SOCP Relaxation of Sensor Network Localization

Size: px
Start display at page:

Download "SOCP Relaxation of Sensor Network Localization"

Transcription

1 SOCP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IWCSN, Simon Fraser University August 19, 2006 Abstract This is a talk given at Int. Workshop on Complex Systems and Networks.

2 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 1 Talk Outline Problem description SDP and SOCP relaxations Properties of SDP and SOCP relaxations Performance of SOCP relaxation and efficient solution methods Conclusions & Future Directions

3 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 2 Sensor Network Localization Basic Problem: n pts in R d (d = 1, 2, 3). Know last n m pts ( anchors ) x m+1,..., x n pairs of neighboring pts and Eucl. dist. estimate for d ij 0 (i, j) A with A {(i, j) : 1 i < j n}. Estimate first m pts ( sensors ). History? Graph realization, position estimation in wireless sensor network, determining protein structures,...

4 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 3 Optimization Problem Formulation υ opt := min x 1,...,x m xi x j 2 d 2 ij Objective function is nonconvex... Problem is NP-hard (reduction from PARTITION)... Use a convex (SDP, SOCP) relaxation.

5 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 4 SDP and SOCP min c, z s.t. a k, z = b k, k = 1,..., p z 0 LP: z = [ z i ] q i=1 Rq c, z = c T z z 0 z i 0 i SDP: z = [ z ij ] q i,j=1 Rq q sym. c, z = tr(c T z) z 0 λ i (z) 0 i SOCP: z R q c, z = c T z z 0 z K q 1 K q N {[ ] } K q = z1 z 2 R R q 1 : z 2 z 1 LP solvable by simplex or interior-pt methods. SDP, SOCP solvable by interior-pt methods.

6 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 5 SDP Relaxation Let X := [x 1 x m ], A := [x m+1 x n ]. Then (Biswas,Ye 03) x i x j 2 = tr ( b ij b T ij [ X T X X T X I d ]) with b ij := [ ] Im 0 (e 0 A i e j ). Fact: [ Y X T X I d ] 0 has rank d Y = X T X

7 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 6 Thus υ opt = Drop low-rank constraint: min X,Y s.t. Z = ( tr bij b T ijz ) d 2 ij [ Y X T X I d ] 0, rankz = d υ sdp := min X,Y s.t. Z = tr ( b ij b T ijz ) d 2 ij [ Y X T X I d ] 0 Biswas and Ye gave probabilistic interpretation of SDP soln, and proposed a distributed (domain partitioning) method for solving SDP when n > 100. Refine soln by gradient search (Liang, Wang, Ye 04)..

8 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 7 SOCP Relaxation Second-order cone program (SOCP) is easier to solve than SDP. Q: Is SOCP relaxation a good approximation? Or a mixed SDP-SOCP relaxation? Q: How to efficiently solve SOCP relaxation?

9 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 8 SOCP Relaxation υ opt = min x 1,...,x m,y ij yij d 2 ij s.t. y ij = x i x j 2 (i, j) A Relax = to constraint: υ socp = min x 1,...,x m,y ij y ij d 2 ij s.t. y ij x i x j 2 (i, j) A y x 2 y + 1 (y 1, 2x) (y + 1, y 1, 2x) K d+2 (also Doherty,Pister,El Ghaoui 03)

10 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 9 Properties of SDP, SOCP Relaxations d = 2, n = 3, m = 1, d 12 = d 13 = 2 Problem: 0 = min x 1 =(α,β) R 2 (1 α) 2 + β ( 1 α) 2 + β 2 4

11 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 10 SDP Relaxation: 0 = min y 2α 3 + y + 2α 3 x 1 =(α,β) R 2 y R s.t. y α β α β 0 1 If solve SDP by IP method, then likely get analy. center of soln set.

12 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 11 SOCP Relaxation: 0 = min x 1 =(α,β) R 2 y,z R y 4 + z 4 s.t. y (1 α) 2 + β 2 z ( 1 α) 2 + β 2 If solve SOCP by IP method, then likely get analy. center of soln set.

13 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 12 Properties of SDP & SOCP Relaxations Fact 1: υ socp υ sdp. If υ socp = υ sdp, then {SOCP (x 1,..., x m ) solns} {SDP (x 1,..., x m ) solns}. Fact 2: If (x 1,..., x m, y ij ) is the analytic center soln of SOCP, then x i conv {x j } j N (i) i m with N (i) := {j : (i, j) A}.

