Introducing PENLAB a MATLAB code for NLP-SDP

Size: px
Start display at page:

Download "Introducing PENLAB a MATLAB code for NLP-SDP"

Transcription

1 Introducing PENLAB a MATLAB code for NLP-SDP Michal Kočvara School of Mathematics, The University of Birmingham jointly with Jan Fiala Numerical Algorithms Group Michael Stingl University of Erlangen-Nürnberg Toulouse, July, 2013

2 PENNON collection PENNON (PENalty methods for NONlinear optimization) a collection of codes for NLP, SDP and BMI one algorithm to rule them all READY PENNLP PENSDP PENBMI AMPL, MATLAB, C/Fortran MATLAB/YALMIP, SDPA, C/Fortran MATLAB/YALMIP, C/Fortran (relatively) NEW PENNON (NLP + SDP) C/Fortran extended AMPL, MATLAB,

3 The problem Optimization problems with nonlinear objective subject to nonlinear inequality and equality constraints and semidefinite bound constraints: min f(x, Y) x R n,y 1 S p 1,...,Y k S p k subject to g i (x, Y) 0, i = 1,...,m g h i (x, Y) = 0, i = 1,...,m h λ i I Y i λ i I, i = 1,...,k. (NLP-SDP)

4 The algorithm Based on penalty/barrier functions ϕ g : R R and Φ P : S p S p : g i (x) 0 p i ϕ g (g i (x)/p i ) 0, Z 0 Φ P (Z) 0, Z S p. Augmented Lagrangian of (NLP-SDP): i = 1,...,m F(x,Y,u,U,U,p)=f(x,Y)+ m g i=1 u ip i ϕ g(g i (x,y)/p i ) + k i=1 U i,φ P(λ i I Y i ) + k i=1 U i,φ P (Y i λ i I) ; here u R mg and U i, U i are Lagrange multipliers.

5 The algorithm A generalized Augmented Lagrangian algorithm (based on R. Polyak 92, Ben-Tal Zibulevsky 94, Stingl 05): Given x 1, Y 1, u 1, U 1, U 1 ; p 1 i > 0, i = 1,...,m g and P > 0. For k = 1, 2,... repeat till a stopping criterium is reached: (i) Find x k+1 and Y k+1 s.t. x F(x k+1, Y k+1, u k, U k, U k, p k ) K (ii) u k+1 i = u k i ϕ g (g i(x k+1 )/p k i ), i = 1,..., m g (iii) p k+1 i U k+1 = D i A Φ P ((λ i I Y i ); U k i ), i = 1,..., k U k+1 i = D A Φ P ((Y i λ i I); U k i ), i = 1,..., k < p k i, i = 1,..., m g P k+1 < P k.

6 Interfaces How to enter the data the functions and their derivatives? Matlab interface AMPL interface c/fortran interface Key point: Matrix variables are treated as vectors

7 What s new PENNON being implemented in NAG (The Numerical Algorithms Group) library The first routines should appear in the NAG Fortran Library, Mark 24 (Autumn 2013) By-product: PENLAB free, open, fully functional version of PENNON coded in MATLAB

8 PENLAB PENLAB free, open, fully functional version of PENNON coded in Matlab Open source, all in MATLAB (one MEX function) The basic algorithm is identical Some data handling routines not (yet?) implemented PENLAB runs just as PENNON but is slower Pre-programmed procedures for standard NLP (with AMPL input!) linear SDP (reading SDPA input files) bilinear SDP (=BMI) SDP with polynomial MI (PMI) easy to add more (QP, robust QP, SOF, TTO... )

9 PENLAB The problem min f(x, Y) x R n,y 1 S p 1,...,Y k S p k subject to g i (x, Y) 0, i = 1,...,m g h i (x, Y) = 0, i = 1,...,m h A i (x, Y) 0, i = 1,...,m A λ i I Y i λ i I, i = 1,...,k (NLP-SDP) A i (x, Y)... nonlinear matrix operators

10 PENLAB Solving a problem: prepare a structure penm containing basic problem data >> prob = penlab(penm); MATLAB class containing all data >> solve(prob); results in class prob The user has to provide MATLAB functions for function values gradients Hessians (for nonlinear functions) of all f, g, A.

