begelman (Univ. Colorado) - A. Spitkovsky

More information

Review of electron-scale current-layer dissipation in kinetic plasma turbulence

Review of electron-scale current-layer dissipation in kinetic plasma turbulence Meeting on Solar Wind Turbulence Kennebunkport, ME, June 4-7, 2013 Review of electron-scale current-layer dissipation in kinetic plasma turbulence Minping Wan University of Delaware W. H. Matthaeus, P.

More information

Fundamentals of Turbulence

Fundamentals of Turbulence Fundamentals of Turbulence Stanislav Boldyrev (University of Wisconsin - Madison) Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas What is turbulence? No exact definition.

More information

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Blakesley Burkhart Einstein Fellow Harvard- Smithsonian Center for Astrophysics With Min Young- Lee, Alex Lazarian, David Collins, Jonathan

More information

arxiv: v1 [astro-ph.he] 6 Feb 2013

arxiv: v1 [astro-ph.he] 6 Feb 2013 Draft version February 7, 2013 Preprint typeset using L A TEX style emulateapj v. 5/2/11 STATISTICAL ANALYSIS OF CURRENT SHEETS IN THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE Vladimir Zhdankin Department

More information

Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021

Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021 Special Topics in Physics (Experiment) PHYS 8361 Tuesday +Thursday 12:30 pm 1:50 pm Hyer Hall G 021 Course Objec

More information

Gyrokine)c Phase space Turbulence and Energy Flows

Gyrokine)c Phase space Turbulence and Energy Flows Gyrokine)c Phase space Turbulence and Energy Flows Review, Progress and Open Problems Gabriel G. Plunk 2 August, 2010, Newton Ins)tute Tomo Tatsuno, M. Barnes, S. Cowley, W. Dorland, G. Howes, R. Numata,

More information

3D hybrid-kinetic turbulence and phase-space cascades

3D hybrid-kinetic turbulence and phase-space cascades 3D hybrid-kinetic turbulence and phase-space cascades ( in a β = 1 plasma ) Silvio Sergio Cerri Department of Astrophysical Sciences, Princeton University, USA 11th Plasma Kinetics Working Meeting WPI

More information

Rela%vis%c Nonthermal Par%cle Accelera%on in Magne%c Reconnec%on

Rela%vis%c Nonthermal Par%cle Accelera%on in Magne%c Reconnec%on Rela%vis%c Nonthermal Par%cle Accelera%on in Magne%c Reconnec%on Dmitri Uzdensky (University of Colorado Boulder) Thanks to Univ. Colorado Theore9cal Plasma Astrophysics Group: Greg Werner Vladimir Zhdankin

More information

arxiv: v1 [physics.plasm-ph] 17 Feb 2016

arxiv: v1 [physics.plasm-ph] 17 Feb 2016 Scalings of intermittent structures in magnetohydrodynamic turbulence Vladimir Zhdankin a), 1,b) Stanislav Boldyrev, 2,3 and Dmitri A. Uzdensky 4 1) JILA, NIST and University of Colorado, 440 UCB, Boulder,

More information

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University

TURBULENCE IN FLUIDS AND SPACE PLASMAS. Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University TURBULENCE IN FLUIDS AND SPACE PLASMAS Amitava Bhattacharjee Princeton Plasma Physics Laboratory, Princeton University What is Turbulence? Webster s 1913 Dictionary: The quality or state of being turbulent;

More information

arxiv: v1 [astro-ph.sr] 25 Jul 2016

arxiv: v1 [astro-ph.sr] 25 Jul 2016 Draft version September 9, 8 Preprint typeset using L A TEX style emulateapj v. 5// THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE Gregory G. Howes Department of Physics

More information

Forced hybrid-kinetic turbulence in 2D3V

Forced hybrid-kinetic turbulence in 2D3V Forced hybrid-kinetic turbulence in 2D3V Silvio Sergio Cerri1,2 1 In collaboration with: 3 F. Califano, F. Rincon, F. Jenko4, D. Told4 1 Physics Department E. Fermi, University of Pisa, Italy fu r Plasmaphysik,

