An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing

Size: px
Start display at page:

Download "An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing"

Transcription

1 An iterative algorithm for nonlinear wavelet thresholding: Applications to signal and image processing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Alexandre Azzalini, PhD student, Paris IMS, Singapore, 18 August 2004

2 Outline Denoising by nonlinear wavelet thresholding Motivation Classical algorithm Iterative algorithm Properties of the iterative algorithm Properties of the iteration function Convergence of the algorithm Application to academic example Numerical applications in physics Bose-Einstein condensate C.S. in two-dimensional turbulence C.S. in three-dimensional turbulence Another C.S. Conclusions and perspectives

3 Motivation We study turbulent flows in the limit of large Reynolds numbers, i.e. when the nonlinear term dominates the linear dissipative terms in Navier-Stokes equations. We observe the formation of coherent structures and we want to analyse their dynamics and characterize them statistically. Replace the Fourier representation by the wavelet representation, using : continous wavelet transform C. R. Acad. Sci. Paris, 307, J. Fluid Mech., 206, 1989 wavelet packets Fluid Dyn. Res., 10, Ann. Rev. Fluid Mech., J. Fluid Mech., 346, 1997 orthogonal wavelets IEEE Proceedings, 84(4), Theor. Comput. Fluid Dyn., 9, 1997 wavelet denoising ACHA, 3, Phys. Fluids 11(8), Phys. Fluids 15 (10), 2003 iterative wavelet denoising (IWD) Phys. Fluids 11(8), 1999, ACHA, submitted, 2003 //wavelets.ens.fr

4

5

6

7

8

9

10

11

12

13

14 1D academic example (SNR = 20 db) PDF of wavelet coefficients PDF of denoised signal and noise

15 2D academic example (SNR = 10 db) PDF of wavelet coefficients PDF of denoised signal and noise

16 Extraction of Bose-Einstein condensate Optical density of Lithium atoms Iterative Wavelet Denoising (IWD) Median Absolute Deviation (MAD)

17 Extraction of Bose-Einstein condensate Iterative Wavelet Denoising (IWD) Median Absolute Deviation (MAD)

18 C. S. in two-dimensional turbulence 2D turbulent flow from laboratory experiment Total vorticity Coherent vorticity Incoherent vorticity

19 PDF of vorticity Total Gaussian Coherent Incoherent (wavelet) Incoherent (wavelet packet)

20 C. S. in two-dimensional turbulence 2D turbulent flow from numerical experiment QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image.

21 Extraction of coherent vortices using IWD 0.2 % of coefficients 99.8 % of kinetic energy 93.6 % of enstrophy 99.8 % of coefficients 0.2 % of kinetic energy 6.4 % of enstrophy Coherent vorticity 0.2 % N Incoherent vorticity 99.8% N Total vorticity N=512 2

22 PDF of vorticity P(ω) Coherent skewed exponential Incoherent unskewed Gaussian ω

23 Energy spectrum Coherent E(k) k -5 scaling, i.e. long-range correlation Incoherent k -1 scaling, i.e. enstrophy equipartition k

24 Results for 2D turbulence With only 0.2 % of the wavelet coefficients CVS retains : 99.8 % of the kinetic energy, 93.6 % of enstrophy, all coherent vortices of the flow field. We observe for both laboratory and numerical experiments : long-range correlation for the coherent flow, enstrophy equipartition and Gaussian vorticity for the incoherent flow. We conjecture that discarding the incoherent flow is sufficient to model turbulent dissipation.

25 C. S. in three-dimensional turbulence : Extraction of coherent vortices with IWD 3 % of coefficients 99% of kinetic energy 75% of enstrophy 97 % of coefficients 0.6 % of kinetic energy 25 % of enstrophy Coherent vorticity Incoherent vorticity Total vorticity

26 PDF of velocity P(V) CVS filter Gaussian incoherent flow, i.e. easy to model LES filter non-gaussian small scales, i.e. difficult to model

27 Energy spectrum E(k) Coherent k -5 scaling, i.e. long-range correlation k Incoherent k +1 scaling, i.e. energy equipartition

28 Results for 3D turbulence With only 3 % of the wavelet coefficients CVS retains 99 % of the kinetic energy, 75 % of enstrophy, all coherent vortices of the flow field. We observe long-range correlation for the coherent flow, energy equipartition and Gaussian velocity for the incoherent flow, in contrast to LES. We conjecture that discarding the incoherent flow is sufficient to model turbulent dissipation.