11 Structure penm and f/g/h functions Example: min x 1 + x 2 s.t. x x 2 2 1, x penm = []; penm.nx = 2; penm.lbx = [-0.5 ; -Inf]; penm.ngnln = 1; penm.ubg = [1]; penm.objfun deal(x(1) + x(2)); penm.objgrad deal([1 ; 1]); penm.confun deal([x(1)ˆ2 + x(2)ˆ2]); penm.congrad deal([2*x(1) ; 2*x(2)]); penm.conhess deal([2 0 ; 0 2]); % set starting point penm.xinit = [2,1];

12 Toy NLP-SDP example 1 1 min x R 2 2 (x x 2 2 ) 1 x subject to B + A 1 x 1 + A 2 x 2 := x x x 2 1 D. Noll, 2007

13 Structure penm and f/g/h functions B = [1-1 0; ; 0 0 1]; A{1} = [0 1 0; 1 0 0; 0 0 0]; A{2} = [0 0 0; 0 0 1; 0 1 0]; penm = []; penm.nx=2; penm.nalin=1; penm.lba=zeros(1,1); penm.objfun deal(-.5*(x(1)ˆ2+x(2)ˆ2)); penm.objgrad deal(-[x(1);x(2)]); penm.objhess deal(-eye(2,2)); penm.mconfun=@(x,y,k)deal(b+a{1}*x(1)+a{2}*x(2)); penm.mcongrad=@(x,y,k,i)deal(a{i});

14 Example: nearest correlation matrix Find a nearest correlation matrix: min X n (X ij H ij ) 2 (1) i,j=1 subject to X ii = 1, X 0 i = 1,...,n

15 Example: nearest correlation matrix The condition number of the nearest correlation matrix must be bounded by κ. Using the transformation of the variable X: The new problem: min z, X z X = X n (z X ij H ij ) 2 (2) i,j=1 subject to z X ii = 1, I X κi i = 1,...,n

16 Structure penm and f/g/h functions function [f,userdata] = objfun(x,y,userdata) YH = svec2(x(1).*y{1}-userdata.h); f = YH(:) *YH(:); function [df, userdata]=objgrad(x,y,userdata) YH=svec2(x(1).*Y{1}-userdata.H); df(1) = sum(2*svec2(y{1}).*yh); df(2:length(yh)+1) = 2*x(1).*YH; function [ddf, userdata] = objhess(x,y,userdata) YH=svec2(x(1).*Y{1}-userdata.H); yy = svec2(y{1}); n = length(yy); ddf = zeros(n+1,n+1); ddf(1,1) = 2*sum(yy.ˆ2); ddf(1,2:n+1) = 2.*(x(1).*yy+YH); ddf(2:n+1,1) = 2.*(x(1).*yy +YH ); for i=1:n, ddf(i+1,i+1) = 2*x(1)ˆ2; end

17 NLP with AMPL input Pre-programmed. All you need to do: >> penm=nlp_define( datafiles/chain100.nl ); >> prob=penlab(penm); >> prob.solve();

18 NLP with AMPL input problem vars constr. constr. PENNON PENLAB type sec iter. sec iter. chain = 1 14/ /56 pinene = 1 7/ /17 channel = 3 3/3 1 3/3 torsion / /26 lane emd / /49 dirichlet / /68 henon / /158 minsurf box 1 20/ /203 gasoil = & b 3 34/ /71 duct = & 6 19/ /11 marine & b 2 39/ /35 steering & b 1 9/9 7 19/40 methanol & b 2 24/ /67

19 Linear SDP with SDPA input Pre-programmed. All you need to do: >> sdpdata=readsdpa( datafiles/arch0.dat-s ); >> penm=sdp_define(sdpdata); >> prob=penlab(penm); >> prob.solve();

20 Bilinear matrix inequalities (BMI) Pre-programmed. All you need to do: >> bmidata=define_my_problem; %matrices A, K,... >> penm=bmi_define(bmidata); >> prob=penlab(penm); >> prob.solve(); min x R n ct x s.t. n n A i 0 + x k A i k + k=1 k=1 l=1 n x k x l Kkl i 0, i = 1,...,m

21 Polynomial matrix inequalities (PMI) Pre-programmed. All you need to do: >> load datafiles/example_pmidata; >> penm = pmi_define(pmidata); >> problem = penlab(penm); >> problem.solve(); with 1 min x R n 2 x T Hx + c T x subject to b low Bx b up A i (x) 0, i = 1,..., m A(x) = i x κ(i) Q i where κ(i) is a multi-index with possibly repeated entries and x κ(i) is a product of elements with indices in κ(i).