More information

Reconnection and the Formation of Magnetic Islands in MHD Models

Reconnection and the Formation of Magnetic Islands in MHD Models Reconnection and the Formation of Magnetic Islands in MHD Models N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, R. Samtaney and S. C. Cowley Yosemite 2010 Reconnection Workshop Introduction (I) In

More information

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind

Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Turbulence, nonlinear dynamics, and sources of intermittency and variability in the solar wind Intermittency & turbulence Intermittency is the nonuniform distribution of eddy formations in a stream. The

More information

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE

IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE IN-SITU OBSERVATIONS OF MAGNETIC RECONNECTION IN PLASMA TURBULENCE Z. Vörös 1,2,3 E. Yordanova 4 A. Varsani 2, K. Genestreti 2 1 Institute of Physics, University of Graz, Austria 2 Space Research Institute,

More information

Data Processing Techniques

Data Processing Techniques Universitas Gadjah Mada Department of Civil and Environmental Engineering Master in Engineering in Natural Disaster Management Data Processing Techniques Hypothesis Tes,ng 1 Hypothesis Testing Mathema,cal

More information

Mixing in Highly Compressible Turbulence

Mixing in Highly Compressible Turbulence Mixing in Highly Compressible Turbulence Liubin Pan Evan Scannapieco School of Earth and Space Exploration Arizona State University Astrophysical motivation: Heavy elements from supernova and stellar winds

More information

Sta$s$cal Analysis of Magne$c Cloud Erosion by Magne$c Reconnec$on

Sta$s$cal Analysis of Magne$c Cloud Erosion by Magne$c Reconnec$on ISEST, Interna\onal Study of Earth- Affec\ng Solar Transients - 2013 Sta$s$cal Analysis of Magne$c Cloud Erosion by Magne$c Reconnec$on A. Ruffenach (1), B. Lavraud (1), C. J. Farrugia (2), P. Démoulin

More information

arxiv: v1 [physics.space-ph] 27 Jun 2013

arxiv: v1 [physics.space-ph] 27 Jun 2013 Proton Kinetic Effects in Vlasov and Solar Wind Turbulence S. Servidio 1, K.T. Osman 2, F. Valentini 1, D. Perrone 1, F. Califano 3, S. Chapman 2, W. H. Matthaeus 4, and P. Veltri 1 1 Dipartimento di Fisica,

More information

Magne&c Reconnec&on. Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017

Magne&c Reconnec&on. Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017 Magne&c Reconnec&on Its role in CMEs & flares part II Lecture 4 Jan. 30, 2017 Last Time: Reconnec&on paradox Ideal region E = - u B 0 External E set by inner solu&on diffusion region E + u B 0 How reconnec&on

More information

Effec%ve Field Theory of Dissipa%ve Fluids

Effec%ve Field Theory of Dissipa%ve Fluids Effec%ve Field Theory of Dissipa%ve Fluids Hong Liu Paolo Glorioso arxiv: 1511.03646 and to appear Michael Crossley Conserved quan%%es and hydrodynamics Consider long wavelength disturbances of a system

More information

AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University

AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University AR Magne)c Energy What do we know? What can we learn? Dana Longcope Montana State University What we know: Magne)c energy is stored slowly in AR field. Sudden release* of a frac)on of stored energy produces

More information

Magnetic reconnection in high-lundquist-number plasmas. N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal

Magnetic reconnection in high-lundquist-number plasmas. N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal Magnetic reconnection in high-lundquist-number plasmas N. F. Loureiro Instituto de Plasmas e Fusão Nuclear, IST, Lisbon, Portugal Collaborators: R. Samtaney, A. A. Schekochihin, D. A. Uzdensky 53 rd APS

More information

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment

Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment Research supported by US DOE and NSF Turbulence Analysis of a Flux Rope Plasma on the Swarthmore Spheromak Experiment David Schaffner Swarthmore College, NSF Center for Magnetic Self-Organization with