14 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 13 True soln (m = 900, n = 1000, nhbrs if dist<.06) SOCP soln found by IP method (SeDuMi)

15 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 14 Fact 3: If X = [x 1 x m ], Y is a relative-interior SDP soln (e.g., analytic center), then for each i, x i 2 = Y ii = x i appears in every SDP soln. Fact 4: If (x 1,..., x m, y ij ) is a relative-interior SOCP soln (e.g., analytic center), then for each i, x i x j 2 = y ij for some j N (i) x i appears in every SOCP soln.

16 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 15 Error Bounds What if distances have errors? d 2 ij = d 2 ij + δ ij, where δ ij R and d ij := x true i x true j (x true i = x i i > m). Fact 5: If (x 1,..., x m, y ij ) is a relative-interior SOCP soln corresp. (d ij ) and δ ij δ, then for each i, x i x j 2 = y ij for some j N (i) = x i x true i = O( δ ij ). Fact 6: As δ ij 0, (analytic center SOCP soln corresp. (d ij ) ) (analytic center SOCP soln corresp. ( d ij ) ).

17 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 16 Solving SOCP Relaxation I: IP Method min x 1,...,x m,y ij yij d 2 ij s.t. y ij x i x j 2 (i, j) A Put into standard SOCP form: min u ij s.t. x i x j w ij = 0 (i, j) A y ij u ij = d 2 ij (i, j) A α ij = 1 2 (i, j) A u ij 0, (α ij, y ij, w ij ) Rcone d+2 (i, j) A with Rcone d+2 := {(α, y, w) R R R d : w 2 /2 αy}. Solve by an IP method, e.g., SeDuMi 1.05 (Sturm 01).

18 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 17 Solving SOCP Relaxation II: Smoothing + Coordinate Gradient Descent So SOCP relaxation: min y z y d2 = max{0, z d 2 } min x 1,...,x m max{0, x i x j 2 d 2 ij} This is an unconstrained nonsmooth convex program. Smooth approximation: max{0, t} µh(t/µ) (µ > 0) h smooth convex, lim t h(t) = lim t h(t) t = 0. We use h(t) = ((t 2 + 4) 1/2 + t)/2 (CHKS).

19 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 18 SOCP approximation: min f µ (x 1,.., x m ) := ( ) xi x j 2 d 2 ij µh µ Add a smoothed log-barrier term µ ( ( )) d 2 ij x i x j 2 log µh µ Solve the smooth approximation using coordinate gradient descent (SCGD): If xi f µ = Ω(µ), then update x i by moving it along the Newton direction [ 2 x i x i f µ ] 1 xi f µ, with Armijo stepsize rule, and re-iterate. Decrease µ when xi f µ = O(µ) i. µ init = 1e 5. µ end = 1e 9. Decrease µ by a factor of 10. Code in Fortran. Computation easily distributes.

20 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 19 Simulation Results Uniformly generate x true 1,..., x true n in [0, 1] 2, m =.9n, two pts are nhbrs if dist< radior. Set d ij = x true i ɛ ij N(0, 1) (Biswas, Ye 03) x true j 1 + ɛ ij nf, Solve SOCP using SeDuMi 1.05 (1.1?) or SCGD. Sensor i is uniquely positioned if x i x j 2 y ij 10 7 d ij for some j N (i).

21 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 20 SeDuMi SCGD n m nf cpu/m up /Err up cpu/m up /Err up /402/7.2e-4.2/357/3.8e /473/1.8e-3.4/442/1.5e /554/1.5e-2 1.6/518/1.1e /1534/4.3e-4 0.8/1541/3.3e /1464/3.6e-3 1.8/1466/3.6e /1710/5.1e-2 2.9/1707/5.1e /2851/4.0e-4 1.6/2844/3.2e /2938/3.2e-3 5.1/2894/3.0e /3073/1.0e-2 6.1/3020/9.1e-3 Table 1: radior =.06(.035) for n = 1000, 2000(4000) cpu (minutes) times are on a HP DL360 workstation, running Linux 3.5. m up := number of uniquely positioned sensors. Err up := max i uniq. pos. x i x true i.

