# Second-order cone programming

Save this PDF as:

Size: px
Start display at page: ## Transcription

1 Outline Second-order cone programming, PhD Lehigh University Department of Industrial and Systems Engineering February 10, 2009

2 Outline 1 Basic properties Spectral decomposition The cone of squares The arrowhead operator 2 Notation Optimality conditions barrier functions perturbed optimality The Newton system 3 4

3 Basic properties Spectral decomposition The cone of squares The arrowhead operator A new For u, v R n define: u v = u T v; u 1 v 2:n + v 1 u 2:n ). Theorem Properties of ) 1 Distributive law: u v + w) = u v + u w. 2 Commutative law: u v = v u. 3 The unit element is ι = 1; 0), i.e., u ι = ι u = u. 4 Using the notation u 2 = u u we have u u 2 v) = u 2 u v). 5 Power associativity: u p = u u is well-defined. 6 Associativity does not hold in general.

4 Basic properties Spectral decomposition The cone of squares The arrowhead operator Spectral decomposition Every vector u R n can be written as u = λ 1 c 1) + λ 2 c 2), where c 1) and c 2) are on the boundary of the cone, and c 1)T c 2) = 0 c 1) c 2) = 0 c 1) c 1) = c 1) c 2) c 2) = c 2) c 1) + c 2) = ι c 1), c 2) : Jordan frame λ 1, λ 2 : eigenvalues or spectral values: λ 1,2 u) = u 1 ± u 2:n 2 Naturally: u L λ 1,2 u) 0

5 Basic properties Spectral decomposition The cone of squares The arrowhead operator The cone of squares Theorem A vector x is in a second order cone i.e., x 1 x 2:n 2 ) if and only if it can be written as the square of a vector under the multiplication, i.e., x = u u. u F = λ λ2 2 = 2 u 2, u 2 = max { λ 1, λ 2 } = u 1 + u 2:n 2, u 1 = λ 1 1 c1) + λ 1 2 c2), u 1 2 = λ c1) + λ c 2), where u u 1 = u 1 u = ι and u 1 2 u 1 2 = u.

6 Basic properties Spectral decomposition The cone of squares The arrowhead operator The arrowhead operator Since the mapping v u v is linear, it can be represented with a matrix. u 1 u 2... u n u 2 u 1 Arr u) =...., u n u 1 Now we have u v = Arr u) v = Arr u) Arr v) ι. Quadratic representation: Q u = 2 Arr u) 2 Arr u 2), thus Q u v) = 2u u v) u 2 v is a quadratic function.

7 Primal-dual interior-point methods: notation Outline Notation Optimality conditions barrier functions perturbed optimality The Newton system K = L n1 L nk, A = A 1,..., A k), x = x 1 ;... ; x k), s = s 1 ;... ; s k), c = c 1 ;... ; c k). With this notation we can write k Ax = A i x i, i=1 ) A T y = A 1 T y;,... ; A k T y. Arr u) and Q u are block diagonal matrices built from the blocks Arr u i) and Q u i, respectively.

8 Notation Optimality conditions barrier functions perturbed optimality The Newton system Duality and optimality Weak duality always holds Primal dual) strict feasibility implies strong duality and dual primal) solvability Under strong duality, the optimality conditions for second order conic optimization are Ax = b, x K A T y + s = c, s K x s = 0. An equivalent form of the complementarity condition is c T x b T y = x T s = 0.

9 Notation Optimality conditions barrier functions perturbed optimality The Newton system The central path using barrier functions If x int L, consider ) φx) = ln x 2 1 x 2:n 2 2 = ln λ 1 x) ln λ 2 x), Goes to if x is getting close to the boundary of the cone. Derivatives: φx) = 2 x 1; x 2:n ) T x 2 1 x 2:n 2 2 = 2 x 1) T, where the inverse is taken in the Jordan algebra.

