Flow Harmonic Probability Distribution in Heavy Ion Collision

Size: px
Start display at page:

Download "Flow Harmonic Probability Distribution in Heavy Ion Collision"

Transcription

1 1/28 Flow Harmonic Probability Distribution in Heavy Ion Collision Seyed Farid Taghavi Institute For Research in Fundamental Sciences (IPM), Tehran, Iran Second Iran & Turkey Joint Conference on LHC Physics October 23-26, 217 (1-4 Aban 1396)

2 2/28 Outline Standard Model of Heavy Ion Collision Event-By-Event Fluctuations and Flow Harmonics Standardized Cumulants of Flow Harmonic Fluctuations Flow Harmonic Probability Distributions Conclusions

3 Standard Model of Heavy Ion Collision Figure from: Sorensen, arxiv: /28

4 4/28 Why We Believe the Quark-Gluon Plasma Is There? Quark-Gluon Plasma Diagnostics Flow Harmonics, v 2, v 3,... Strangeness Enhancement Jet Quenching J/Ψ Suppression

5 Standard Model of Heavy Ion Collision Event-By-Event Fluctuations Before studying the hydro evolution #1 Pb, SNN = 2.76 TeV, #2 b = 4.5 fm #3 5/28

6 Standard Model of Heavy Ion Collision From Initial states to Final Hadrons Initial State Freeze Out Hydrodynamic Evolution Observation In Detector The initial state evolves by hydrodynamic equations, where µ T µν = T µν = (ɛ + P)u µ u ν + Pη µν + τ µν τ µν = η s µα νβ ( αu β + β u α) (ζ 23 ) ηs µν αu α µν = η µν + u µ u ν, η µν = diag( 1, 1, 1, 1). 6/28

7 Event-By-Event Fluctuations and Flow Harmonics How to Quantify the Initial State Systematically [PHOBOS Collaboration, 27], [Teaney, Yan, PRC, 211] Dipole Asymmetry, ε1 Eccentricity, ε2 Triangularity, ε3... R εn,x +iεn,y ( n = ε2,x = Ψ2 rdrdϕ ρ(r, ϕ) rn einϕ R, rdrdϕ ρ(r, ϕ) rn Ψ3 3 if n = 1. 1 if n 2 hx 2 Y 2 i, hx 2 + Y 2 i ε2,y = 2hX Yi. hx 2 + Y 2 i 7/28

8 8/28 Event-By-Event Fluctuations and Flow Harmonics Event-By-Event Fluctuations [Borghini, Dinh, Ollitrault, 2] Fourier analysis of azimuthal distribution of emitted particles. 2π N dn dφ = 1 + 2v n cos [n(φ ψ n )], n=1 v n e inψn e inφ dφ dn dφ einφ. In different events Ψ 2 Ψ 2 Ψ 2 Ψ 2

9 Event-By-Event Fluctuations and Flow Harmonics Flow Harmonics, n-particle Correlation Function [Borghini, Dinh, Ollitrault, 2] Define 2-particle correlation function c n {2} = e in(φ 1 φ 2 ) single then many events Instead of using e inφ we use c n {2}, dφ 1 dφ 2 ( dn dφ 1 dφ 2 ) ( e in(φ 1 φ 2 ) ( ) ) ( dn dφ 1 e inφ 1 dφ 1 ( ) ) dn dφ 2 e inφ 2 dφ 2 v 2 n As a result v 2 n{2} = c n {2} 9/28

10 Event-By-Event Fluctuations and Flow Harmonics Flow Harmonics, n-particle Correlation Function [Borghini, Dinh, Ollitrault, 2], [Borghini, Dinh, Ollitrault, 21] Generalizing the 2-Particle to n-particle Correlation Function c n {2} = e in(φ 1 φ 2 ), c n {4} = e in(φ 1+φ 2 φ 3 φ 4 ) 2 e in(φ 1 φ 2 ) 2, It is shown that v 2 n{2} = c n {2}, v 4 n{4} = c n {4}, v 6 n{6} = c n {6}/4, Spliting in v n {2k} CMS Preliminary PbPb 5.2 TeV v 2 {2k} < p T η < 1. STAR < 3. GeV/c v 2 {2k} k = 1 k = 2 k = 3 k = Centrality % v ATLAS Pb+Pb s NN = 2.76 TeV 1-1 L int = 7 µb, η < 2.5 v 3 {EP} v 3 {2} v 3 {4} -25% % p [GeV] T 1/28