29 Coherent Vortex Simulation (CVS) Projection of vorticity onto an orthogonal wavelet basis. Coherence extraction using the IWD algorithm. Reconstruction of the coherent vorticity. Computation of the coherent velocity using Biot-Savart s law. Addition of a security zone in wavelet space. Integration of Navier-Stokes of in the reduced wavelet basis. Phys. Fluids,11(8),1999 Flow, Turbulence and Combustion, 66(4), 2001 Appl. Comp. Harmonic Anal. (12), 2002

30 2D vorticity field in wavelet space QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. The red interface corresponds to the threshold T of WD : coefficients > T (below the interface) are coherent, coefficients < T (above) are incoherent.

31 Evolution of the interface in wavelet space QuickTime et un décompresseur codec YUV420 sont requis pour visionner cette image. The isosurface corresponds to the threshold T of WD

32 Perspectives Test IWD with frames or curvelets to preserve isotropy, possibly geometry and topology of vortex tubes (Kaneda), Extract coherent structures in space-time ( movie ) applying IWD to 4D vector fields and check that there is: - no scale separation in space and time, - long-range correlation of the coherent structures, - decorrelation of the incoherent background flow. Perform adaptive computation in both space and time. Appl. Comp. Harmonic Anal., submitted, 2003 Papers and softwares available from : //wavelets.ens.fr

33 Another C. S. : Claudia Schiffer

CVS filtering to study turbulent mixing

CVS filtering to study turbulent mixing CVS filtering to study turbulent mixing Marie Farge, LMD-CNRS, ENS, Paris Kai Schneider, CMI, Université de Provence, Marseille Carsten Beta, LMD-CNRS, ENS, Paris Jori Ruppert-Felsot, LMD-CNRS, ENS, Paris

More information

Extraction of coherent structures out of turbulent flows : comparison between real-valued and complex-valued wavelets

Extraction of coherent structures out of turbulent flows : comparison between real-valued and complex-valued wavelets Extraction of coherent structures out of turbulent flows : comparison between real-valued and complex-valued wavelets Romain Nguyen van Yen and Marie Farge, LMD-CNRS, ENS, Paris In collaboration with:

More information

A review on wavelet transforms and their applications to MHD and plasma turbulence I

A review on wavelet transforms and their applications to MHD and plasma turbulence I A review on wavelet transforms and their applications to MHD and plasma turbulence I Marie Farge, Laboratoire de Météorologie Dynamique Ecole Normale Supérieure, Paris In collaboration with Kai Schneider,

More information

Wavelet-based methods to analyse, compress and compute turbulent flows

Wavelet-based methods to analyse, compress and compute turbulent flows Wavelet-based methods to analyse, compress and compute turbulent flows Marie Farge Laboratoire de Météorologie Dynamique Ecole Normale Supérieure Paris Mathematics of Planet Earth Imperial College, London

More information

Decaying 2D Turbulence in Bounded Domains: Influence of the Geometry

Decaying 2D Turbulence in Bounded Domains: Influence of the Geometry Computational Physics and New Perspectives in Turbulence Y. Kaneda (Ed.) Springer, 2007, pp. 241-246 Decaying 2D Turbulence in Bounded Domains: Influence of the Geometry Kai Schneider 1 and Marie Farge

More information

Coherent vortex extraction and simulation of 2D isotropic turbulence

Coherent vortex extraction and simulation of 2D isotropic turbulence Journal of Turbulence Volume 7, No. 44, 2006 Coherent vortex extraction and simulation of 2D isotropic turbulence KAI SCHNEIDER, MARIE FARGE,ALEXANDRE AZZALINI and JÖRG ZIUBER MSNM-CNRS & CMI, Université

More information

Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis

Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis PHYSICS OF FLUIDS VOLUME 11, NUMBER 8 AUGUST 1999 Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis Marie Farge Laboratoire de Météorologie

More information

Lagrangian acceleration in confined 2d turbulent flow

Lagrangian acceleration in confined 2d turbulent flow Lagrangian acceleration in confined 2d turbulent flow Kai Schneider 1 1 Benjamin Kadoch, Wouter Bos & Marie Farge 3 1 CMI, Université Aix-Marseille, France 2 LMFA, Ecole Centrale, Lyon, France 3 LMD, Ecole