10 Notation Optimality conditions barrier functions perturbed optimality The Newton system The central path Perturbed optimality conditions: Ax = b, x K A T y + s = c, s K where ι i = 1; 0;... ; 0) R n i. Newton system: x i s i = 2µι i, i = 1,..., k, A x = 0 A T y + s = 0, x i s i + x i s i = 2µι i x i s i, i = 1,..., k, where x = x 1 ;... ; x k ) and s = s 1 ;... ; s k ).

11 Newton system - rewritten Outline Notation Optimality conditions barrier functions perturbed optimality The Newton system A T A Arr s) I Arr x) y x s = 0 0 2µι x s, where ι = ι 1 ;... ; ι k ). Eliminating x and s: A Arr s) 1 Arr x) A T ) y = A Arr s) 1 2µι x s). Problems: Not symmetric May be singular Solution: symmetrization!

12 Outline min Q p 1c ) T Qp x) ) AQp 1 Qp x) = b Q p x K max b T y ) T AQp 1 y + Qp 1s = Q p 1c Q p 1s K Lemma If p int K, then 1 Q p Q p 1 = I. 2 The cone K is invariant, i.e., Q p K) = K. 3 The scaled and the original problems are equivalent.

13 Scaled optimality conditions Outline ) AQp 1 Qp x) = 0 ) T AQp 1 y + Qp 1 s = 0, Q p x) Q p 1 s ) + Q p x) Q p 1s ) = 2µι Q p x) Q p 1s ). Simplifies to A x = 0 A T y + s = 0, Q p x) Q p 1 s ) + Q p x) Q p 1s ) = 2µι Q p x) Q p 1s ). The last equation cannot be simplified!

14 The choice of p AHO: p = ι: does not provide a nonsingular Newton system HKM: p = s 1/2 or p = x 1/2, in which case Q p 1s = ι or Q p x = ι. Implemented in SDPT3. NT: Most popular one. p = Q x 1/2 Q x 1/2s) 1/2) 1/2 = Q s 1/2 Q s 1/2x) 1/2) 1/2. Simplifies to Q p x = Q p 1s. Implemented in SeDuMi, MOSEK, SDPT3.

15 Centrality measures µx, s) = k i=1 x it s i n i. w = w 1 ;... ; w k ), where w i = Q 1/2 x s i. i δ F x, s) := Q x 1/2 s µι F := k λ 1 w i ) µ) 2 + λ 2 w i ) µ) 2 i=1 δ x, s) := Q x 1/2 s µι 2 := max { λ 1w i ) µ, λ 2 w i ) µ } i=1,...,k δ x, s) := Qx 1/2 s µι) := µ min {λ 1w i ), λ 2 w 2 )}, i=1,...,k Neighbourhoods δ x, s) δ x, s) δ F x, s). N γ) := {x, y, s) strictly feasible : δx, s) γµx, s)}. δx, s) = δ F x, s): narrow neighbourhood δx, s) = δ x, s) wide neighbourhood

16 IPM for SOCP Theorem Short-step IPM for SOCO) Choose γ = and ζ = Assume that we have a starting point x 0, y 0, s 0 ) N F γ). Compute the Newton step from the scaled Newton ) system. In every iteration, µ is decreased to 1 ζ k µ, i.e., θ = ζ k, and the stepsize is α = 1. This finds an ε-optimal solution for the second order conic optimization problem with k second order cones in at most ) k 1 O log ε iterations. Independent of m, n!) The cost of one iteration is ) k O m 3 + m 2 n +. i=1 n 2 i

### Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

### The Q Method for Symmetric Cone Programmin The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programmin Farid Alizadeh and Yu Xia alizadeh@rutcor.rutgers.edu, xiay@optlab.mcma Large Scale Nonlinear and Semidefinite Progra

### 2.1. Jordan algebras. In this subsection, we introduce Jordan algebras as well as some of their basic properties. FULL NESTEROV-TODD STEP INTERIOR-POINT METHODS FOR SYMMETRIC OPTIMIZATION G. GU, M. ZANGIABADI, AND C. ROOS Abstract. Some Jordan algebras were proved more than a decade ago to be an indispensable tool