22 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 21 = anchors = true positions of sensors = SOCP soln found by SCGD (m = 900, n = 1000, radior =.06, nf =.01)

23 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 22 Comparing SDP and SOCP analytic center solns on small noisy problem. = anchors = true positions of sensors = SDP soln found by SeDuMi (left), SOCP soln found by SCGD (right). (m = 60, n = 64, radior =.3, nf =.1)

24 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 23 Mixed SDP-SOCP Relaxation Choose 0 l m. Let B := {(i, j) A : i l, j l}. min x 1,...,x m,y ij,y (i,j) B s.t. Z = tr ( b ij b T ijz ) d 2 ij + [ Y X T X I d ] 0 y ij d 2 ij \B X = [x 1 x l ] y ij x i x j 2 (i, j) A \ B with b ij := [ ] Il 0 0 (e 0 0 A i e j ). Easier to solve than SDP? As good a relaxation? Properties?

25 SOCP RELAXATION OF SENSOR NETWORK LOCALIZATION 24 Conclusions & Future Directions SOCP relaxation may be a good pre-processor. Relative interior soln is key. Faster methods for solving SOCP? Exploit network structures of SOCP? (For d = 1, solvable by ɛ-relaxation method (Bertsekas,Polymenakos,T 97)) Error bound for SDP relaxation? Additional (convex) constraints? x i x j d ij 2? Other objective functions, e.g., Replace 2-norm by a p-norm (1 p ) = p-order cone relaxation. n Q: For x 1,..., x n R d, is arg min x x i p p conv {x 1,..., x n }? x (1 < p < ) A: Yes for d 2. No for d 3. i=1

SOCP Relaxation of Sensor Network Localization

SOCP Relaxation of Sensor Network Localization SOCP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle University of Vienna/Wien June 19, 2006 Abstract This is a talk given at Univ. Vienna, 2006. SOCP

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IASI, Roma September 16, 2008 (joint work with Ting Kei Pong) ON SDP/ESDP RELAXATION OF

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle Southern California Optimization Day, UCSD March 19, 2009 (joint work with Ting Kei Pong)

More information

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Nathan Krislock, Henry Wolkowicz Department of Combinatorics & Optimization University of Waterloo First Alpen-Adria Workshop on Optimization

More information

SDP Relaxation of Quadratic Optimization with Few Homogeneous Quadratic Constraints

SDP Relaxation of Quadratic Optimization with Few Homogeneous Quadratic Constraints SDP Relaxation of Quadratic Optimization with Few Homogeneous Quadratic Constraints Paul Tseng Mathematics, University of Washington Seattle LIDS, MIT March 22, 2006 (Joint work with Z.-Q. Luo, N. D. Sidiropoulos,

More information

The Graph Realization Problem

The Graph Realization Problem The Graph Realization Problem via Semi-Definite Programming A. Y. Alfakih alfakih@uwindsor.ca Mathematics and Statistics University of Windsor The Graph Realization Problem p.1/21 The Graph Realization

More information

From Evolutionary Biology to Interior-Point Methods

From Evolutionary Biology to Interior-Point Methods From Evolutionary Biology to Interior-Point Methods Paul Tseng Mathematics, University of Washington Seattle WCOM, UBC Kelowna October 27, 2007 Joint work with Immanuel Bomze and Werner Schachinger (Univ.

More information

Accelerated Proximal Gradient Methods for Convex Optimization

Accelerated Proximal Gradient Methods for Convex Optimization Accelerated Proximal Gradient Methods for Convex Optimization Paul Tseng Mathematics, University of Washington Seattle MOPTA, University of Guelph August 18, 2008 ACCELERATED PROXIMAL GRADIENT METHODS

More information

Further Relaxations of the SDP Approach to Sensor Network Localization

Further Relaxations of the SDP Approach to Sensor Network Localization Further Relaxations of the SDP Approach to Sensor Network Localization Zizhuo Wang, Song Zheng, Stephen Boyd, and Yinyu Ye September 27, 2006; Revised May 2, 2007 Abstract Recently, a semi-definite programming

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

Network Localization via Schatten Quasi-Norm Minimization

Network Localization via Schatten Quasi-Norm Minimization Network Localization via Schatten Quasi-Norm Minimization Anthony Man-Cho So Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong (Joint Work with Senshan Ji Kam-Fung

More information

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305,

More information

Facial reduction for Euclidean distance matrix problems

Facial reduction for Euclidean distance matrix problems Facial reduction for Euclidean distance matrix problems Nathan Krislock Department of Mathematical Sciences Northern Illinois University, USA Distance Geometry: Theory and Applications DIMACS Center, Rutgers

More information

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS Sercan Yıldız syildiz@samsi.info in collaboration with Dávid Papp (NCSU) OPT Transition Workshop May 02, 2017 OUTLINE Polynomial optimization and

