Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions

Size: px
Start display at page:

Download "Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions"

Transcription

1 Rela%vis%c Hydrodynamics in High- Energy Heavy Ion Collisions Kobayashi Maskawa Ins/tute Department of Physics, Nagoya University Chiho NONAKA December 13, 2013, Nagoya

2 Rela%vis%c Heavy Ion Collisions RHIC:2000 高 T Heavy Ion Collisions LHC,RHIC Strongly interacting QGP Relativistic hydrodynamics Recombination model Jet quenching Color Glass Condensate Heavy Ion collisions start! Quark- Gluon Plasma sqgp LHC:2010 QCD Cri/cal Point Property of QGP LHC: Energy frontier RHIC: energy scan FAIR, NICA high density 陽子 中間子など Hadron Phase Color Super Conductor C. NONAKA µb

3 Dynamics of Heavy Ion Collisions collisions thermaliza/on hydro hadroniza/on freezeout Observables: a lot of experimental data at RHIC and LHC photons/leptons bulk property Jets heavy quarkonia Phenomenological model Ini%al condi%on? sqgp Hydrodynamic model Freezeout process Experimental data higher harmonics

4 Higher Harmonics Reaction plane z y x more realis/c event by event fluctua/ons y x ellip/c flow higher harmonics

5 Higher RHIC & LHC PHENIX@RHIC, PRL107,252301(2011) ATLAS@LHC, PRC86,014907(2012) P T (GeV) P T (GeV)

6 Ini%al Condi%ons One event Ollitrault

7 Ini%al Condi%ons One event Ollitrault

8 Ini%al Condi%ons One event Ollitrault

9 Numerical Scheme Superposi/on of shock waves Numerical algorithm for hydrodynamic evolu/on shock- wave capturing scheme stable less numerical viscosity

10 Hydrodynamic Expansion Ini%al condi%on sqgp Hydrodynamic model Freezeout process fluctua/ng ini/al condi/ons v n Bulk property transport coefficients.. importance of numerical algorithm!

11 Akamatsu, Inutsuka, CN, Takamoto: arxiv: J. Comp. Phys. (2014) 34 HYDRODYNAMIC MODEL

12 Viscous Hydrodynamic Model Rela/vis/c viscous hydrodynamic equa/on First order in gradient: acausality Second order in gradient: Israel- Stewart, Ofnger and Grmela, AdS/CFT, Grad s 14- momentum expansion, Renomariza/on group Numerical scheme Shock- wave capturing schemes: Riemann problem Godunov scheme: analy/cal solu/on of Riemann problem SHASTA: the first version of Flux Corrected Transport algorithm, Song, Heinz, Pang, Victor Kurganov- Tadmor (KT) scheme, McGill

13 Israel- Stewart Theory Our Approach Takamoto and Inutsuka, arxiv: Akamatsu, Inutsuka, CN, Takamoto, arxiv: (ideal hydro) 1. dissipa/ve fluid dynamics = advec/on + dissipa/on exact solu/on Contact discon/nuity Rarefac/on wave Shock wave Riemann solver: Godunov method Two shock approxima/on Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005) Rarefac/on wave shock wave 2. relaxa/on equa/on = advec/on + s/ff equa/on

14 Numerical Scheme Israel- Stewart Theory Takamoto and Inutsuka, arxiv: Dissipa/ve fluid equa/on 2. Relaxa/on equa/on + advec/on s/ff equa/on I: second order terms

15 Comparison Shock Tube Test : Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010) T L =0.4 GeV v=0 EoS: ideal gas Analy/cal solu/on Numerical schemes SHASTA, KT, NT Our scheme T R =0.2 GeV v= Nx=100, dx=0.1, dt=0.04

16 Shocktube problem Ideal case shockwave rarefac/on

17 L1 Norm Numerical dissipa/on: devia/on from analy/cal solu/on T L =0.4 GeV v=0 T R =0.2 GeV v= L(p(N cell ),p(anaytic)) = N cell p(n cell ) For analysis of heavy ion collisions N cell =100: dx=0.1 fm p(analytic) Ncell i=1 λ=10 fm

18 Large ΔT difference T L =0.4 GeV, T R =0.172 GeV SHASTA becomes unstable. Our algorithm is stable. T L =0.4 GeV v=0 EoS: ideal gas SHASTA: an/ diffusion term, A ad A ad = 1 : default value, unstable A ad =0.99: stable, more numerical dissipa/on T R =0.172 GeV v= Nx=100, dx=0.1, dt=0.04