11 11/28 Standardized Cumulants of Flow Harmonic Fluctuations Heavy Ion Collision Event Generator, iebe-vishnu [Shen, Qiu, Song, Bernhard, Bass, Heinz, 214] The full process is too complicated and numerical calculations are needed. supermc Initial condition generator M initial conditions VISHNew Hydrodynamics Hydrodynamic! simulator freeze-out surface info iss Particle emission sampler no Particle space-time and momentum info (multiple times) Finished all events? yes binutilities Spectra and Particle spacetime and flow calculator momentum info osc2u prepare UrQMD ICs UrQMD Hadron rescattering simulator EbeCollector Collect data into SQLite database zip zip results and store in to results folder

12 Standardized Cumulants of Flow Harmonic Fluctuations Event Generation I Pb-Pb collision in SNN = 2.76 TeV: 14 for centralities between to 8% (b to b r ). I η/s =.8, τ =.6 fm I supermc: MC-Glauber #1 #2 #3 5-55% centralities dnevents /dεn,x dεn,y ε3,y ε4,y ε2,y ε2,x ε3,x ε4,x /28

13 13/28 Standardized Cumulants of Flow Harmonic Fluctuations Cumulant Analysis of the Initial and Flow Distribution We use a 2D cumulant analysis.

14 13/28 Standardized Cumulants of Flow Harmonic Fluctuations Cumulant Analysis of the Initial and Flow Distribution We use a 2D cumulant analysis. The generating functional is log e ξxkx+ξyky = m,n= k m x k n y m!n! A mn.

15 13/28 Standardized Cumulants of Flow Harmonic Fluctuations Cumulant Analysis of the Initial and Flow Distribution We use a 2D cumulant analysis. The generating functional is log e ξxkx+ξyky = m,n= k m x k n y m!n! A mn. We define the standardized cumulants as follows A mn  mn = A m 2 A n 2

16 Standardized Cumulants of Flow Harmonic Fluctuations Cumulant Analysis of the Initial and Flow Distribution We use a 2D cumulant analysis. The generating functional is log e ξxkx+ξyky = m,n= k m x k n y m!n! A mn. We define the standardized cumulants as follows A mn  mn = A m 2 A n 2 The cumulant of the 2D distribution of (v n,x, v n,y ) averaged over azimuthal angle c n {2k} c n {2k} and A kl are related to each other. e.g. c n {2} = A A A 2 + A 2 13/28

17 14/28 Standardized Cumulants of Flow Harmonic Fluctuations Cumulant Analysis of the Initial and Flow Distribution Ê (n) kl normalized cumulants from ε n ˆV(n) kl normalized cumulants from v n For n = 2, 3, The Hydrodynamic Response is Almost Linear [Teaney, Yan, PRC, 211], [Luzum, Ollitrault,...] v n α n ε n ε2,y v2,y/αn ε 2,x v 2,x /α n Ê (n) pq ˆV (n) pq

18 15/28 Standardized Cumulants of Flow Harmonic Fluctuations Connection With Experimental Observation ˆV (2) Recall 3 Ê(2) 3 is skewness. It is shown that the skewness [Giacalone,Ollitrault,Yan, Noronha-Hostler, PRC,216] exp 1 γ.4.2 CMS Preliminary PbPb 5.2 TeV < 3. GeV/c T.3 < p η < 1. v 2 {4} v 2 {6} = V 3 3V 2 1 ˆV (2) 3 6 2v 2 2 {4}(v 2{4} v 2 {6}) [ v 2 2 {2} v 2 2 {4}] 3/2 and a constraint v 2 {4} = 12v 2 {6} 11v 2 {8} γ exp TeV Hydro Centrality %

19 16/28 Standardized Cumulants of Flow Harmonic Fluctuations Kurtosis of the Third Flow Harmonics [Abbasi,Allahbakhshi,Davody,SFT,217] For n = 3: c 3 {2} α 2 2 c 3 {4} α 4 2 = E 2 +E 2 = E 4 +2E 22 +E 4 Γ 2q 2 = cn{2q} c q n{2} Γ 2 = ( ) 4 v3 {4} v 3 {2}

20 17/28 Flow Harmonic Probability Distributions Different Analytical Distributions ε2,y ε3,y.2.2 ε 2,x.2 ε 3,x Two Dimensional Gaussian Distribution p(ε n,x, ε n,y) = [ ] 1 exp (εn,x ε ) 2 2πσ xσ y 2σx 2 ε2 n,x 2σy 2 Elliptic-Power Distribution [Yan, Ollitrault, Poskanzer, PRC, 214] p(ε n,x, ε n,y) = α π (1 ε2 )α+1/2 (1 ε2 n,x ε 2 n,y) α 1 (1 ε ε n,x) 2α+1.