More information

On Decaying Two-Dimensional Turbulence in a Circular Container

On Decaying Two-Dimensional Turbulence in a Circular Container Frontiers of Computational Sciences Y. Kaneda, H. Kawamura and M. Sasai (Eds.) Springer, 2007, pp. 89-95 On Decaying Two-Dimensional Turbulence in a Circular Container Kai Schneider and Marie Farge Univesité

More information

arxiv: v1 [physics.flu-dyn] 10 Nov 2017

arxiv: v1 [physics.flu-dyn] 10 Nov 2017 Wavelet-based regularization of the Galerkin truncated three-dimensional incompressible Euler flows Marie Farge CNRS INSMI, LMD IPSL, Ecole Normale Supérieure PSL, arxiv:1711.04017v1 [physics.flu-dyn]

More information

A RECURSIVE ALGORITHM FOR NONLINEAR WAVELET THRESHOLDING : APPLICATIONS TO SIGNAL AND IMAGE PROCESSING.

A RECURSIVE ALGORITHM FOR NONLINEAR WAVELET THRESHOLDING : APPLICATIONS TO SIGNAL AND IMAGE PROCESSING. ISSN 1626-8334 CNRS - Université Pierre et Marie Curie - Université Versailles-Saint-Quentin CEA - IRD - CNES - Ecole Normale Supérieure - Ecole Polytechnique Institut Pierre Simon Laplace des Sciences

More information

Wavelets: application to turbulence

Wavelets: application to turbulence Wavelets: application to turbulence Marie Farge, LMD, Ecole Normale Supérieure, Paris, France, Kai Schneider, CMI, Université de Provence, Marseille, France October 8, 2005 1 2 Contents 1 Introduction

More information

Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint

Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint Naoya Okamoto 1, Katsunori Yoshimatsu 2, Kai Schneider 3 and Marie Farge 4 1 Center for Computational Science, Nagoya University,

More information

COHERENT VORTICITY EXTRACTION IN TURBULENT BOUNDARY LAYERS USING ORTHOGONAL WAVELETS

COHERENT VORTICITY EXTRACTION IN TURBULENT BOUNDARY LAYERS USING ORTHOGONAL WAVELETS COHERENT VORTICITY EXTRACTION IN TURBULENT BOUNDARY LAYERS USING ORTHOGONAL WAVELETS George Khujadze Chair of Fluid Dynamics Technische Universität Darmstadt Germany khujadze@fdy.tu-darmstadt.de Romain

More information

arxiv: v2 [physics.comp-ph] 21 Mar 2013

arxiv: v2 [physics.comp-ph] 21 Mar 2013 Wavelet methods to eliminate resonances in the Galerkin-truncated Burgers and Euler equations R. M. Pereira, R. Nguyen van yen, M. Farge 3, and K. Schneider 4 arxiv:33.98v [physics.comp-ph] Mar 3 Instituto

More information

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto Nonequilibrium Dynamics in Astrophysics and Material Science 2011-11-02 @ YITP, Kyoto Multi-scale coherent structures and their role in the Richardson cascade of turbulence Susumu Goto (Okayama Univ.)

More information

Margarete O. Domingues 1,4, 2, Ingmar Broemstrup 3, Kai Schneider 4, 5, Marie Farge 1 and Benjamin Kadoch 4

Margarete O. Domingues 1,4, 2, Ingmar Broemstrup 3, Kai Schneider 4, 5, Marie Farge 1 and Benjamin Kadoch 4 ESAIM: PROCEEDINGS, February 2007, Vol.6, 64-80 Eric Cancès & Jean-Frédéric Gerbeau, Editors DOI: 0.05/proc:2007005 COHERENT VORTEX EXTRACTION IN 3D HOMOGENEOUS ISOTROPIC TURBULENCE USING ORTHOGONAL WAVELETS,

More information

Energy dissipation caused by boundary layer instability at vanishing viscosity

Energy dissipation caused by boundary layer instability at vanishing viscosity Energy dissipation caused by boundary layer instability at vanishing viscosity Marie Farge, Ecole Normale Supérieure, Paris Kai Schneider, Université d Aix-Marseille in collaboration with Romain Nguyen-Nouch

More information

Wavelets: Application to Turbulence

Wavelets: Application to Turbulence 48 Wavelets: Application to Turbulence Wavelets: Application to Turbulence M Farge, Ecole Normale Supérieure, Paris, France K Schneider, Université de Provence, Marseille, France ª 26 Published by Elsevier