More information

Kilo-parsec Molecular Gas Disks! In Merger Remnants

Kilo-parsec Molecular Gas Disks! In Merger Remnants Kilo-parsec Molecular Gas Disks! In Merger Remnants!! Collaborators: D. Iono, M. S. Yun, A. F. Crocker, D. Narayanan,! S. Komugi, D. Espada, B. Hatsukade, H. Kaneko, Y. Matsuda,! Y. Tamura, D. J. Wilner,

More information

Basic Plasma Concepts and Models

Basic Plasma Concepts and Models Basic Plasma Concepts and Models Amitava Bha5acharjee University of New Hampshire 2011 Heliophysics Summer School Goal of this lecture Review a few basic plasma concepts and models that underlie the lectures

More information

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann Ins@tute of Science, Israel In collabora@on with: Andrew Baggaley (Glasgow, UK) 20 September 2013, Université

More information

Nonmodal Growth and the Unstratified MRI Dynamo

Nonmodal Growth and the Unstratified MRI Dynamo MPPC general meeting, Berlin, June 24 Nonmodal Growth and the Unstratified MRI Dynamo Jonathan Squire!! and!! Amitava Bhattacharjee MRI turbulence Observed accretion rate in disks in astrophysical disks

More information

Eirik Endeve. Simula'ons of SASI, turbulence, and magne'c field amplifica'on

Eirik Endeve. Simula'ons of SASI, turbulence, and magne'c field amplifica'on Simula'ons of SASI, turbulence, and magne'c field amplifica'on INT Program INT- 12-2a: Core- Collapse Supernovae: Models and Observable Signals Eirik Endeve Funding: DoE Office of Advanced Scien'fic Compu'ng

More information

Gluing process simula0on in realis0c railway ballast 鐵路道碴膠結模擬與分析. Chung Fang

Gluing process simula0on in realis0c railway ballast 鐵路道碴膠結模擬與分析. Chung Fang 1 / 21 Gluing process simula0on in realis0c railway ballast 鐵路道碴膠結模擬與分析 Department of Civil Engineering Na7onal Cheng Kung University 04. November, 2016, Tainan, Taiwan 2 / 21 Contents: I. Introduc7on

More information

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch

Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch Density Fluctuation Induced Kinetic Dynamo and Nonlinear Tearing Mode Saturation in the MST Reversed Field Pinch W.X.Ding, L. Lin, D.L. Brower, A. Almagri, B. Chapman, G. Fiksel, D.J. Den Hartog, J. Reusch,

More information

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Jungyeon Cho Dmitry Shapovalov MWMF Madison, Wisconsin April 2012 The Large Scale Dynamo The accumulation of magnetic

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Solar Flares - Hinode Perspec.ve -

Solar Flares - Hinode Perspec.ve - Solar Flares - Hinode Perspec.ve - EIS SOT XRT Coupling and Dynamics of the Solar Atmosphere 2014 Nov 10 14 @IUCAA, Pune, India Hirohisa Hara NAOJ Solar Flare Research by Hinode Solar flares: explosive

More information

Genera&on of Turbulence and Magne&c Field Amplifica&on behind Shock Wave in the ISM

Genera&on of Turbulence and Magne&c Field Amplifica&on behind Shock Wave in the ISM Genera&on of Turbulence and Magne&c Field Amplifica&on behind Shock Wave in the ISM Tsuyoshi Inoue Aoyama- Gakuin University, Japan Collaborators: Shu- ichiro Inutsuka (Nagoya Univ.), Ryo Yamazaki (Aoyama-

More information

Magne&c Dissipa&on in Rela&vis&c Jets

Magne&c Dissipa&on in Rela&vis&c Jets Magne&c Dissipa&on in Rela&vis&c Jets Yosuke Mizuno Ins$tute for Theore$cal Physics Goethe University Frankfurt In Black Hole Cam collabora$on (Theory Team) Blazars through Sharp Mul$- Frequency Eyes,

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Turbulence, magnetic reconnection, particle acceleration Understand the mechanisms

More information

Small-Scale Dynamo and the Magnetic Prandtl Number

Small-Scale Dynamo and the Magnetic Prandtl Number MRI Turbulence Workshop, IAS, Princeton, 17.06.08 Small-Scale Dynamo and the Magnetic Prandtl Number Alexander Schekochihin (Imperial College) with Steve Cowley (Culham & Imperial) Greg Hammett (Princeton)