19 L1 norm SHASTA with small A ad has large numerical dissipa/on Aad=1 Aad=0.99 T L =400, T R =200 T L =400, T R =172 L(p(N cell ),p(anaytic)) = N cell p(n cell ) p(analytic) Ncell i=1 λ=10 fm

20 Ar%ficial and Physical Viscosi%es Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010) An/diffusion terms : ar/ficial viscosity stability

21 Large ΔT difference T L =0.4 GeV, T R =0.172 GeV SHASTA becomes unstable. Our algorithm is stable. T L =0.4 GeV v=0 EoS: ideal gas SHASTA: an/ diffusion term, A ad A ad = 1 : default value A ad =0.99: stable, more numerical dissipa/on Large fluctua/on (ex ini/al condi/ons) T R =0.172 GeV v= Nx=100, dx=0.1, dt=0.04 Our algorithm is stable even with small numerical dissipa/on.

22 DYNAMICAL MODEL

23 Our Dynamical Model collisions thermaliza/on hydro hadroniza/on freezeout Fluctua/ng Ini/al condi/ons Hydrodynamic expansion Freezeout process From Hydro to par/cle Akamatsu, Inutsuka, CN, Takamoto, Final state interac/ons arxiv: J. Comp. Phys. (2014) 34 MC- KLN Nara hop:// hydrodynamic model Cornelius Freezeout hypersurface finder Huovinen, Petersen Oscar sampler Ohio group UrQMD

24 Our Dynamical Model collisions thermaliza/on hydro hadroniza/on freezeout Fluctua/ng Ini/al condi/ons Hydrodynamic expansion Freezeout process From Hydro to par/cle Akamatsu, Inutsuka, CN, Takamoto, Final state interac/ons arxiv: J. Comp. Phys. (2014) 34 MC- KLN Nara hop:// hydrodynamic model Cornelius Freezeout hypersurface finder Huovinen, Petersen Simula/on setups: Free gluon EoS Hydro in 2D boost invariant simula/on UrQMD with y <0.5 Oscar sampler Ohio group UrQMD

25 Ini%al Pressure Distribu%on MC- KLN (centrality 15-20%) Pressure (fm- 4) LHC 10 5 Y(fm) X(fm) C. NONAKA RHIC 5 0 Y(fm) X(fm)

26 Time Evolu%on of v n RHIC v1 v2 v3 v4 v LHC v1 v2 v3 v4 v time (fm) 0 Qualita/vely RHIC ~ LHC v 2 is dominant v 2 > v 3 > v 4 > v time (fm)

27 Hydro + UrQMD Transverse momentum spectrum RHIC P T dn/dp T [GeV -2 ] LHC P T [GeV] P T [GeV] Pt distribu/on at LHC has flaoer slope Larger radial flow at LHC

28 Effect of Hadronic Interac%on Transverse momentum distribu/on RHIC P T [GeV] P T dn/dp T [GeV -2 ] Effect of final state interac/ons is small Slope of proton Pt spectra become flaoer LHC P T [GeV]

29 Higher harmonics from Hydro + UrQMD Effect of hadronic interac/on

30 Summary Importance of numerical scheme in Hydrodynamic Models We develop a state- of- the- art numerical scheme Shock wave capturing scheme: Godunov method Our algorithm Less ar/ficial diffusion: crucial for viscosity analyses Stable for strong shock wave Construc/on of a hybrid model Fluctua/ng ini/al condi/ons + Hydrodynamic evolu/on + Higher Harmonics Time evolu/on, hadron interac/on UrQMD

Effects of QCD cri/cal point on electromagne/c probes

Effects of QCD cri/cal point on electromagne/c probes Effects of QCD cri/cal point on electromagne/c probes Akihiko Monnai (IPhT, CNRS/CEA Saclay) with Swagato Mukherjee (BNL), Yi Yin (MIT) + Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT) Phase diagram

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

Causal Viscous Hydrodynamics for RelaBvisBc Systems with MulB Components and MulB Conserved Currents

Causal Viscous Hydrodynamics for RelaBvisBc Systems with MulB Components and MulB Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Causal Viscous Hydrodynamics for RelaBvisBc Systems with MulB Components and MulB Conserved Currents Akihiko Monnai Department of Physics, The University of

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

The Color Glass Condensate: Theory, Experiment and the Future

The Color Glass Condensate: Theory, Experiment and the Future The Color Glass Condensate: Theory, Experiment and the Future Physics Issues: What is the high energy limit of strong interac?ons? How do we compute the gluon and quark distribu?ons relevant for asympto?cally