21 Flow Harmonic Probability Distributions Integration Over Azimuthal Direction Bessel-Gaussian [Voloshin, Poskanzer, Tang, Wang, PLB, 28] ε 2 (a) [ p(ε n) = εn σ 2 exp ε2 n + ] ( ) ε2 ε ε n 2σ 2 I σ 2 P(ε 2 ) ε 3 (b) Elliptic-Power [Yan, Ollitrault, Poskanzer, PRC, 214] P(ε 3 ) p(ε n) = 2αε n(1 ε 2 n )α 1 (1 ε 2 )α+1/2 1 π (1 ε ε n cos ϕ) 2α 1 dϕ π Power (for odd n) [Yan, Ollitrault, PRL, 214] 2αε n(1 ε 2 n) α 1 P(ε 4 ) ε 4 (c) Power Elliptic Power Bessel-Gaussian ε n 75%-8% Centrality [Yan, Ollitrault, Poskanzer, PRC, 214] 18/28

22 Flow Harmonic Probability Distributions A New Distribution 2D Gram-Charlier A Series P(ξ x, ξ y) 1 + H 2π e (ξx A 1 ) 2 (ξy A 1 )2 2A 2 2A 2 A 2 A 2 where H = Â mn m!n! Hen( ξx A 1 )He m( ξy A 1 ) A2 A2 m=n=1, m+n 3 Integrate Over Azimuthal Direction Radial-Gram-Charlier p(v 3 ) = [ 1 + Γ 2 L 2 ( v2 3 c 3 {2} ) + Γ 4 6 L 3 ( v2 3 c 3 {2} ) + ] [ ] 2v 3 exp c 3 v2 3 {2} c 3 {2} Γ 2q 2 = c 3 {2q}/c q 3 {2}, ( ) 4 Γ v 3 {4} 2 = v 2 3 {2} 19/28

23 2/28 Flow Harmonic Probability Distributions Radial-Gram-Charlier Fit p T dependence of standardized radial cumulants. Flow and non-flow effects?!

24 Flow Harmonic Probability Distributions Work On Progress Bessel-Gaussian [ p(v n) = vn σ 2 exp v2 n + ] ( ) v2 v v n 2σ 2 I σ 2 RGC (I n = I n(v v n/σ 2 )) p(v n ) = (Q + q 2 Q 2 + q 4 Q 4 + q 6 Q 6 + ) ( v n ) [ ] σ exp v2 2 n +v2 2σ 2 Considering 2σ 2 v 2 n {2} v2 Q = I, [ ] vn Q 2 = I + v I 1, [ ] [ ] 2 vn vn Q 4 = 2I 4 I 1 +2 I 2, v v [ ] [ ] 2 [ ] 3 vn vn vn Q 6 = 6I +18 I 1 18 I 2 +6 I 3, v v v q 2 =, q 4 = 1 4 q 6 = 1 18 [ v 4 n {4} v 4 (v 2 n {2} v2 )2 [ 2v 6 n {6} 3v 2 v4 n {4} + ] v6 ], (v 2 n {2} v2 )3 21/28

25 Flow Harmonic Probability Distributions Validity Checks p(vn) % centralities Q Q 4 Q 6 Q 8 Ellip.-Power Fine-splitting: [Miller,Snellings,23],[Giacalone,Ollitrault,Yan, Noronha-Hostler, PRC,216] Using the approximation v v n{4} leads to q 4 = and q 6 γ 1 v n q 8 11(v 2 {6} v 2 {8}) (v 2 {4} v 2 {6}) q 1 higher fine splittings 22/28

26 23/28 Conclusions Conclusions The distribution of v 3 has kurtosis. Its value is obtained by (v 3 {4}/v 3 {2}) 4. Does its p T dependence has any physical significances? A new distribution (RGC) for p(v 3 ) is introduced. The standardized cumulants are appeared as coefficients in a expansion and can be found by fitting. Generalization of RGC to arbitrary n The fine splitting of v 2 {2k} are related to RGC (n = 2) expansion coefficients.