### A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR SYMMETRIC OPTIMIZATION BASED ON DARVAY'S TECHNIQUE Yugoslav Journal of Operations Research 24 (2014) Number 1, 35-51 DOI: 10.2298/YJOR120904016K A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR SYMMETRIC OPTIMIZATION BASED ON DARVAY'S TECHNIQUE BEHROUZ

### 15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

### A new primal-dual path-following method for convex quadratic programming Volume 5, N., pp. 97 0, 006 Copyright 006 SBMAC ISSN 00-805 www.scielo.br/cam A new primal-dual path-following method for convex quadratic programming MOHAMED ACHACHE Département de Mathématiques, Faculté

### 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

### Research Note. A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization Iranian Journal of Operations Research Vol. 4, No. 1, 2013, pp. 88-107 Research Note A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization B. Kheirfam We

### Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

### Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry assoc. prof., Ph.D. 1 1 UNM - Faculty of information studies Edinburgh, 16. September 2014 Outline Introduction Definition

### Continuous Optimisation, Chpt 9: Semidefinite Problems Continuous Optimisation, Chpt 9: Semidefinite Problems Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2016co.html version: 21/11/16 Monday

### Lecture 17: Primal-dual interior-point methods part II 10-725/36-725: Convex Optimization Spring 2015 Lecture 17: Primal-dual interior-point methods part II Lecturer: Javier Pena Scribes: Pinchao Zhang, Wei Ma Note: LaTeX template courtesy of UC Berkeley EECS

### 18. Primal-dual interior-point methods L. Vandenberghe EE236C (Spring 213-14) 18. Primal-dual interior-point methods primal-dual central path equations infeasible primal-dual method primal-dual method for self-dual embedding 18-1 Symmetric

### Agenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primal-dual path following algorithms Agenda Interior Point Methods 1 Barrier functions 2 Analytic center 3 Central path 4 Barrier method 5 Primal-dual path following algorithms 6 Nesterov Todd scaling 7 Complexity analysis Interior point

### Apolynomialtimeinteriorpointmethodforproblemswith nonconvex constraints Apolynomialtimeinteriorpointmethodforproblemswith nonconvex constraints Oliver Hinder, Yinyu Ye Department of Management Science and Engineering Stanford University June 28, 2018 The problem I Consider

### A PRIMAL-DUAL INTERIOR POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMS. 1. Introduction Consider the quadratic program (PQ) in standard format: STUDIA UNIV. BABEŞ BOLYAI, INFORMATICA, Volume LVII, Number 1, 01 A PRIMAL-DUAL INTERIOR POINT ALGORITHM FOR CONVEX QUADRATIC PROGRAMS MOHAMED ACHACHE AND MOUFIDA GOUTALI Abstract. In this paper, we propose

### Lecture: Algorithms for LP, SOCP and SDP 1/53 Lecture: Algorithms for LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

### IMPLEMENTATION OF INTERIOR POINT METHODS IMPLEMENTATION OF INTERIOR POINT METHODS IMPLEMENTATION OF INTERIOR POINT METHODS FOR SECOND ORDER CONIC OPTIMIZATION By Bixiang Wang, Ph.D. A Thesis Submitted to the School of Graduate Studies in Partial

### Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

### Tamás Terlaky George N. and Soteria Kledaras 87 Endowed Chair Professor. Chair, Department of Industrial and Systems Engineering Lehigh University 5th SJOM Bejing, 2011 Cone Linear Optimization (CLO) From LO, SOCO and SDO Towards Mixed-Integer CLO Tamás Terlaky George N. and Soteria Kledaras 87 Endowed Chair Professor. Chair, Department of Industrial

### Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

### Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods for Convex Quadratic and Convex Nonlinear Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

### Lecture: Introduction to LP, SDP and SOCP Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn Acknowledgement:

### Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

### Primal-dual path-following algorithms for circular programming Primal-dual path-following algorithms for circular programming Baha Alzalg Department of Mathematics, The University of Jordan, Amman 1194, Jordan July, 015 Abstract Circular programming problems are a

### Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

### Interior Point Methods in Mathematical Programming Interior Point Methods in Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Brazil Journées en l honneur de Pierre Huard Paris, novembre 2008 01 00 11 00 000 000 000 000

### Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

### 12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

### Tamás Terlaky George N. and Soteria Kledaras 87 Endowed Chair Professor. Chair, Department of Industrial and Systems Engineering Lehigh University BME - 2011 Cone Linear Optimization (CLO) From LO, SOCO and SDO Towards Mixed-Integer CLO Tamás Terlaky George N. and Soteria Kledaras 87 Endowed Chair Professor. Chair, Department of Industrial and Systems

### EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

### 1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

### Duality revisited. Javier Peña Convex Optimization /36-725 Duality revisited Javier Peña Conve Optimization 10-725/36-725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and

### Supplement: Universal Self-Concordant Barrier Functions IE 8534 1 Supplement: Universal Self-Concordant Barrier Functions IE 8534 2 Recall that a self-concordant barrier function for K is a barrier function satisfying 3 F (x)[h, h, h] 2( 2 F (x)[h, h]) 3/2,

### Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Robert M. Freund M.I.T. June, 2010 from papers in SIOPT, Mathematics

### A FULL-NEWTON STEP INFEASIBLE-INTERIOR-POINT ALGORITHM COMPLEMENTARITY PROBLEMS Yugoslav Journal of Operations Research 25 (205), Number, 57 72 DOI: 0.2298/YJOR3055034A A FULL-NEWTON STEP INFEASIBLE-INTERIOR-POINT ALGORITHM FOR P (κ)-horizontal LINEAR COMPLEMENTARITY PROBLEMS Soodabeh

### Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

### CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

### Continuous Optimisation, Chpt 9: Semidefinite Optimisation Continuous Optimisation, Chpt 9: Semidefinite Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 28/11/17 Monday

### Interior Point Methods for Linear Programming: Motivation & Theory School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods for Linear Programming: Motivation & Theory Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

### Primal-dual IPM with Asymmetric Barrier Primal-dual IPM with Asymmetric Barrier Yurii Nesterov, CORE/INMA (UCL) September 29, 2008 (IFOR, ETHZ) Yu. Nesterov Primal-dual IPM with Asymmetric Barrier 1/28 Outline 1 Symmetric and asymmetric barriers

### The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programming Farid Alizadeh Yu Xia October 5, 010 Communicated by F. Potra Abstract The Q method of semidefinite programming, developed by Alizadeh, Haeberly and Overton,

### Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

### Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

### Interior Point Methods for Nonlinear Optimization Interior Point Methods for Nonlinear Optimization Imre Pólik 1 and Tamás Terlaky 2 1 School of Computational Engineering and Science, McMaster University, Hamilton, Ontario, Canada, imre@polik.net 2 School

### Basic Concepts in Linear Algebra Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University February 2, 2015 Grady B Wright Linear Algebra Basics February 2, 2015 1 / 39 Numerical Linear Algebra Linear

### Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

### On implementing a primal-dual interior-point method for conic quadratic optimization On implementing a primal-dual interior-point method for conic quadratic optimization E. D. Andersen, C. Roos, and T. Terlaky December 18, 2000 Abstract Conic quadratic optimization is the problem of minimizing

### Lecture 3. Optimization Problems and Iterative Algorithms Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex

### 1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin Sensitivity Analysis in LP and SDP Using Interior-Point Methods E. Alper Yldrm School of Operations Research and Industrial Engineering Cornell University Ithaca, NY joint with Michael J. Todd INFORMS

### SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

### A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister function Volume 30, N. 3, pp. 569 588, 2011 Copyright 2011 SBMAC ISSN 0101-8205 www.scielo.br/cam A smoothing Newton-type method for second-order cone programming problems based on a new smoothing Fischer-Burmeister