22 Other pre-programmed modules Nearest correlation matrix Truss topology optimization (stability constraints) Static output feedback (input from COMPlib, formulated as PMI) Robust QP

23 Availability PENNON: Free time-limited academic version of the code available PENLAB: Free open MATLAB version available from NAG

24 What s missing? SOCP (Second-Order Conic Programming) - nonlinear, integrated in PENLAB (and PENNON) Postdoctoral research position in Birmingham (sponsored by NAG) development of NL-SOCP algorithm (compatible with PENNON algorithm) implementation in PENLAB and PENNON Alain Zemkoho, started April 2013

25 Sensor network localization (Euclidean distance matrix completion, Graph realization) We have (in R 2 (or R d )) n points a i, anchors with known location m points x i, sensors with unknown location d ij known Euclidean distance between close points d ij = x i x j, (i, j) I x d kj = a k x j, (k, j) I a Goal: Find the positions of the sensors! Find x R 2 m such that x i x j 2 = d 2 ij, a k x j 2 = d 2 kj, (i, j) I x (k, j) I a

26 Sensor network localization Example, 4 anchors, 36 sensors

27 Sensor network localization Applications Wireless sensor network localization habitat monitoring system in the Great Duck Island detecting volcano eruptions industrial control in semiconductor manufacturing plants structural health monitoring military and civilian surveillance moving object tracking asset location Molecule conformation...

28 Sensor network localization Solve the least-square problem min x 1,...,x m (i,j) I x ( x i x j 2 d 2 ij ) 2 + (i,j) I a to global minimum. This is an NP-hard problem. ( ) a k x j 2 d 2 2 kj

29 (P. Biswas and Y. Ye, 04) SDP relaxation Let X = [x 1 x 2... x n ] be a d n unknown matrix. Then x i x j 2 = (e i e j ) T X T X(e i e j ) [ ] a k x j 2 = (a k ; e j ) T Id X T [I d X](a k ; e j ) and the problem becomes (e i e j ) T X T X(e i e j ) = d 2 ij (a k ; e j ) T Z(a k ; e j ) = d 2 kj ( ) Id X Z = X T X T X Z 1:d,1:d = I d, Z 0, Z has rank d

30 SDP relaxation Now relax Z 1:d,1:d = I d, Z 0, Z has rank d to Z 1:d,1:d = I d, Z 0 Relaxed problem: min 0 subject to (0; e i e j ) T Z(0; e i e j ) = d 2 ij (i, j) I x (a k ; e j ) T Z(a k ; e j ) = d 2 kj (k, j) I a Z 1:d,1:d = I d Z 0 Full SDP relaxation, FSDP (linear SDP)

31 SDP relaxation Equivalent formulation: min (i,j) I x + subject to (k,j) I a Z 1:d,1:d = I d Z 0 ( (0; e i e j ) T Z(0; e i e j ) dij 2 ) 2 ( ) (a k ; e j ) T Z(a k ; e j ) d 2 2 kj Full SDP relaxation, FSDP (nonlinear SDP)

32 SDP relaxation For larger problems, FSDP is not solvable numerically: many variables (number of sensors) large and full matrix constraint (although low-rank) Can we exploit sparsity of I x and I a at the relaxation modelling level? Recently several approaches: Wolkowicz Toh Kojima Su Simple, yet powerful way: Edge-based relaxation (ESDP, Wang-Zheng-Ye-Boyd, 08).