27 24/28 Conclusions Thank You!

28 BACKUP 25/28

29 26/28 Conclusions For n = 2 [Ollitrault,PRC,216]

30 27/28 Conclusions For n = 3

31 Conclusions 28/28

Review of collective flow at RHIC and LHC

Review of collective flow at RHIC and LHC Review of collective flow at RHIC and LHC Jaap Onderwaater 29 November 2012 J. Onderwaater (EMMI,GSI) Collective flow 29 November 2012 1 / 37 Heavy ion collision stages Outline Heavy ion collisions and

More information

MIXED HARMONIC FLOW CORRELATIONS

MIXED HARMONIC FLOW CORRELATIONS MIXED HARMONIC FLOW CORRELATIONS RECENT RESULTS ON SYMMETRIC CUMULANTS Matthew Luzum F. Gardim, F. Grassi, ML, J. Noronha-Hostler; arxiv:168.2982 Universidade de São Paulo NBI Mini Workshop 19 September,

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Hydrodynamic response to initial state fluctuations

Hydrodynamic response to initial state fluctuations University of Jyväskylä, Department of Physics POETIC Jyväskylä 3.9.203 AA-collisions Initial particle/energy production, followed by Hydrodynamic evolution, followed by Freeze-out/Hadron cascade Goal

More information

Global and Collective Dynamics at PHENIX

Global and Collective Dynamics at PHENIX Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba Heavy Ion collisions in the LHC era in Quy Nhon outline n Introduction of v n n Higher harmonic

More information

arxiv: v1 [nucl-ex] 6 Dec 2011

arxiv: v1 [nucl-ex] 6 Dec 2011 Higher harmonic anisotropic flow measurements of charged particles at s NN =.76 TeV with the ALICE detector You Zhou (for the ALICE Collaboration) arxiv:111.156v1 [nucl-ex] 6 Dec 011 Nikhef, Science Park

More information

Event by Event Flow in ATLAS and CMS

Event by Event Flow in ATLAS and CMS Event by Event Flow in ALAS and CMS Gregor Herten Universität Freiburg, Germany LHCP 2015 St. Petersburg, 31.8.-5.9.2015 Some basic heavy-ion physics terminology 2 Centrality and Glauber Model Centrality

More information

Soft Physics in Relativistic Heavy Ion Collisions

Soft Physics in Relativistic Heavy Ion Collisions Soft Physics in Relativistic Heavy Ion Collisions Huichao Song 宋慧超 Peking University Hadron and Nuclear Physics in 2017 KEK, Tsukuba, Japan, Jan.7-10, 2017 Jan. 09, 2017 QGP QGP Hadrons nuclei atom 3

More information

The Little Bang Standard Model

The Little Bang Standard Model he Little Bang Standard Model Ulrich Heinz (he Ohio State University) Kavli Institute for the Physics and Mathematics of the Universe University of okyo, 3 December 23 Supported by the U.S. Department

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

The Core Corona Model

The Core Corona Model The Core Corona Model or Is the Centrality Dependence of Observables more than a Core-Corona Effect? inspired by the first multiplicity results in CuCu then used to extract the physics of EPOS simulations

More information

A Standard Model for the Little Bang How far are we from the goal?

A Standard Model for the Little Bang How far are we from the goal? A Standard Model for the Little Bang How far are we from the goal? Ulrich Heinz (he Ohio State University) Hydrodynamics of Strongly Coupled Fluids EC*, rento, 2-6 May 24 Supported by the U.S. Department

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

Collective and non-flow correlations in event-by-event hydrodynamics

Collective and non-flow correlations in event-by-event hydrodynamics Collective and non-flow correlations in event-by-event hydrodynamics Institute of Nuclear Physics Kraków WPCF 22-2.9.22 3 -D viscous hydrodynamics T T h /- v 3 [%] 25 2 5 5 2 5 5 2 5 5 ideal, e-b-e η/s=.8,

More information

Jet quenching in pa and AA

Jet quenching in pa and AA Jet quenching in pa and AA Jefferson Lab Electron Ion Collider User Group Meeting Catholic University of America, Washington D.C, USA July 30 - August 2, 2018 Collectivity in AA and pa CMS Collaboration,

More information

Correlations & Fluctuations in Large & Small Systems

Correlations & Fluctuations in Large & Small Systems Correlations & Fluctuations in Large & Small Systems Huichao Song 宋慧超 Peking University mini-symposium on "Computational Physics for High-Energy Heavy-Ion Collisions" YITP Kyoto Japan, Oct 5, 2015 Oct.