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Soft Physics in Relativistic Heavy Ion Collisions

Soft Physics in Relativistic Heavy Ion Collisions Soft Physics in Relativistic Heavy Ion Collisions Huichao Song 宋慧超 Peking University Hadron and Nuclear Physics in 2017 KEK, Tsukuba, Japan, Jan.7-10, 2017 Jan. 09, 2017 QGP QGP Hadrons nuclei atom 3

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Correlations & Fluctuations in Large & Small Systems

Correlations & Fluctuations in Large & Small Systems Correlations & Fluctuations in Large & Small Systems Huichao Song 宋慧超 Peking University mini-symposium on "Computational Physics for High-Energy Heavy-Ion Collisions" YITP Kyoto Japan, Oct 5, 2015 Oct.

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics

PART 2. Formalism of rela,vis,c ideal/viscous hydrodynamics PART 2 Formalism of rela,vis,c ideal/viscous hydrodynamics Adver&sement: Lecture Notes Hydrodynamics Framework to describe space- &me evolu&on of thermodynamic variables Balance equa&ons (equa&ons of mo&on,

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC

THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) THERMALIZATION, ISOTROPIZATION AND FLOWS OF THE SHATTERED CGC Collaborators: - Vincenzo Greco

More information

Viscosity of Quark-Gluon Plasma!

Viscosity of Quark-Gluon Plasma! Viscosity of Quark-Gluon Plasma! Rajendra Pokharel Advisor: Prof. Sean Gavin 2 nd Graduate Research Day " Wayne State University " "Apr 24, 2011! Outlines " " Background Hydrodynamics The Model Results

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Constraining the bulk viscosity of QCD

Constraining the bulk viscosity of QCD Constraining the bulk viscosity of QCD (with heavy ion collisions) Bwidth Bnorm Jean-François Paquet Tpeak July 21, 2017 Triangle Nuclear Theory Colloquium In collaboration with... Charles Gale Sangyong

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Wee gluons and their big role in crea2ng the ho3est ma3er on earth. Raju Venugopalan BNL

Wee gluons and their big role in crea2ng the ho3est ma3er on earth. Raju Venugopalan BNL Wee gluons and their big role in crea2ng the ho3est ma3er on earth Raju Venugopalan BNL INT@20 Symposium, Sea3le, July 1 2, 2010 Quantum Chromodynamics (QCD) QCD nearly perfect fundamental quantum theory

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

Status of viscous hydrodynamic code development

Status of viscous hydrodynamic code development Status of viscous hydrodynamic code development Yuriy KARPENKO Transport group meeting, Jan 17, 2013 Yuriy Karpenko (FIAS/BITP) Status of viscous hydro code Transport group meeting, Jan 17, 2013 1 / 21

More information

arxiv: v1 [nucl-th] 26 Aug 2011

arxiv: v1 [nucl-th] 26 Aug 2011 The Viscosity of Quark-Gluon Plasma at RHIC and the LHC Ulrich Heinz, Chun Shen and Huichao Song Deartment of Physics, The Ohio State University, Columbus, Ohio 436, USA Lawrence Berkeley National Laboratory,

More information

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA TOWARDS MORE REALISTIC MODELS OF THE QGP THERMALISATION Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke, Scott Pratt and Peter

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution of the Quark Gluon Plasma Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg High-energy nucleus-nucleus Collisions High-Energy Nuclear Collisions Time à

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Bedanga Mohanty NaConal InsCtute of Science EducaCon and Research (NISER) Outline: ² Phase diagram of QCD

More information

Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang. Raju Venugopalan

Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang. Raju Venugopalan Glasma to plasma: classical coherence, quantum decoherence & thermaliza7on in the li8le Bang Raju Venugopalan Lecture iv, UCT, February 2012 Outline of lectures Lecture I: QCD and the Quark- Gluon Plasma

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario. Shear viscosity from BAMPS Andrej El Zhe Xu Carsten Greiner Institut für Theoretische Physik

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Kyoto, 2015/10/05 Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions Dr. Marco Ruggieri Physics and Astronomy Department, Catania University, Catania (Italy) Collaborators: Vincenzo Greco

More information

QGP and High p T Physics

QGP and High p T Physics QGP and High p T Physics Lecture 1: The Physics of the QGP Helmholtz Graduate School of Fundamental Physics Winter School Obergurgl 2010 January 29 February 2, 2010 PD Dr. Klaus Reygers Physikalisches