More information

Lesson1: Peak proving

Lesson1: Peak proving Lesson1: Peak proving A par2cle detector claim detec2on of GLE; They confirm it by sta2s2cal analysis, see below. Their analysis is incorrect. Read their conclusions look on the plots and answer ques2ons

More information

Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind

Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind Heating of Test Particles in Numerical Simulations of MHD Turbulence and the Solar Wind Ian Parrish UC Berkeley Collaborators: Rémi Lehe (ENS), Eliot Quataert (UCB) Einstein Fellows Symposium October 27,

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications

3D Reconnection of Weakly Stochastic Magnetic Field and its Implications 3D Reconnection of Weakly Stochastic Magnetic Field and its Implications Alex Lazarian Astronomy Department and Center for Magnetic Self- Organization in Astrophysical and Laboratory Plasmas Collaboration:

More information

SM and jet measurements at the LHC

SM and jet measurements at the LHC SM and jet measurements at the LHC Andy Pilkington IPPP and Manchester Presented at the Young Experiment and Theory Ins7tute, Durham, January 2011 Part I jet characteris.cs 1) Introduc?on to ATLAS and

More information

Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions

Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions Kobayashi Maskawa Ins/tute Department of Physics, Nagoya University Chiho NONAKA December 13, 2013@KMI 2013, Nagoya Rela%vis%c Heavy Ion Collisions

More information

Scaling relations in MHD and EMHD Turbulence

Scaling relations in MHD and EMHD Turbulence Scaling relations in MHD and EMHD Turbulence Jungyeon Cho Chungnam National University, Korea Outline MHD Non-MHD E(k) MHD turb. small-scale turb. ~1/r i k Topic 1. Strong MHD Turbulence Alfven wave Suppose

More information

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017

NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS. Jono Squire (Caltech) UCLA April 2017 NONLINEAR MHD WAVES THE INTERESTING INFLUENCE OF FIREHOSE AND MIRROR IN ASTROPHYSICAL PLASMAS Jono Squire (Caltech) UCLA April 2017 Along with: E. Quataert, A. Schekochihin, M. Kunz, S. Bale, C. Chen,

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Energy build- up & release erup3ons. MHD instabili3es Lecture 2 Jan. 23, 2017

Energy build- up & release erup3ons. MHD instabili3es Lecture 2 Jan. 23, 2017 Energy build- up & release erup3ons MHD instabili3es Lecture 2 Jan. 23, 2017 Our mission: explain what has happened here Our tool: magnetohydrodynamics (MHD) MHD describes Plasma as a single fluid (combining

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Magnetic Reconnection in Space Plasmas

Magnetic Reconnection in Space Plasmas Magnetic Reconnection in Space Plasmas Lin-Ni Hau et al. Institute of Space Science Department of Physics National Central University, Taiwan R.O.C. EANAM, 2012.10.31 Contents Introduction Some highlights

More information

Kinetic Alfvén waves in space plasmas

Kinetic Alfvén waves in space plasmas Kinetic Alfvén waves in space plasmas Yuriy Voitenko Belgian Institute for Space Aeronomy, Brussels, Belgium Solar-Terrestrial Center of Excellence, Space Pole, Belgium Recent results obtained in collaboration

More information

Kine%c helicity and anisotropic turbulent stresses of solar supergranula%on

Kine%c helicity and anisotropic turbulent stresses of solar supergranula%on Kine%c helicity and anisotropic turbulent stresses of solar supergranula%on Boulder, August 2016 Damien Fournier, Jan Langfellner, Bjoern Loep%en, Laurent Gizon Max Planck Ins%tute for Solar System Research

More information

Solar Flares and Particle Acceleration

Solar Flares and Particle Acceleration Solar Flares and Particle Acceleration Loukas Vlahos In this project many colleagues have been involved P. Cargill, H. Isliker, F. Lepreti, M. Onofri, R. Turkmani, G. Zimbardo,, M. Gkioulidou (TOSTISP