More information

arxiv: v2 [nucl-ex] 8 Sep 2016

arxiv: v2 [nucl-ex] 8 Sep 2016 An experimental review on elliptic flow of strange and multi-strange hadrons in relativistic heavy ion collisions Shusu Shi 1 1 Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

The unreasonable effectiveness of hydrodynamics in heavy ion collisions

The unreasonable effectiveness of hydrodynamics in heavy ion collisions The unreasonable effectiveness of hydrodynamics in heavy ion collisions Jacquelyn Noronha-Hostler Columbia University Yale University Sept. 10th, 2015 Outline 1 Heavy Ion Collisons 2 Initial conditions

More information

Overview of flow results from ALICE experiment

Overview of flow results from ALICE experiment Overview of flow results from ALICE experiment ShinIchi Esumi for the ALICE collaboration Inst. of Physics, Univ. of Tsukuba contents Multiplicity and transverse momentum distribution Source size measurement

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Selected Topics in the Theory of Heavy Ion Collisions Lecture 1 Urs chim Wiedemann CERN Physics Department TH Division Skeikampen, 4 January 2012 Heavy Ion Collisions - Experiments lternating Gradient

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Soft physics results from the PHENIX experiment

Soft physics results from the PHENIX experiment Prog. Theor. Exp. Phys. 2015, 03A104 (15 pages) DOI: 10.1093/ptep/ptu069 PHYSICS at PHENIX, 15 years of discoveries Soft physics results from the PHENIX experiment ShinIchi Esumi, Institute of Physics,

More information

Anisotropic Flow: from RHIC to the LHC

Anisotropic Flow: from RHIC to the LHC Anisotropic Flow: from RHIC to the LHC Raimond Snellings The 2 nd Asian Triangle Heavy Ion Conference 13 th - 15 th October, 28 University of Tsukuba, Tsukuba, Japan arxiv:89.2949 [nucl-ex] 2 Elliptic

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

arxiv:nucl-ex/ v1 10 May 2004

arxiv:nucl-ex/ v1 10 May 2004 arxiv:nucl-ex/0405004v1 10 May 2004 Proc. 20th Winter Workshop on Nuclear Dynamics (2003) 000 000 Anisotropic flow at RHIC A. H. Tang 1 for the STAR Collaboration 1 NIKHEF and Brookhaven National Lab,

More information

Overview of heavy ion CMS results

Overview of heavy ion CMS results Overview of heavy ion CMS results Gian Michele Innocenti on behalf of the CMS Collaboration Massachusetts Institute of echnology Rencontres de Moriond QCD and High Energy Interactions March 19th - 26th,

More information

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Hannu Holopainen Frankfurt Institute for Advanced Studies in collaboration with G. S. Denicol, P. Huovinen,

More information

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Event geometrical anisotropy and fluctuation viewed by HBT interferometry Event geometrical anisotropy and fluctuation viewed by HB interferometry akafumi Niida University of sukuba -- ennoudai, sukuba, Ibaraki 35-857, Japan Abstract Azimuthal angle dependence of the pion source

More information

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle? Carlota Andrés Universidade de Santiago de Compostela Hard Probes 2016, Wuhan, China N. Armesto,

More information

Throwing triangles against a wall

Throwing triangles against a wall Throwing triangles against a wall Wojciech Broniowski Institute of Nuclear Physics PAN, Cracow, and Jan Kochanowski U., Kielce Rencontres QGP-France 2014, 15-17 September 2014, Etrétat 12 C He [research

More information

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez

51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016. Manuel Calderón de la Barca Sánchez 51st Rencontres de Moriond QCD and High Energy Interactions La Thiule, IT 25/Mar/2016 Manuel Calderón de la Barca Sánchez Heavy Flavors in Heavy Ions Heavy quarks produced early: initial hard parton collision

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

Summary of flow and its correlation in ALICE

Summary of flow and its correlation in ALICE Summary of flow and its correlation in ALICE Myunggeun Song Yonsei Univ. November, 6 HIM 6 @ ibs Based on PRL his Presentation based on one Letter in six is highlighted as a Suggestion due to its particular

More information

Collective Dynamics of the p+pb Collisions

Collective Dynamics of the p+pb Collisions Collective Dynamics of the p+pb Collisions Wojciech Broniowski CEA Saclay & UJK Kielce & IFJ PAN Cracow th Workshop on Non-Perturbative QCD Paris, - June [Piotr Bo»ek & WB, PLB 78 () 557, 7 () 5, arxiv:.]