More information

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017

Solution to EE 617 Mid-Term Exam, Fall November 2, 2017 Solution to EE 67 Mid-erm Exam, Fall 207 November 2, 207 EE 67 Solution to Mid-erm Exam - Page 2 of 2 November 2, 207 (4 points) Convex sets (a) (2 points) Consider the set { } a R k p(0) =, p(t) for t

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley A. d Aspremont, INFORMS, Denver,

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints

Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints Randomized Coordinate Descent Methods on Optimization Problems with Linearly Coupled Constraints By I. Necoara, Y. Nesterov, and F. Glineur Lijun Xu Optimization Group Meeting November 27, 2012 Outline

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm

Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Reconstruction of Block-Sparse Signals by Using an l 2/p -Regularized Least-Squares Algorithm Jeevan K. Pant, Wu-Sheng Lu, and Andreas Antoniou University of Victoria May 21, 2012 Compressive Sensing 1/23

More information

Leader selection in consensus networks

Leader selection in consensus networks Leader selection in consensus networks Mihailo Jovanović www.umn.edu/ mihailo joint work with: Makan Fardad Fu Lin 2013 Allerton Conference Consensus with stochastic disturbances 1 RELATIVE INFORMATION

More information

Further Relaxations of the SDP Approach to Sensor Network Localization

Further Relaxations of the SDP Approach to Sensor Network Localization Further Relaxations of the SDP Approach to Sensor Network Localization Zizhuo Wang, Song Zheng, Stephen Boyd, and inyu e September 27, 2006 Abstract Recently, a semidefinite programming (SDP) relaxation

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Raphael Louca & Eilyan Bitar School of Electrical and Computer Engineering American Control Conference (ACC) Chicago,

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

A Gradient Search Method to Round the Semidefinite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization

A Gradient Search Method to Round the Semidefinite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization A Gradient Search Method to Round the Semidefinite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization Tzu-Chen Liang, Ta-Chung Wang, and Yinyu Ye August 28, 2004; Updated October

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Optimal Value Function Methods in Numerical Optimization Level Set Methods

Optimal Value Function Methods in Numerical Optimization Level Set Methods Optimal Value Function Methods in Numerical Optimization Level Set Methods James V Burke Mathematics, University of Washington, (jvburke@uw.edu) Joint work with Aravkin (UW), Drusvyatskiy (UW), Friedlander

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Sequential convex programming,: value function and convergence

Sequential convex programming,: value function and convergence Sequential convex programming,: value function and convergence Edouard Pauwels joint work with Jérôme Bolte Journées MODE Toulouse March 23 2016 1 / 16 Introduction Local search methods for finite dimensional

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

An unconstrained smooth minimization reformulation of the second-order cone complementarity problem

An unconstrained smooth minimization reformulation of the second-order cone complementarity problem Math. Program., Ser. B 104, 93 37 005 Digital Object Identifier DOI 10.1007/s10107-005-0617-0 Jein-Shan Chen Paul Tseng An unconstrained smooth minimization reformulation of the second-order cone complementarity

More information

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS Kartik K. Sivaramakrishnan Department of Mathematics North Carolina State University kksivara@ncsu.edu http://www4.ncsu.edu/

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

More First-Order Optimization Algorithms

More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

More information

Part 2: Linesearch methods for unconstrained optimization. Nick Gould (RAL)

Part 2: Linesearch methods for unconstrained optimization. Nick Gould (RAL) Part 2: Linesearch methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Introducing PENLAB a MATLAB code for NLP-SDP

Introducing PENLAB a MATLAB code for NLP-SDP Introducing PENLAB a MATLAB code for NLP-SDP Michal Kočvara School of Mathematics, The University of Birmingham jointly with Jan Fiala Numerical Algorithms Group Michael Stingl University of Erlangen-Nürnberg

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming

A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming A Randomized Nonmonotone Block Proximal Gradient Method for a Class of Structured Nonlinear Programming Zhaosong Lu Lin Xiao March 9, 2015 (Revised: May 13, 2016; December 30, 2016) Abstract We propose

More information

Cuts for mixed 0-1 conic programs

Cuts for mixed 0-1 conic programs Cuts for mixed 0-1 conic programs G. Iyengar 1 M. T. Cezik 2 1 IEOR Department Columbia University, New York. 2 GERAD Université de Montréal, Montréal TU-Chemnitz Workshop on Integer Programming and Continuous