More information

Energy dissipating structures generated by dipole-wall collisions at high Reynolds number

Energy dissipating structures generated by dipole-wall collisions at high Reynolds number Energy dissipating structures generated by dipole-wall collisions at high Reynolds number Duncan Sutherland 1 Charlie Macaskill 1 David Dritschel 2 1. School of Mathematics and Statistics University of

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

Coherent vorticity and current density simulation of three-dimensional magnetohydrodynamic turbulence using orthogonal wavelets

Coherent vorticity and current density simulation of three-dimensional magnetohydrodynamic turbulence using orthogonal wavelets Geophysical and Astrophysical Fluid Dynamics, 2013 Vol. 107, Nos. 1 2, 73 92, http://dx.doi.org/10.1080/03091929.2012.654790 Coherent vorticity and current density simulation of three-dimensional magnetohydrodynamic

More information

Dimensionality influence on energy, enstrophy and passive scalar transport.

Dimensionality influence on energy, enstrophy and passive scalar transport. Dimensionality influence on energy, enstrophy and passive scalar transport. M. Iovieno, L. Ducasse, S. Di Savino, L. Gallana, D. Tordella 1 The advection of a passive substance by a turbulent flow is important

More information

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Lagrangian intermittency in drift-wave turbulence. Wouter Bos Lagrangian intermittency in drift-wave turbulence Wouter Bos LMFA, Ecole Centrale de Lyon, Turbulence & Stability Team Acknowledgments Benjamin Kadoch, Kai Schneider, Laurent Chevillard, Julian Scott,

More information

Vortex statistics for turbulence in a container with rigid boundaries Clercx, H.J.H.; Nielsen, A.H.

Vortex statistics for turbulence in a container with rigid boundaries Clercx, H.J.H.; Nielsen, A.H. Vortex statistics for turbulence in a container with rigid boundaries Clercx, H.J.H.; Nielsen, A.H. Published in: Physical Review Letters DOI: 0.03/PhysRevLett.85.752 Published: 0/0/2000 Document Version

More information

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa Direct Numerical Simulations of Fundamental Turbulent Flows with the Largest Grid Numbers in the World and its Application of Modeling for Engineering Turbulent Flows Project Representative Chuichi Arakawa

More information

Erwan Deriaz 1, Margarete O. Domingues 2,3,4,Valérie Perrier 1, Kai Schneider 3 and Marie Farge 4

Erwan Deriaz 1, Margarete O. Domingues 2,3,4,Valérie Perrier 1, Kai Schneider 3 and Marie Farge 4 ESAIM: PROCEEDINGS, February 27, Vol.6, 46-63 Eric Cancès & Jean-Frédéric Gerbeau, Editors DOI:.5/proc:27 DIVERGENCE-FREE WAVELETS FOR COHERENT VORTEX EXTRACTION IN 3D HOMOGENEOUS ISOTROPIC TURBULENCE

More information

Max Planck Institut für Plasmaphysik

Max Planck Institut für Plasmaphysik ASDEX Upgrade Max Planck Institut für Plasmaphysik 2D Fluid Turbulence Florian Merz Seminar on Turbulence, 08.09.05 2D turbulence? strictly speaking, there are no two-dimensional flows in nature approximately

More information

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul]

Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] Dynamo tutorial Part 1 : solar dynamo models [Paul] Part 2 : Fluctuations and intermittency [Dario] Part 3 : From dynamo to interplanetary magnetic field [Paul] ISSI Dynamo tutorial 1 1 Dynamo tutorial

More information

Solar and stellar dynamo models

Solar and stellar dynamo models Solar and stellar dynamo models Paul Charbonneau, Université de Montréal From MHD to simple dynamo models Mean-field models Babcock-Leighton models Stochastic forcing Cycle forecasting Stellar dynamos

More information

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 007 014, March 2009 002 THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS Y. CHARLES LI Abstract. Nadirashvili presented a

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Edge preserved denoising and singularity extraction from angles gathers

Edge preserved denoising and singularity extraction from angles gathers Edge preserved denoising and singularity extraction from angles gathers Felix Herrmann, EOS-UBC Martijn de Hoop, CSM Joint work Geophysical inversion theory using fractional spline wavelets: ffl Jonathan