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

arxiv: v1 [nucl-th] 28 Nov 2017

arxiv: v1 [nucl-th] 28 Nov 2017 Initial state and hydrodynamic modeling of heavy-ion collisions at RHIC BES energies arxiv:1711.1544v1 [nucl-th] 28 Nov 217 Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail:

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

HIGH ENERGY HEAVY ION COLLISIONS AT LHC

HIGH ENERGY HEAVY ION COLLISIONS AT LHC HIGH ENERGY HEAVY ION COLLISIONS AT LHC Outline 1. Introduction 2. Paton energy loss in QGP 3. QGP properties probing via hadrons 4. ALICE-DCal project (Italy-Japan collaboration) 5. Summary QGP : Quark

More information

Some aspects of dilepton production in HIC

Some aspects of dilepton production in HIC Some aspects of dilepton production in HIC Qun Wang University of Science and Technology of China (USTC) In collaboration with H.J.Xu, J.Deng, X.Dong, L.J.Ruan, Z.B.Xu, N.Xu, P.F.Zhuang, Y.F. Zhang Electromagnetic

More information

Jet Medium Interactions

Jet Medium Interactions Jet Medium Interactions Yasuki Tachibana Nishinippon Institute of Technology ( Central China Normal University) ATHIC 216, New Delhi, India, 19 February 216 Introduction Jet energy loss in QGP medium Bjorken

More information

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF)

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) arxiv:1608.07869, arxiv:1711.01657, arxiv:1709.06644 Frankfurt University 1.February.2018 Preview

More information

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics Rajendra Pokharel a, Sean Gavin a and George Moschelli b a)wayne State University, 666 W Hancock, Detroit MI 48084,

More information

Dihadron correlations from AMPT

Dihadron correlations from AMPT Dihadron correlations from AMPT Che-Ming Ko Texas A&M University AMPT Anisotropic flows Dihadron azimuthal correlations 2D dihadron correlations Based on work with Jun Xu, PRC 83, 021903(R) (2011); 034904

More information

Photon production in the bottom-up thermalization of heavy-ion collisions

Photon production in the bottom-up thermalization of heavy-ion collisions Photon production in the bottom-up thermalization of heavy-ion collisions Naoto Tanji Institut für Theoretische Physik Heidelberg University arxiv: 1701.05064 collaboration with Jürgen Berges (Heidelberg

More information

Flow Harmonic Probability Distribution in Heavy Ion Collision

Flow Harmonic Probability Distribution in Heavy Ion Collision 1/28 Flow Harmonic Probability Distribution in Heavy Ion Collision Seyed Farid Taghavi Institute For Research in Fundamental Sciences (IPM), Tehran, Iran Second Iran & Turkey Joint Conference on LHC Physics

More information

Quark chemical equilibrabon for thermal photon ellipbc flow

Quark chemical equilibrabon for thermal photon ellipbc flow AM, Phys. Rev. C 90, 021901(R) (2014) AM, arxiv:1408.1410 [nucl- th] Quark chemical equilibrabon for thermal photon ellipbc flow Akihiko Monnai RIKEN BNL Research Center Nishina Center for Accelerator-

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

Recent lessons about hydrodynamics from holography

Recent lessons about hydrodynamics from holography Recent lessons about hydrodynamics from holography Michał P. Heller m.p.heller@uva.nl University of Amsterdam, The Netherlands & National Centre for Nuclear Research, Poland (on leave) based on 03.3452

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

The Λ Global Polarization with the AMPT model

The Λ Global Polarization with the AMPT model The Λ Global Polarization with the AMPT model Hui Li ( 李慧 ) University of Science and Technology of China Cooperators: Xiao-Liang Xia, Long-Gang Pang, Qun Wang arxiv: 1704.01507 Outline Introduction The

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T Chapter 3 Shear viscous evolution In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T spectra, and elliptic flow (v ) of pions using a +1D relativistic viscous hydrodynamics

More information

Selected highlights from RHIC

Selected highlights from RHIC Selected highlights from RHIC Sonia Kabana Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France QGP-France workshop Etretat, France, 9-11 September

More information

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel

The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann of Science, Israel The Kelvin- wave cascade in the vortex filament model: Controversy over? Jason Laurie Weizmann Ins@tute of Science, Israel In collabora@on with: Andrew Baggaley (Glasgow, UK) 20 September 2013, Université

More information

Collective Dynamics of the p+pb Collisions

Collective Dynamics of the p+pb Collisions Collective Dynamics of the p+pb Collisions Wojciech Broniowski CEA Saclay & UJK Kielce & IFJ PAN Cracow th Workshop on Non-Perturbative QCD Paris, - June [Piotr Bo»ek & WB, PLB 78 () 557, 7 () 5, arxiv:.]