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Graphical LASSO Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox February 26 th, 2013 Emily Fox 2013 1 Multivariate Normal Models

More information

Lift-and-Project Techniques and SDP Hierarchies

Lift-and-Project Techniques and SDP Hierarchies MFO seminar on Semidefinite Programming May 30, 2010 Typical combinatorial optimization problem: max c T x s.t. Ax b, x {0, 1} n P := {x R n Ax b} P I := conv(k {0, 1} n ) LP relaxation Integral polytope

More information

Mathematical Optimization Models and Applications

Mathematical Optimization Models and Applications Mathematical Optimization Models and Applications Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 1, 2.1-2,

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information

Multivariate Normal Models

Multivariate Normal Models Case Study 3: fmri Prediction Coping with Large Covariances: Latent Factor Models, Graphical Models, Graphical LASSO Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Sparse Linear Programg via Primal and Dual Augmented Coordinate Descent Presenter: Joint work with Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar and Inderjit Dhillon. Sparse Linear Program Given vectors

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

A PARALLEL TWO-STAGE INTERIOR POINT DECOMPOSITION ALGORITHM FOR LARGE SCALE STRUCTURED SEMIDEFINITE PROGRAMS

A PARALLEL TWO-STAGE INTERIOR POINT DECOMPOSITION ALGORITHM FOR LARGE SCALE STRUCTURED SEMIDEFINITE PROGRAMS A PARALLEL TWO-STAGE INTERIOR POINT DECOMPOSITION ALGORITHM FOR LARGE SCALE STRUCTURED SEMIDEFINITE PROGRAMS Kartik K. Sivaramakrishnan Research Division Axioma, Inc., Atlanta kksivara@axiomainc.com http://www4.ncsu.edu/

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

Block stochastic gradient update method

Block stochastic gradient update method Block stochastic gradient update method Yangyang Xu and Wotao Yin IMA, University of Minnesota Department of Mathematics, UCLA November 1, 2015 This work was done while in Rice University 1 / 26 Stochastic

More information

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms

Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms Agenda Interior Point Methods 1 Barrier functions 2 Analytic center 3 Central path 4 Barrier method 5 Primal-dual path following algorithms 6 Nesterov Todd scaling 7 Complexity analysis Interior point

More information

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Rekha R. Thomas University of Washington, Seattle References Monique Laurent, Sums of squares, moment matrices and optimization

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Lecture 9 Sequential unconstrained minimization

Lecture 9 Sequential unconstrained minimization S. Boyd EE364 Lecture 9 Sequential unconstrained minimization brief history of SUMT & IP methods logarithmic barrier function central path UMT & SUMT complexity analysis feasibility phase generalized inequalities

More information

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods OUTLINE l p -Norm Constrained Quadratic Programming: Conic Approximation Methods Wenxun Xing Department of Mathematical Sciences Tsinghua University, Beijing Email: wxing@math.tsinghua.edu.cn OUTLINE OUTLINE

More information

A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS

A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS Journal of the Operations Research Society of Japan 2003, Vol. 46, No. 2, 164-177 2003 The Operations Research Society of Japan A NEW SECOND-ORDER CONE PROGRAMMING RELAXATION FOR MAX-CUT PROBLEMS Masakazu

More information

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems Kim-Chuan Toh Sangwoon Yun March 27, 2009; Revised, Nov 11, 2009 Abstract The affine rank minimization

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Second-order cone programming

Second-order cone programming Outline Second-order cone programming, PhD Lehigh University Department of Industrial and Systems Engineering February 10, 2009 Outline 1 Basic properties Spectral decomposition The cone of squares The

More information

Solving linear and non-linear SDP by PENNON

Solving linear and non-linear SDP by PENNON Solving linear and non-linear SDP by PENNON Michal Kočvara School of Mathematics, The University of Birmingham University of Warwick, February 2010 Outline Why nonlinear SDP? PENNON the new generation

More information

arxiv: v1 [math.oc] 9 Sep 2013

arxiv: v1 [math.oc] 9 Sep 2013 Linearly Convergent First-Order Algorithms for Semi-definite Programming Cong D. Dang, Guanghui Lan arxiv:1309.2251v1 [math.oc] 9 Sep 2013 October 31, 2018 Abstract In this paper, we consider two formulations

More information

Lecture 3. Optimization Problems and Iterative Algorithms

Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

A derivative-free nonmonotone line search and its application to the spectral residual method