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

On helical multiscale characterization of homogeneous turbulence

On helical multiscale characterization of homogeneous turbulence Journal of Turbulence Vol. 13, No. 35, 2012, 1 16 On helical multiscale characterization of homogeneous turbulence Frank G. Jacobitz a, Kai Schneider b, Wouter J.T. Bos c, and Marie Farge d a Mechanical

More information

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers P.D. Mininni NCAR, Boulder, Colorado, USA, and Departamento de Física, Facultad de Cs. Exactas

More information

Implementation of a symmetry-preserving discretization in Gerris

Implementation of a symmetry-preserving discretization in Gerris Implementation of a symmetry-preserving discretization in Gerris Daniel Fuster Cols: Pierre Sagaut, Stephane Popinet Université Pierre et Marie Curie, Institut Jean Le Rond D Alembert Introduction 10/11:

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

A new statistical tool to study the geometry of intense vorticity clusters in turbulence

A new statistical tool to study the geometry of intense vorticity clusters in turbulence Journal of Physics: Conference Series PAPER OPEN ACCESS A new statistical tool to study the geometry of intense vorticity clusters in turbulence To cite this article: Alberto Vela-Martin and Takashi Ishihara

More information

Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries

Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries CIRM, Marseille, 2.09.2010 Romain Nguyen van yen 1, Marie Farge 1, Kai Schneider 2 1 Laboratoire

More information

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble Collaborations: Olivier Praud, Toulouse P.H Chavanis, Toulouse F. Bouchet, INLN Nice A. Venaille, PhD student LEGI OVERVIEW

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

A scaling limit from Euler to Navier-Stokes equations with random perturbation

A scaling limit from Euler to Navier-Stokes equations with random perturbation A scaling limit from Euler to Navier-Stokes equations with random perturbation Franco Flandoli, Scuola Normale Superiore of Pisa Newton Institute, October 208 Newton Institute, October 208 / Subject of

More information

(U c. t)/b (U t)/b

(U c. t)/b (U t)/b DYNAMICAL MODELING OF THE LARGE-SCALE MOTION OF A PLANAR TURBULENT JET USING POD MODES. S. Gordeyev 1 and F. O. Thomas 1 University of Notre Dame, Notre Dame, USA University of Notre Dame, Notre Dame,

More information

The structure of vortex tube segments in fluid turbulence

The structure of vortex tube segments in fluid turbulence Journal of Physics: Conference Series The structure of vortex tube segments in fluid turbulence To cite this article: Lipo Wang 2011 J. Phys.: Conf. Ser. 318 062023 View the article online for updates

More information

Validation of an Entropy-Viscosity Model for Large Eddy Simulation

Validation of an Entropy-Viscosity Model for Large Eddy Simulation Validation of an Entropy-Viscosity Model for Large Eddy Simulation J.-L. Guermond, A. Larios and T. Thompson 1 Introduction A primary mainstay of difficulty when working with problems of very high Reynolds

More information

Lecture 3: The Navier-Stokes Equations: Topological aspects

Lecture 3: The Navier-Stokes Equations: Topological aspects Lecture 3: The Navier-Stokes Equations: Topological aspects September 9, 2015 1 Goal Topology is the branch of math wich studies shape-changing objects; objects which can transform one into another without

More information

A GENERAL STRUCTURAL PROPERTY IN WAVELET PACKETS FOR DETECTING OSCILLATION AND NOISE COMPONENTS IN SIGNAL ANALYSIS

A GENERAL STRUCTURAL PROPERTY IN WAVELET PACKETS FOR DETECTING OSCILLATION AND NOISE COMPONENTS IN SIGNAL ANALYSIS International Journal of Pure and Applied Mathematics Volume 80 No. 2 2012, 271-275 ISSN: 1311-8080 printed version url: http://www.ipam.eu PA ipam.eu A GENERAL STRUCTURAL PROPERTY IN WAVELET PACKETS FOR

More information

The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence

The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence Eleftherios Gkioulekas (1) and Ka-Kit Tung (2) (1) Department of Mathematics,

More information

ANALYSING AND COMPUTING TURBULENT FLOWS USING WAVELETS

ANALYSING AND COMPUTING TURBULENT FLOWS USING WAVELETS COURSE 9 ANALYSING AND COMPUTING TURBULENT FLOWS USING WAVELETS M. FARGE K. SCHNEIDER LMD-CNRS, École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France CMI, Université de Provence, 39 rue