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Lawrence Livermore National Laboratory E-mail: soltz@llnl.gov We have developed a framework, the Comprehensive

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN Jet quenching in heavy-ion collisions at the LHC Marta Verweij CERN EPFL Seminar May. 2, 2016 Thousands of particles are produced in one heavy ion collision Marta Verweij 2 Heavy ion collision Marta Verweij

More information

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = GeV T. Hirano, 1 M. Isse, Y. Nara, 3 A. Ohnishi, and K. Yoshino 1 Department of Physics, Columbia University, New York, NY 17

More information

Anisotropic Flow: from RHIC to the LHC

Anisotropic Flow: from RHIC to the LHC Anisotropic Flow: from RHIC to the LHC Raimond Snellings The 2 nd Asian Triangle Heavy Ion Conference 13 th - 15 th October, 28 University of Tsukuba, Tsukuba, Japan arxiv:89.2949 [nucl-ex] 2 Elliptic

More information

Selected highlights from the STAR experiment at RHIC

Selected highlights from the STAR experiment at RHIC Selected highlights from the STAR experiment at RHIC Sonia Kabana for the STAR Collaboration Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS Anisotropie vn nello spazio degli impulsi e fluttuazioni di stato inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche S. Plumari, L. Oliva,

More information

Introduction to Heavy Ion Physics at the LHC

Introduction to Heavy Ion Physics at the LHC Introduction to Heavy Ion Physics at the LHC F. Noferini (noferini@bo.infn.it) INFN Bologna/CNAF E. Fermi Centre, Rome ALICE Review http://en.sif.it/journals/ncr/econtents/2016/039/10 24/10/2016 1 Hadrons

More information

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT)

Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Hydrodynamical Model and Shear Viscosity from Black Holes (η/s from AdS/CFT) Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution QGP life time 10 fm/c 3 10-23

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS

COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS COLLISIONS IN ADS AND THE THERMALISATION OF HEAVY IONS Towards more realistic models of the QGP thermalisation Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke and Scott Pratt

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

arxiv: v2 [nucl-ex] 8 Sep 2016

arxiv: v2 [nucl-ex] 8 Sep 2016 An experimental review on elliptic flow of strange and multi-strange hadrons in relativistic heavy ion collisions Shusu Shi 1 1 Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle

More information

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Jing Yang 1, Yan-Yu Ren and Wei-Ning Zhang 1, 1 School of Physics

More information

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions

Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Melting the QCD Vacuum with Relativistic Heavy-Ion Collisions Steffen A. Bass QCD Theory Group Introduction: the Quark-Gluon-Plasma How can one create a QGP? Basic tools for a Theorist: Transport Theory

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system?

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Colloquium at Physics Dept., U. Jyväskylä, Finland, February 19, 2016 1 Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke

More information

Consistency of Perfect Fluidity and Jet Quenching in semi-quark-gluon Monopole Plasmas

Consistency of Perfect Fluidity and Jet Quenching in semi-quark-gluon Monopole Plasmas Consistency of Perfect Fluidity and Jet Quenching in semi-quark-gluon Monopole Plasmas Jiechen Xu Columbia University Based on: JX, Jinfeng Liao, Miklos Gyulassy, arxiv:1411.3673 JX, Alessandro Buzzatti,

More information

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5.

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5. [1] Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5.02 ATeV Gyula Bencedi (Wigner RCP, Hungary) on behalf of the ALICE Collaboration

More information

FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY

FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY FROM FULL STOPPING TO TRANSPARENCY IN HOLOGRAPHY Towards more realistic models of the QGP thermalisation Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke and Scott Pratt References:

More information

An EoS-meter of QCD transition from deep learning

An EoS-meter of QCD transition from deep learning An EoS-meter of QCD transition from deep learning Nan Su Frankfurt Institute for Advanced Studies with Long-Gang Pang, Kai Zhou (FIAS), Hannah Petersen, Horst Stöcker (FIAS/Uni Frankfurt/GSI), Xin-Nian

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC Ivan Ravasenga Politecnico di Torino and I.N.F.N. 56 th course, Erice (Sicily, Italy) 14-23.06.2018 Ivan Ravasenga

More information