More information

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas Nick Murphy Harvard-Smithsonian Center for Astrophysics namurphy@cfa.harvard.edu http://www.cfa.harvard.edu/ namurphy/ November 18,

More information

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland

Magnetic Reconnection: explosions in space and astrophysical plasma. J. F. Drake University of Maryland Magnetic Reconnection: explosions in space and astrophysical plasma J. F. Drake University of Maryland Magnetic Energy Dissipation in the Universe The conversion of magnetic energy to heat and high speed

More information

Magnetic Reconnection: Recent Developments and Future Challenges

Magnetic Reconnection: Recent Developments and Future Challenges Magnetic Reconnection: Recent Developments and Future Challenges A. Bhattacharjee Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) Space Science Center, University

More information

Brownian shape mo.on: Fission fragment mass distribu.ons

Brownian shape mo.on: Fission fragment mass distribu.ons CNR*11: Interna/onal Workshop on Compound Nuclear Reac/ons and Related Topics Prague, Czech Republic, 19 23 September 11 Brownian shape mo.on: Fission fragment mass distribu.ons Jørgen Randrup, LBNL Berkeley,

More information

Detection and analysis of turbulent structures using the Partial Variance of Increments method

Detection and analysis of turbulent structures using the Partial Variance of Increments method Detection and analysis of turbulent structures using the Partial Variance of Increments method Collaborations: Antonella Greco W. H. Matthaeus, Bartol Research Institute, Delaware, USA K. T. Osman, University

More information

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization P.D. Mininni Departamento de Física, FCEyN, UBA and CONICET, Argentina and National Center for Atmospheric

More information

Quantum mechanics and the geometry of space4me

Quantum mechanics and the geometry of space4me Quantum mechanics and the geometry of space4me Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

Sociology 301. Hypothesis Testing + t-test for Comparing Means. Hypothesis Testing. Hypothesis Testing. Liying Luo 04.14

Sociology 301. Hypothesis Testing + t-test for Comparing Means. Hypothesis Testing. Hypothesis Testing. Liying Luo 04.14 Sociology 301 Hypothesis Testing + t-test for Comparing Means Liying Luo 04.14 Hypothesis Testing 5. State a technical decision and a substan;ve conclusion Hypothesis Testing A random sample of 100 UD

More information

Alfvén wave turbulence: new results with applications to astrophysics. Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France

Alfvén wave turbulence: new results with applications to astrophysics. Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France Alfvén wave turbulence: new results with applications to astrophysics Sébastien GALTIER Université Paris-Sud & Institut Universitaire de France 1 Recent co-workers : - Barbara Bigot (France/USA) - Ben

More information

Sta$s$cal sequence recogni$on

Sta$s$cal sequence recogni$on Sta$s$cal sequence recogni$on Determinis$c sequence recogni$on Last $me, temporal integra$on of local distances via DP Integrates local matches over $me Normalizes $me varia$ons For cts speech, segments

More information

Greg Hammett Imperial College, London & Princeton Plasma Physics Lab With major contributions from:

Greg Hammett Imperial College, London & Princeton Plasma Physics Lab With major contributions from: Greg Hammett Imperial College, London & Princeton Plasma Physics Lab With major contributions from: Steve Cowley (Imperial College) Bill Dorland (Imperial College) Eliot Quataert (Berkeley) LMS Durham

More information

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters

ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney. Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters ASTRO 310: Galac/c & Extragalac/c Astronomy Prof. Jeff Kenney Class 15 October 24, 2018 Tidal Interac/ons for Galaxies & Star Clusters /mescales of Local Group a small loose group of galaxies calculate

More information

Turbulent Dynamos: The Quick and the Fast

Turbulent Dynamos: The Quick and the Fast In preparation. 1 Turbulent Dynamos: The Quick and the Fast By S T E V E N M. T O B I A S 1 A N D F A U S T O C A T T A N E O 2 1 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT,

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

VHE cosmic rays: experimental

VHE cosmic rays: experimental VHE cosmic rays: experimental Cosmic Rays History 1912: First discovered 1927: First seen in cloud chambers 1962: First 10 20 ev cosmic ray seen Low energy cosmic rays from Sun Solar wind (mainly protons)

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

Mo#va#on J B = P. Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r):

Mo#va#on J B = P. Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r): Mo#va#on Magne&cally confined fusion devices require detailed &meresolved measurement of J(r) and B(r): J B = P Measurements of δβ and δj associated with instabili&es (MHD, fast par&cle modes, turbulence,

More information

What can test particles tell us about magnetic reconnection in the solar corona?