More information

Divergence-Free Wavelet Frames

Divergence-Free Wavelet Frames 1142 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 8, AUGUST 2015 Divergence-Free Wavelet Frames Emrah Bostan, StudentMember,IEEE,MichaelUnser,Fellow,IEEE,and JohnPaul Ward Abstract We propose an efficient

More information

Particlesinthe Universe

Particlesinthe Universe Particlesinthe Universe Particlesinthe Universe P. Binétruy APC Paris 7 and LPT Orsay CERN : where the conditions of the big bang are reproduced The history of the Universe A hot and dense universe A cold

More information

Regularity diagnostics applied to a turbulent boundary layer

Regularity diagnostics applied to a turbulent boundary layer Center for Turbulence Research Proceedings of the Summer Program 208 247 Regularity diagnostics applied to a turbulent boundary layer By H. J. Bae, J. D. Gibbon, R. M. Kerr AND A. Lozano-Durán Regularity

More information

Emmanuel PLAUT. Example of an hypertext Report written with L A TEX. This is a public document.

Emmanuel PLAUT. Example of an hypertext Report written with L A TEX. This is a public document. Emmanuel PLAUT Example of an hypertext Report written with L A TEX This is a public document. Contents Introduction 3 1 Presentation of the corporation 4 1.1 UL............................................

More information

Divergence-Free Wavelet Frames

Divergence-Free Wavelet Frames TO APPEAR IN IEEE SIGNAL PROCESSING LETTERS Divergence-Free Wavelet Frames Emrah Bostan, Student Member, IEEE, Michael Unser, Fellow, IEEE and John Paul Ward Abstract We propose an efficient construction

More information

Lecture 4: The Navier-Stokes Equations: Turbulence

Lecture 4: The Navier-Stokes Equations: Turbulence Lecture 4: The Navier-Stokes Equations: Turbulence September 23, 2015 1 Goal In this Lecture, we shall present the main ideas behind the simulation of fluid turbulence. We firts discuss the case of the

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications

Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications Final Report: DE-FG02-95ER25239 Spectral Representations of Uncertainty: Algorithms and Applications PI: George Em Karniadakis Division of Applied Mathematics, Brown University April 25, 2005 1 Objectives

More information

Massimo GERMANO Politecnico di Torino

Massimo GERMANO Politecnico di Torino Hybrid Massimo GERMANO Politecnico di Torino Martín SÁNCHEZ-ROCHA Dassault Systèmes SIMULIA Corporation Suresh MENON Georgia Institute of Technology 64th Annual APS-DFD Meeting Baltimore, Maryland November

More information

Validation of an adjoint method for compressible channel flow sensitivities

Validation of an adjoint method for compressible channel flow sensitivities 9 ème Congrès Français de Mécanique Marseille, -8 août 9 Validation of an method for compressible channel flow sensitivities L. MORE-GABARRO, P. CAHALIFAUD, C. AIRIAU Université de oulouse ; CNRS, INP,

More information

Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence.

Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence. APS/...-QED 4 Cumulative distribution of the stretching and twisting of vortical structures in isotropic turbulence. Daniela Tordella and Luca Sitzia Dipartimento di Ingegneria Aeronautica e Spaziale,

More information

AGAT 2016, Cargèse a point-vortex toy model

AGAT 2016, Cargèse a point-vortex toy model AGAT 2016, Cargèse a point-vortex toy model Jean-François Pinton CNRS & ENS de Lyon M.P. Rast, JFP, PRE 79 (2009) M.P. Rast, JFP, PRL 107 (2011) M.P. Rast, JFP, P.D. Mininni, PRE 93 (2009) Motivations

More information

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 001 006, March 2009 001 A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION Y. CHARLES LI Abstract. In this article, I will prove

More information

Quantum vortex reconnections

Quantum vortex reconnections Quantum vortex reconnections A.W. Baggaley 1,2, S. Zuccher 4, Carlo F Barenghi 2, 3, A.J. Youd 2 1 University of Glasgow 2 Joint Quantum Centre Durham-Newcastle 3 Newcastle University 4 University of Verona

More information

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations Ergodic properties of highly degenerate D stochastic Navier-Stokes equations Martin Hairer a Jonathan C. Mattingly b a Math Department, The University of Warwick, Coventry CV4 7AL, UK b Math Department,