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX TTaakkaaffuummii NNiiiiddaa ffoorr tthhee PPHHEENNIIXX CCoollllaabboorraattiioonn UUnniivveerrssiittyy

More information

Flow of strange and charged particles in ppb and PbPb collisions at LHC energies

Flow of strange and charged particles in ppb and PbPb collisions at LHC energies Journal of Physics: Conference Series PAPER OPEN ACCESS Flow of strange and charged particles in ppb and PbPb collisions at LHC energies o cite this article: Zhoudunming u and 26 J. Phys.: Conf. Ser. 668

More information

arxiv: v2 [nucl-th] 24 Sep 2012

arxiv: v2 [nucl-th] 24 Sep 2012 Event-by-event viscous hydrodynamics for Cu-Au collisions at s NN = GeV Piotr Bożek The H. Niewodniczański Institute of Nuclear Physics, PL-313 Kraków, Poland Institute of Physics, Rzeszów University,

More information

Constraining the bulk viscosity of QCD

Constraining the bulk viscosity of QCD Constraining the bulk viscosity of QCD (with heavy ion collisions) Bwidth Bnorm Jean-François Paquet Tpeak July 21, 2017 Triangle Nuclear Theory Colloquium In collaboration with... Charles Gale Sangyong

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

Flow analysis in CBM experiment at FAIR

Flow analysis in CBM experiment at FAIR 2015 European Nuclear Physics Conference - Groningen 31 August 4 September Flow analysis in CBM experiment at FAIR Valerica Baban (1), Alexandru Jipa (2), Dănuţ Argintaru (3) (1) Constanţa Maritime University

More information

arxiv: v2 [nucl-ex] 15 Jun 2011

arxiv: v2 [nucl-ex] 15 Jun 2011 16 June 211 Elliptic Flow: A Brief Review Raimond Snellings Utrecht University, P.O. Box 8, 358 TA Utrecht, The Netherlands arxiv:12.3v2 [nucl-ex] 15 Jun 211 Abstract. One of the fundamental questions

More information

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS For the CMS Collaboration NPA Seminar Yale, USA 15 October, 2015 Relativistic Heavy Ion Collisions Trying to answer two important

More information

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC Journal of Physics: Conference Series PAPER OPEN ACCESS Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN = 39-200 GeV at RHIC To cite this article: S S Vdovkina 2017 J.

More information

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution of the Quark Gluon Plasma Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg High-energy nucleus-nucleus Collisions High-Energy Nuclear Collisions Time à

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS Anisotropie vn nello spazio degli impulsi e fluttuazioni di stato inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche S. Plumari, L. Oliva,

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Fluid dynamic propagation of initial baryon number perturbations

Fluid dynamic propagation of initial baryon number perturbations Fluid dynamic propagation of initial baryon number perturbations Stefan Flörchinger (Heidelberg U.) Initial Stages 2016, Lisbon, mainly based on S. Floerchinger & M. Martinez: Fluid dynamic propagation

More information

arxiv: v2 [nucl-ex] 30 Oct 2008

arxiv: v2 [nucl-ex] 30 Oct 2008 Collective phenomena in non-central nuclear collisions October 22, 2018 Draft Sergei A. Voloshin, Arthur M. Poskanzer, and Raimond Snellings arxiv:0809.2949v2 [nucl-ex] 30 Oct 2008 Abstract Recent developments

More information

Predictions for hadronic observables from. from a simple kinematic model

Predictions for hadronic observables from. from a simple kinematic model Predictions for hadronic observables from Pb + Pb collisions at sqrt(s NN ) = 2.76 TeV from a simple kinematic model Tom Humanic Ohio State University WPCF-Kiev September 14, 2010 Outline Motivation &

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

arxiv: v1 [nucl-th] 31 Oct 2012

arxiv: v1 [nucl-th] 31 Oct 2012 Hydro overview Jean-Yves Ollitrault a, Fernando G. Gardim b a CNRS, URA2306, IPhT, Institut de physique théorique de Saclay, F-91191 Gif-sur-Yvette, France b Instituto de Física, Universidade de São Paulo,

More information

Flow in p-pb collisions at 5 TeV?