What can test particles tell us about magnetic reconnection in the solar corona? What can test particles tell us about magnetic reconnection in the solar corona? James Threlfall, T. Neukirch, C. E. Parnell, A. W. Hood jwt9@st-andrews.ac.uk @JamesWThrelfall Overview Motivation (solar

More information

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics PART 2 Formalism of rela,vis,c ideal/viscous hydrodynamics Adver&sement: Lecture Notes Hydrodynamics Framework to describe space- &me evolu&on of thermodynamic variables Balance equa&ons (equa&ons of mo&on,

More information

Active galactic nuclei (AGNs): a brief observational tour

Active galactic nuclei (AGNs): a brief observational tour Active galactic nuclei (AGNs): a brief observational tour Yongquan Xue ( 薛永泉 ) Department of Astronomy University of Science and Technology of China http://staff.ustc.edu.cn/~xuey Early history, AGN ABCs,

More information

14th edi)on of the Interna)onal Conference on Nuclear Reac)on Mechanisms: Fission of ac*nide nuclei using mul*- nucleon transfer reac*ons

14th edi)on of the Interna)onal Conference on Nuclear Reac)on Mechanisms: Fission of ac*nide nuclei using mul*- nucleon transfer reac*ons 14th edi)on of the Interna)onal Conference on Nuclear Reac)on Mechanisms: Fission of ac*nide nuclei using mul*- nucleon transfer reac*ons Romain LÉGILLON Advanced Science Research Center, Japan Atomic

More information

Modern challenges in Nonlinear Plasma Physics Solar and interplanetary plasmas Summary

Modern challenges in Nonlinear Plasma Physics Solar and interplanetary plasmas Summary Modern challenges in Nonlinear Plasma Physics Solar and interplanetary plasmas Summary I am a friend of the accordion player, the student of Giuseppe Verdi (P. Cargill, L. Vlahos) Coronal structure and

More information

November 2, Monday. 17. Magnetic Energy Release

November 2, Monday. 17. Magnetic Energy Release November, Monday 17. Magnetic Energy Release Magnetic Energy Release 1. Solar Energetic Phenomena. Energy Equation 3. Two Types of Magnetic Energy Release 4. Rapid Dissipation: Sweet s Mechanism 5. Petschek

More information

P472G. The Solar Wind

P472G. The Solar Wind P472G The Solar Wind Copyright No9ce The material presented during this course may contain items collected from third- party sources and are presented to you for your personal study. The US Copyright Act

More information

Introduction to Magnetohydrodynamics (MHD)

Introduction to Magnetohydrodynamics (MHD) Introduction to Magnetohydrodynamics (MHD) Tony Arber University of Warwick 4th SOLARNET Summer School on Solar MHD and Reconnection Aim Derivation of MHD equations from conservation laws Quasi-neutrality

More information

Nonlinear processes associated with Alfvén waves in a laboratory plasma

Nonlinear processes associated with Alfvén waves in a laboratory plasma Nonlinear processes associated with Alfvén waves in a laboratory plasma Troy Carter Dept. Physics and Astronomy and Center for Multiscale Plasma Dynamics, UCLA acknowledgements: Brian Brugman, David Auerbach,

More information

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities

Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Exploring Astrophysical Magnetohydrodynamics Using High-power Laser Facilities Mario Manuel Einstein Fellows Symposium Harvard-Smithsonian Center for Astrophysics October 28 th, 2014 Ø Collimation and

More information

1 TH/P8-43 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence

1 TH/P8-43 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence 1 Role of Impurity Cyclotron Damping in Ion Heating and RFP Turbulence P.W. Terry, V. Tangri, J.S. Sarff, G. Fiksel, A.F. Almagri, Y. Ren, and S.C. Prager Department of Physics, University of Wisconsin-Madison,