### New Infeasible Interior Point Algorithm Based on Monomial Method New Infeasible Interior Point Algorithm Based on Monomial Method Yi-Chih Hsieh and Dennis L. Bricer Department of Industrial Engineering The University of Iowa, Iowa City, IA 52242 USA (January, 1995)

### Sparse Optimization Lecture: Basic Sparse Optimization Models Sparse Optimization Lecture: Basic Sparse Optimization Models Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know basic l 1, l 2,1, and nuclear-norm

### Interior-Point Methods for Linear Optimization Interior-Point Methods for Linear Optimization Robert M. Freund and Jorge Vera March, 204 c 204 Robert M. Freund and Jorge Vera. All rights reserved. Linear Optimization with a Logarithmic Barrier Function

### The Q Method for Second-Order Cone Programming The Q Method for Second-Order Cone Programming Yu Xia Farid Alizadeh July 5, 005 Key words. Second-order cone programming, infeasible interior point method, the Q method Abstract We develop the Q method

### Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

### ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

### A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme M. Paul Laiu 1 and (presenter) André L. Tits 2 1 Oak Ridge National Laboratory laiump@ornl.gov

### L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1 L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation log-det barrier 18-1 Introduction This lecture: theoretical properties of the following

### Introduction to Applied Linear Algebra with MATLAB Sigam Series in Applied Mathematics Volume 7 Rizwan Butt Introduction to Applied Linear Algebra with MATLAB Heldermann Verlag Contents Number Systems and Errors 1 1.1 Introduction 1 1.2 Number Representation

### The matrix will only be consistent if the last entry of row three is 0, meaning 2b 3 + b 2 b 1 = 0. ) Find all solutions of the linear system. Express the answer in vector form. x + 2x + x + x 5 = 2 2x 2 + 2x + 2x + x 5 = 8 x + 2x + x + 9x 5 = 2 2 Solution: Reduce the augmented matrix [ 2 2 2 8 ] to

### We describe the generalization of Hazan s algorithm for symmetric programming ON HAZAN S ALGORITHM FOR SYMMETRIC PROGRAMMING PROBLEMS L. FAYBUSOVICH Abstract. problems We describe the generalization of Hazan s algorithm for symmetric programming Key words. Symmetric programming,

### Using Schur Complement Theorem to prove convexity of some SOC-functions Journal of Nonlinear and Convex Analysis, vol. 13, no. 3, pp. 41-431, 01 Using Schur Complement Theorem to prove convexity of some SOC-functions Jein-Shan Chen 1 Department of Mathematics National Taiwan

### Interior-Point Methods Interior-Point Methods Stephen Wright University of Wisconsin-Madison Simons, Berkeley, August, 2017 Wright (UW-Madison) Interior-Point Methods August 2017 1 / 48 Outline Introduction: Problems and Fundamentals

### Conic Linear Optimization and its Dual. yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #04 1 Conic Linear Optimization and its Dual Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

### Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs Marina Potaptchik Levent Tunçel Henry Wolkowicz September 26, 2006 University of Waterloo Department of Combinatorics & Optimization

### Following The Central Trajectory Using The Monomial Method Rather Than Newton's Method Following The Central Trajectory Using The Monomial Method Rather Than Newton's Method Yi-Chih Hsieh and Dennis L. Bricer Department of Industrial Engineering The University of Iowa Iowa City, IA 52242

### Interior Point Methods for Mathematical Programming Interior Point Methods for Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Florianópolis, Brazil EURO - 2013 Roma Our heroes Cauchy Newton Lagrange Early results Unconstrained

### A new Primal-Dual Interior-Point Algorithm for Second-Order Cone Optimization A new Primal-Dual Interior-Point Algorithm for Second-Order Cone Optimization Y Q Bai G Q Wang C Roos November 4, 004 Department of Mathematics, College Science, Shanghai University, Shanghai, 00436 Faculty