More information

The formation of giant planets: Constraints from interior models

The formation of giant planets: Constraints from interior models The formation of giant planets: Constraints from interior models Tristan Guillot Observatoire de la Côte d Azur www.obs-nice.fr/guillot (Guillot, Ann. Rev. Earth & Plan. Sci. 2005 & Saas-Fee course 2001,

More information

Correlation functions and characterization of emitting sources. A. Chbihi GANIL

Correlation functions and characterization of emitting sources. A. Chbihi GANIL Correlation functions and characterization of emitting sources A. Chbihi GANIL Outline Intensity interferometry Directional correlations : size-lifetime Angle-averaged correlation functions Imaging, model

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Yushan Wang 1, Marc Baboulin 1,2, Karl Rupp 3,4, Yann Fraigneau 1,5, Olivier Le Maître 1,5 1 Université Paris-Sud, France 2

More information

Theoretical Advances on Generalized Fractals with Applications to Turbulence

Theoretical Advances on Generalized Fractals with Applications to Turbulence Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007 288 2007 IASME/WSEAS 5 th International Conference on Fluid Mechanics

More information

Scaling of space time modes with Reynolds number in two-dimensional turbulence

Scaling of space time modes with Reynolds number in two-dimensional turbulence J. Fluid Mech. (2007), vol. 570, pp. 217 226. c 2007 Cambridge University Press doi:10.1017/s0022112006003168 Printed in the United Kingdom 217 Scaling of space time modes with Reynolds number in two-dimensional

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Curriculum Vitae of Sergio Pirozzoli

Curriculum Vitae of Sergio Pirozzoli Curriculum Vitae of Sergio Pirozzoli Address University of Rome La Sapienza Department of Mechanical and Aerospace Engineering Via Eudossiana 18 00184, Roma Contact tel.: +39 06 44585202 fax : +39 06 4881759

More information

Locality of Energy Transfer

Locality of Energy Transfer (E) Locality of Energy Transfer See T & L, Section 8.2; U. Frisch, Section 7.3 The Essence of the Matter We have seen that energy is transferred from scales >`to scales

More information

LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT

LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT LOW SPEED STREAKS INSTABILITY OF TURBULENT BOUNDARY LAYER FLOWS WITH ADVERSE PRESSURE GRADIENT J.-P. Laval (1) CNRS, UMR 8107, F-59650 Villeneuve d Ascq, France (2) Univ Lille Nord de France, F-59000 Lille,

More information

Eddy viscosity of cellular flows by upscaling

Eddy viscosity of cellular flows by upscaling Eddy viscosity of cellular flows by upscaling Alexei Novikov a a California Institute of Technology, Applied & Computational Mathematics 1200 E. California Boulevard, MC 217-50, Pasadena, CA 91125, USA

More information

Turbulent velocity fluctuations need not be Gaussian

Turbulent velocity fluctuations need not be Gaussian J. Fluid Mech. (1998), vol. 376, pp. 139 147. Printed in the United Kingdom c 1998 Cambridge University Press 139 Turbulent velocity fluctuations need not be Gaussian By JAVIER JIMÉNEZ School of Aeronautics,

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

Low-speed streak instability in near wall turbulence with adverse pressure gradient

Low-speed streak instability in near wall turbulence with adverse pressure gradient Journal of Physics: Conference Series Low-speed streak instability in near wall turbulence with adverse pressure gradient To cite this article: U Ehrenstein et al 2011 J. Phys.: Conf. Ser. 318 032027 View

More information

Vector and scalar penalty-projection methods

Vector and scalar penalty-projection methods Numerical Flow Models for Controlled Fusion - April 2007 Vector and scalar penalty-projection methods for incompressible and variable density flows Philippe Angot Université de Provence, LATP - Marseille

More information

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN KENGO NAKAI Abstract. We give a refined blow-up criterion for solutions of the D Navier-

More information

Video Coding with Motion Compensation for Groups of Pictures

Video Coding with Motion Compensation for Groups of Pictures International Conference on Image Processing 22 Video Coding with Motion Compensation for Groups of Pictures Markus Flierl Telecommunications Laboratory University of Erlangen-Nuremberg mflierl@stanford.edu