A derivative-free nonmonotone line search and its application to the spectral residual method IMA Journal of Numerical Analysis (2009) 29, 814 825 doi:10.1093/imanum/drn019 Advance Access publication on November 14, 2008 A derivative-free nonmonotone line search and its application to the spectral

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

First-order methods for structured nonsmooth optimization

First-order methods for structured nonsmooth optimization First-order methods for structured nonsmooth optimization Sangwoon Yun Department of Mathematics Education Sungkyunkwan University Oct 19, 2016 Center for Mathematical Analysis & Computation, Yonsei University

More information

Lecture: Introduction to LP, SDP and SOCP

Lecture: Introduction to LP, SDP and SOCP Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn Acknowledgement:

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term;

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term; Chapter 2 Gradient Methods The gradient method forms the foundation of all of the schemes studied in this book. We will provide several complementary perspectives on this algorithm that highlight the many

More information

Low-Rank Factorization Models for Matrix Completion and Matrix Separation

Low-Rank Factorization Models for Matrix Completion and Matrix Separation for Matrix Completion and Matrix Separation Joint work with Wotao Yin, Yin Zhang and Shen Yuan IPAM, UCLA Oct. 5, 2010 Low rank minimization problems Matrix completion: find a low-rank matrix W R m n so

More information

arxiv: v1 [math.oc] 1 Jul 2016

arxiv: v1 [math.oc] 1 Jul 2016 Convergence Rate of Frank-Wolfe for Non-Convex Objectives Simon Lacoste-Julien INRIA - SIERRA team ENS, Paris June 8, 016 Abstract arxiv:1607.00345v1 [math.oc] 1 Jul 016 We give a simple proof that the

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Lecture 4: Linear and quadratic problems

Lecture 4: Linear and quadratic problems Lecture 4: Linear and quadratic problems linear programming examples and applications linear fractional programming quadratic optimization problems (quadratically constrained) quadratic programming second-order

More information

Constrained Minimization and Multigrid

Constrained Minimization and Multigrid Constrained Minimization and Multigrid C. Gräser (FU Berlin), R. Kornhuber (FU Berlin), and O. Sander (FU Berlin) Workshop on PDE Constrained Optimization Hamburg, March 27-29, 2008 Matheon Outline Successive

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

Non-negative Matrix Factorization via accelerated Projected Gradient Descent

Non-negative Matrix Factorization via accelerated Projected Gradient Descent Non-negative Matrix Factorization via accelerated Projected Gradient Descent Andersen Ang Mathématique et recherche opérationnelle UMONS, Belgium Email: manshun.ang@umons.ac.be Homepage: angms.science

More information

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION Kartik K. Sivaramakrishnan Department of Mathematics North Carolina State University

More information

Preliminaries Overview OPF and Extensions. Convex Optimization. Lecture 8 - Applications in Smart Grids. Instructor: Yuanzhang Xiao

Preliminaries Overview OPF and Extensions. Convex Optimization. Lecture 8 - Applications in Smart Grids. Instructor: Yuanzhang Xiao Convex Optimization Lecture 8 - Applications in Smart Grids Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 32 Today s Lecture 1 Generalized Inequalities and Semidefinite Programming

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

Matrix Factorizations: A Tale of Two Norms

Matrix Factorizations: A Tale of Two Norms Matrix Factorizations: A Tale of Two Norms Nati Srebro Toyota Technological Institute Chicago Maximum Margin Matrix Factorization S, Jason Rennie, Tommi Jaakkola (MIT), NIPS 2004 Rank, Trace-Norm and Max-Norm

More information

A class of Smoothing Method for Linear Second-Order Cone Programming

A class of Smoothing Method for Linear Second-Order Cone Programming Columbia International Publishing Journal of Advanced Computing (13) 1: 9-4 doi:1776/jac1313 Research Article A class of Smoothing Method for Linear Second-Order Cone Programming Zhuqing Gui *, Zhibin

More information

SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS

SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS Journal of the Operations Research Society of Japan 2008, Vol. 51, No. 3, 241-264 SPARSE SECOND ORDER CONE PROGRAMMING FORMULATIONS FOR CONVEX OPTIMIZATION PROBLEMS Kazuhiro Kobayashi Sunyoung Kim Masakazu

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB 1 INTERIOR-POINT METHODS FOR SECOND-ORDER-CONE AND SEMIDEFINITE PROGRAMMING ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB Outline 2 Introduction

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information