### An Infeasible Interior-Point Algorithm with full-newton Step for Linear Optimization An Infeasible Interior-Point Algorithm with full-newton Step for Linear Optimization H. Mansouri M. Zangiabadi Y. Bai C. Roos Department of Mathematical Science, Shahrekord University, P.O. Box 115, Shahrekord,

### A Second Full-Newton Step O(n) Infeasible Interior-Point Algorithm for Linear Optimization A Second Full-Newton Step On Infeasible Interior-Point Algorithm for Linear Optimization H. Mansouri C. Roos August 1, 005 July 1, 005 Department of Electrical Engineering, Mathematics and Computer Science,

### Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

### A Distributed Newton Method for Network Utility Maximization, II: Convergence A Distributed Newton Method for Network Utility Maximization, II: Convergence Ermin Wei, Asuman Ozdaglar, and Ali Jadbabaie October 31, 2012 Abstract The existing distributed algorithms for Network Utility

### More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

### Second-Order Cone Programming Second-Order Cone Programming F. Alizadeh D. Goldfarb 1 Introduction Second-order cone programming (SOCP) problems are convex optimization problems in which a linear function is minimized over the intersection

### III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

### A Full Newton Step Infeasible Interior Point Algorithm for Linear Optimization A Full Newton Step Infeasible Interior Point Algorithm for Linear Optimization Kees Roos e-mail: C.Roos@tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos 37th Annual Iranian Mathematics Conference Tabriz,

### LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

### An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem Int. Journal of Math. Analysis, Vol. 1, 2007, no. 17, 841-849 An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem Z. Kebbiche 1 and A. Keraghel Department of Mathematics,

### Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

### A full-newton step infeasible interior-point algorithm for linear programming based on a kernel function A full-newton step infeasible interior-point algorithm for linear programming based on a kernel function Zhongyi Liu, Wenyu Sun Abstract This paper proposes an infeasible interior-point algorithm with

### Primal-Dual Symmetric Interior-Point Methods from SDP to Hyperbolic Cone Programming and Beyond Primal-Dual Symmetric Interior-Point Methods from SDP to Hyperbolic Cone Programming and Beyond Tor Myklebust Levent Tunçel September 26, 2014 Convex Optimization in Conic Form (P) inf c, x A(x) = b, x

### Lecture 14 Barrier method L. Vandenberghe EE236A (Fall 2013-14) Lecture 14 Barrier method centering problem Newton decrement local convergence of Newton method short-step barrier method global convergence of Newton method predictor-corrector

### LP. Kap. 17: Interior-point methods LP. Kap. 17: Interior-point methods the simplex algorithm moves along the boundary of the polyhedron P of feasible solutions an alternative is interior-point methods they find a path in the interior of

### ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION J. Appl. Math. & Informatics Vol. 33(2015), No. 1-2, pp. 229-234 http://dx.doi.org/10.14317/jami.2015.229 ON POSITIVE SEMIDEFINITE PRESERVING STEIN TRANSFORMATION YOON J. SONG Abstract. In the setting

### The Solution of Euclidean Norm Trust Region SQP Subproblems via Second Order Cone Programs, an Overview and Elementary Introduction The Solution of Euclidean Norm Trust Region SQP Subproblems via Second Order Cone Programs, an Overview and Elementary Introduction Florian Jarre, Felix Lieder, Mathematisches Institut, Heinrich-Heine

### Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

### Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

### SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines vs for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines Ding Ma Michael Saunders Working paper, January 5 Introduction In machine learning,

### Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

### A Smoothing Newton Method for Solving Absolute Value Equations A Smoothing Newton Method for Solving Absolute Value Equations Xiaoqin Jiang Department of public basic, Wuhan Yangtze Business University, Wuhan 430065, P.R. China 392875220@qq.com Abstract: In this paper,

### Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

### Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Recap: A N N matrix A has an eigenvector x (non-zero) with corresponding Introduction to Semidefinite Programs Masakazu Kojima, Tokyo Institute of Technology Semidefinite Programming and Its Application January, 2006 Institute for Mathematical Sciences National University of