More information

Signal Denoising with Wavelets

Signal Denoising with Wavelets Signal Denoising with Wavelets Selin Aviyente Department of Electrical and Computer Engineering Michigan State University March 30, 2010 Introduction Assume an additive noise model: x[n] = f [n] + w[n]

More information

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition Proper Orthogonal Decomposition Kameswararao Anupindi School of Mechanical Engineering Purdue University October 15, 2010 Kameswararao Anupindi (Purdue University) ME611, Principles of Turbulence October

More information

Wavelet-Based Numerical Homogenization for Scaled Solutions of Linear Matrix Equations

Wavelet-Based Numerical Homogenization for Scaled Solutions of Linear Matrix Equations International Journal of Discrete Mathematics 2017; 2(1: 10-16 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.20170201.13 Wavelet-Based Numerical Homogenization for Scaled Solutions

More information

Sparsity and Morphological Diversity in Source Separation. Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France

Sparsity and Morphological Diversity in Source Separation. Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France Sparsity and Morphological Diversity in Source Separation Jérôme Bobin IRFU/SEDI-Service d Astrophysique CEA Saclay - France Collaborators - Yassir Moudden - CEA Saclay, France - Jean-Luc Starck - CEA

More information

A wavelet-packet census algorithm for calculating vortex statistics

A wavelet-packet census algorithm for calculating vortex statistics A wavelet-packet census algorithm for calculating vortex statistics Andrew Siegel a) and Jeffrey B. Weiss b) Program in Atmospheric and Oceanic Sciences, Department of Astrophysical, Planetary, and Atmospheric

More information

detection system working group Progress report Convener : B. GALL

detection system working group Progress report Convener : B. GALL Progress report Convener : B. GALL S 3 Workshop / PARIS May 2008 X? O - Work at focal plane position (alpha, gamma and electron spectroscopy) - Identification at FP with Bragg chambers - Study the Possibility

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Using DNS to Understand Aerosol Dynamics

Using DNS to Understand Aerosol Dynamics APS Division of Fluid Dynamics Meeting East Rutherford, NJ November 23-25, 2003 Using DNS to Understand Aerosol Dynamics Lance R. Collins Sibley School of Mechanical & Aerospace Engineering Cornell University

More information

Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries

Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries Energy dissipating structures in the vanishing viscosity limit of 2D incompressible flows with solid boundaries Wiko Berlin, 16.04.2010 Romain Nguyen van yen 1, Marie Farge 1, Kai Schneider 2 1 Laboratoire

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin

Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin Department of Mathematics The University of Chicago 9/3/02 Abstract. We consider the energy spectrum of a quasi-geostrophic model of forced,

More information

Dark energy. P. Binétruy AstroParticule et Cosmologie, Paris. Zakopane, 15 June 2007

Dark energy. P. Binétruy AstroParticule et Cosmologie, Paris. Zakopane, 15 June 2007 Dark energy P. Binétruy AstroParticule et Cosmologie, Paris Zakopane, 15 June 2007 Context : the twentieth century legacy Two very successful theories : General relativity A single equation, Einstein s

More information

TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD

TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD Proceedings of The Second International Conference on Vortex Methods, September 26-28, 21, Istanbul, Turkey TRANSIENT FLOW AROUND A VORTEX RING BY A VORTEX METHOD Teruhiko Kida* Department of Energy Systems

More information

Nonlocality and intermittency in three-dimensional turbulence

Nonlocality and intermittency in three-dimensional turbulence Nonlocality and intermittency in three-dimensional turbulence J-P. LavalB. DubrulleS. Nazarenko Citation: Physics of Fluids 13, 1995 (2001); doi: 10.1063/1.1373686 View online: http://dx.doi.org/10.1063/1.1373686

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

The Logarithmic Spiral: Mathematical Properties and Turbulence

The Logarithmic Spiral: Mathematical Properties and Turbulence Hawai'i University International Conference on Mathematics and Engineering June 13-15, Honolulu, Hawai'i, 2011 The Logarithmic Spiral: Mathematical Properties and Turbulence Haris J. Catrakis 1 Mechanical

More information

Energy and potential enstrophy flux constraints in quasi-geostrophic models

Energy and potential enstrophy flux constraints in quasi-geostrophic models Energy and potential enstrophy flux constraints in quasi-geostrophic models Eleftherios Gkioulekas University of Texas Rio Grande Valley August 25, 2017 Publications K.K. Tung and W.W. Orlando (2003a),

More information