Flow in p-pb collisions at 5 TeV? Rencontres de Moriond QCD 4 Klaus Werner Subatech, Nantes - Flow in p-pb collisions at 5 TeV? K.W. in collaboration with B. Guiot, Iu. Karpenko, T. Pierog Rencontres de Moriond QCD 4 Klaus Werner Subatech,

More information

1 Introduction. EPJ Web of Conferences 95, (2015)

1 Introduction. EPJ Web of Conferences 95, (2015) EPJ Web of Conferences 95, 0500 4 (2015) DOI: 10.1051/ epjconf/ 2015950500 4 C Owned by the authors, published by EDP Sciences, 2015 B. H. Brusheim Johansson 1,a, L. V. Bravina 1,b, G. Kh. Eyyubova 2,c,

More information

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime Juan M. Torres-Rincon (Frankfurt Institute for Advanced Studies) in collaboration with J. Tindall, J.-B. Rosé,

More information

Collision Geometry and Flow in Uranium+Uranium Collisions

Collision Geometry and Flow in Uranium+Uranium Collisions Collision Geometry and Flow in Uranium+Uranium Collisions Andy Goldschmidt 1, Zhi Qiu 1,2, Chun Shen 1,3, Ulrich Heinz 1 1 Department of Physics, The Ohio State University, Columbus, OH 43210, USA 2 Google

More information

Measurement of inclusive charged jet production in pp and Pb-Pb

Measurement of inclusive charged jet production in pp and Pb-Pb Measurement of inclusive charged jet production in pp and Pb-Pb collisions at S NN 5. 02TeV with ALICE Run2 Data Yan Li for the ALICE collaboration Central China Normal University CLHCP 2016 18/12/2016

More information

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE Jan Fiete Grosse-Oetringhaus CERN/PH for the ALICE Collaboration Heavy Ions: Experiments Confront Theory Copenhagen, 8th

More information

et Experiments at LHC

et Experiments at LHC et Experiments at LHC (as opposed to Jet Physics at RHIC ) JET Collaboration Symposium Montreal June 2015 Heavy-ion jet results at LHC Dijet asymmetries Observation of a Centrality-Dependent Dijet Asymmetry

More information

Highlights from the ATLAS experiment

Highlights from the ATLAS experiment Available online at www.sciencedirect.com Nuclear Physics A 982 (209) 8 4 www.elsevier.com/locate/nuclphysa XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter

More information

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions Jing Yang 1, Yan-Yu Ren and Wei-Ning Zhang 1, 1 School of Physics

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

Initial Condition Fluctuations for Heavy Ion Collisions

Initial Condition Fluctuations for Heavy Ion Collisions Initial Condition Fluctuations for Heavy Ion Collisions Philipe de Almeida Mota Takeshi Kodama (Ph.D. Advisor) Instituto de Física UFRJ, Rio de Janeiro, Brasil Max Planck Institut Frankfurt, Germany February

More information

Status of Heavy-Ion Physics at the LHC

Status of Heavy-Ion Physics at the LHC Status of Heavy-Ion Physics at the LHC Yvonne Pachmayer, Heidelberg University J. Jowett LHC Page 1 2 Motivation: What is the question? ALICE/LHC Pb+Pb snn = 2760 GeV What happens if you make matter Hotter

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Flow Results and Hints of Incomplete Thermalization

Flow Results and Hints of Incomplete Thermalization Flow Results and Hints of Incomplete Thermalization for the STAR Collaboration 1 The Perfect Liquid Γ s = 4 η(e + p) 3 D. Teaney, PRC 68 034913 (003) Viscosity reduces v Viscosity needs to be small in

More information

Recent flow results at RHIC

Recent flow results at RHIC Recent flow results at RHIC Hiroshi Masui / University of sukuba Flow and heavy flavour worksho in high energy heavy ion collisions: GRN worksho, Inchon, Feb./24-26, 215 H. Masui / Univ. of sukuba 1 /3

More information

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration QCD Studies with CMS at LHC Gunther Roland for the Collaboration INT Seattle 5/24/2010 First 7 TeV Collisions: March 30th 2010 2 QCD Studies with CMS pp integrated luminosity ~ 10nb -1 n.b. rates for LHC