More information

Binary and Mul,ple Stars

Binary and Mul,ple Stars Binary and Mul,ple Stars Types of Mul,ple Systems Binaries Visual SB1 SB2 Triples Heirarchical Quadruples Trapezia T Tau triple system Kohler et al 2016 Observa,ons Imaging Rayleigh Limit: Resolu,on =

More information

Incompressible MHD simulations

Incompressible MHD simulations Incompressible MHD simulations Felix Spanier 1 Lehrstuhl für Astronomie Universität Würzburg Simulation methods in astrophysics Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 1 / 20 Outline

More information

Steps toward a high precision solar rotation profile: Results from SDO/AIA coronal bright point data

Steps toward a high precision solar rotation profile: Results from SDO/AIA coronal bright point data Astronomy & Astrophysics manuscript no. Rotaon c ESO 214 October 1, 214 Steps toward a high precision solar rotaon profile: Results from SDO/AIA coronal bright point data D. Sudar 1, I. Skokić 2, R. Brajša

More information

Cosmic Ray Electrons with CTA. R.D. Parsons

Cosmic Ray Electrons with CTA. R.D. Parsons Cosmic Ray Electrons with CTA R.D. Parsons Cosmic Ray Electrons In addi:on to the well known hadronic component of cosmic rays there is a more poorly understood electronic component Has a lower flux than

More information

Mechanisms for particle heating in flares

Mechanisms for particle heating in flares Mechanisms for particle heating in flares J. F. Drake University of Maryland J. T. Dahlin University of Maryland M. Swisdak University of Maryland C. Haggerty University of Delaware M. A. Shay University

More information

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model

Effect of current sheets on the power spectrum of the solar wind magnetic field using a cell model Available online at www.sciencedirect.com Advances in Space Research 49 (2012) 1327 1332 www.elsevier.com/locate/asr Effect of current sheets on the power spectrum of the solar wind magnetic field using

More information

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on

Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on Lecture 12 The Level Set Approach for Turbulent Premixed Combus=on 12.- 1 A model for premixed turbulent combus7on, based on the non- reac7ng scalar G rather than on progress variable, has been developed

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Opportunities in Plasma Astrophysics with ngvla

Opportunities in Plasma Astrophysics with ngvla Opportunities in Plasma Astrophysics with ngvla Hui Li Los Alamos National Laboratory On behalf of ngvla Plasma Astrophysics Science Working Group Tim Bastian (NRAO), Arnold Benz (ETH), Paul Cassak (WVU),

More information

Physical modeling of coronal magnetic fields and currents

Physical modeling of coronal magnetic fields and currents Physical modeling of coronal magnetic fields and currents Participants: E. Elkina,, B. Nikutowski,, A. Otto, J. Santos (Moscow,Lindau,, Fairbanks, São José dos Campos) Goal: Forward modeling to understand

More information

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson 36. TURBULENCE Patriotism is the last refuge of a scoundrel. - Samuel Johnson Suppose you set up an experiment in which you can control all the mean parameters. An example might be steady flow through

More information

Advanced beam manipula/ons

Advanced beam manipula/ons Advanced beam manipula/ons beam manipula+ons are two fold: transverse (focusing, shaping, ) longitudinal (tailoring the current of energy spectrum of a beam) Transverse shaping is rather straigh>orward

More information

MHD turbulence in the solar corona and solar wind

MHD turbulence in the solar corona and solar wind MHD turbulence in the solar corona and solar wind Pablo Dmitruk Departamento de Física, FCEN, Universidad de Buenos Aires Motivations The role of MHD turbulence in several phenomena in space and solar

More information

Disks, Envelopes and Magne2c Field. Infall, Ou9lows and Magne2c Braking

Disks, Envelopes and Magne2c Field. Infall, Ou9lows and Magne2c Braking Disks, Envelopes and Magne2c Field Infall, Ou9lows and Magne2c Braking Envelopes and Infall Signatures What is the evidence of infall in the envelope? How can ALMA strengthen the evidence? What is the

More information