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk Final Exam Instructions: Please write clearly. Do not just answer the questions, but document the thoughts leading

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with Dennis V. Perepelitsa Columbia University for the Collaboration Quark Matter 2012 Parallel 7A Washington, D.C.,

More information

Final source eccentricity measured by HBT interferometry with the event shape selection

Final source eccentricity measured by HBT interferometry with the event shape selection Journal of Physics: Conference Series PAPER OPEN ACCESS Final source eccentricity measured by HB interferometry with the event shape o cite this article: akafumi Niida and PHENIX Collaboration J. Phys.:

More information

Jet fragmentation study with particle correlations from the ALICE experiment at the LHC

Jet fragmentation study with particle correlations from the ALICE experiment at the LHC Jet fragmentation study with particle correlations from the ALICE experiment at the LHC Dong Jo,Kim University of Jyväskylä & Helsinki Institute of Physics for the ALICE Collaboration NN5, Catania, Italy

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Creating a Quark Gluon Plasma With Heavy Ion Collisions

Creating a Quark Gluon Plasma With Heavy Ion Collisions Creating a Quark Gluon Plasma With Heavy Ion Collisions David Hofman UIC Special thanks to my Collaborators in PHOBOS, STAR, & CMS and B. Back, M. Baker, R. Hollis, K. Rajagopal, R. Seto, and P. Steinberg

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS

ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Dr. Marco Ruggieri Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy) ELLIPTIC FLOW FROM THERMAL AND KLN INITIAL CONDITIONS Based on collaboration with: V. Greco, S.

More information

Parton dynamics in heavy-ion collisions from FAIR to LHC

Parton dynamics in heavy-ion collisions from FAIR to LHC Parton dynamics in heavy-ion collisions from FAIR to LHC Wolfgang Cassing Erice, 21.09.2012 The holy grail: Search for the critical point The phase diagram of QCD Study of the phase transition from hadronic

More information

Small systems Resonances hadronic phase partonic phase?

Small systems Resonances hadronic phase partonic phase? Christina Markert University of Texas at Austin Small systems Resonances hadronic phase partonic phase? NeD-216, Phuket, Thailand, 31 Oct - 5 Nov 216 1 Phase diagram of nuclear matter (QCD) NeD-216, Phuket,

More information

Introduction to WG5: high multiplicities and interactions with nuclei

Introduction to WG5: high multiplicities and interactions with nuclei 8 th International Workshop on Multiple Partonic Interactions at the LHC San Cristóbal de las Casas, Chiapas. November 28, 2016 Introduction to WG5: high multiplicities and interactions with nuclei Antonio

More information

HIGH ENERGY HEAVY ION COLLISIONS AT LHC

HIGH ENERGY HEAVY ION COLLISIONS AT LHC HIGH ENERGY HEAVY ION COLLISIONS AT LHC Outline 1. Introduction 2. Paton energy loss in QGP 3. QGP properties probing via hadrons 4. ALICE-DCal project (Italy-Japan collaboration) 5. Summary QGP : Quark

More information

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background

Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Initial baryon number fluctuations and its hydrodynamic propagation on a Bjorken background Mauricio Martinez Guerrero In collaboration with Stefan Floerchinger arxiv:1507.05569 Correlations and Fluctuations

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

The Latest (Pb+Pb results) from

The Latest (Pb+Pb results) from The Latest (Pb+Pb results) from Helen Caines - Yale University - on behalf of the ALICE Collaboration Focus on Heavy-Ion results Energy density Size and lifetime Flow Jet quenching Heavy flavor MIAMI 2011

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5.

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5. [1] Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5.02 ATeV Gyula Bencedi (Wigner RCP, Hungary) on behalf of the ALICE Collaboration

More information

Jets, flows and Joseph Fourier

Jets, flows and Joseph Fourier Jets, flows and Joseph Fourier Tom Trainor December, Guy Paić Fest Puebla, Mexico Diverse Phenomena Secret Analogies Mathematics compares the most diverse phenomena and discovers the secret analogies that

More information

arxiv: v3 [nucl-th] 17 Jun 2015

arxiv: v3 [nucl-th] 17 Jun 2015 Shape and flow fluctuations in ultra-central Pb+Pb collisions at the LHC arxiv:154636v3 [nucl-th] 17 Jun 015 Chun Shen, 1,, Zhi Qiu, 1 and Ulrich Heinz 1 1 Department of Physics, he Ohio State University,

More information