33 Example, 16 anchors, 455 sensors

34 Example, 16 anchors, 455 sensors

35 Example, 16 anchors, 455 sensors

36 Example, 16 anchors, 455 sensors problem rmsd out-3 out-2 E-linear E-quadratic SDP: 6714 variables, 5349 (4 4) LMIs

37 Solution refinement Take the SDP solution as initial approximation for the original unconstrained nonconvex problem. Solve both by PENNON.

38 Example, 16 anchors, 455 sensors problem rmsd out-3 out-2 E-linear orig from lin

39 Example, 16 anchors, 455 sensors problem rmsd out-3 out-2 E-linear E-quadratic orig from lin orig from qua 0 0 0

40 Happy Birthday,

Solving linear and non-linear SDP by PENNON

Solving linear and non-linear SDP by PENNON Solving linear and non-linear SDP by PENNON Michal Kočvara School of Mathematics, The University of Birmingham University of Warwick, February 2010 Outline Why nonlinear SDP? PENNON the new generation

More information

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22

PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP p.1/22 PENNON A Generalized Augmented Lagrangian Method for Nonconvex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39 PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

PENNON A Code for Convex Nonlinear and Semidefinite Programming

PENNON A Code for Convex Nonlinear and Semidefinite Programming PENNON A Code for Convex Nonlinear and Semidefinite Programming Michal Kočvara Michael Stingl Abstract We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite

More information

PENNON: Software for linear and nonlinear matrix inequalities

PENNON: Software for linear and nonlinear matrix inequalities PENNON: Software for linear and nonlinear matrix inequalities Michal Kočvara 1 and Michael Stingl 2 1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK and Institute of Information

More information

Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems

Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems Reduced-order output feedback control design with specsdp, a code for linear / nonlinear SDP problems J.B. Thevenet and P. Apkarian and D. Noll ONERA-CERT, Control System department, 2 Av. Edouard Belin,

More information

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Nathan Krislock, Henry Wolkowicz Department of Combinatorics & Optimization University of Waterloo First Alpen-Adria Workshop on Optimization

More information

SOCP Relaxation of Sensor Network Localization

SOCP Relaxation of Sensor Network Localization SOCP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle University of Vienna/Wien June 19, 2006 Abstract This is a talk given at Univ. Vienna, 2006. SOCP

More information

Mathematical Optimization Models and Applications

Mathematical Optimization Models and Applications Mathematical Optimization Models and Applications Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 1, 2.1-2,

More information

Solving polynomial static output feedback problems with PENBMI

Solving polynomial static output feedback problems with PENBMI Solving polynomial static output feedback problems with PENBMI Didier Henrion, Johan Löfberg, Michal Kočvara, Michael Stingl Abstract An algebraic formulation is proposed for the static output feedback

More information

SOCP Relaxation of Sensor Network Localization

SOCP Relaxation of Sensor Network Localization SOCP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IWCSN, Simon Fraser University August 19, 2006 Abstract This is a talk given at Int. Workshop on

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle Southern California Optimization Day, UCSD March 19, 2009 (joint work with Ting Kei Pong)

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

arxiv: v1 [math.oc] 20 Nov 2013

arxiv: v1 [math.oc] 20 Nov 2013 Mathematical Programming manuscript No. (will be inserted by the editor) Jan Fiala Michal Kočvara Michael Stingl PENLAB: A MATLAB solver for nonlinear semidefinite optimization Received: date / Revised

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview.

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

More information

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications Professor M. Chiang Electrical Engineering Department, Princeton University February

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IASI, Roma September 16, 2008 (joint work with Ting Kei Pong) ON SDP/ESDP RELAXATION OF

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

A trust-region method for box-constrained nonlinear semidefinite programs

A trust-region method for box-constrained nonlinear semidefinite programs A trust-region method for box-constrained nonlinear semidefinite programs Akihiko Komatsu 1 and Makoto Yamashita 2 Submitted: November 17, 2014. Abstract: We propose a trust-region method for nonlinear

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Michael Stingl On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

Solving Nonconvex SDP Problems of Structural Optimization with Stability Control

Solving Nonconvex SDP Problems of Structural Optimization with Stability Control Copyright information to be inserted by the Publishers Solving Nonconvex SDP Problems of Structural Optimization with Stability Control MICHAL KOČVARA Institute of Information Theory and Automation, Pod

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN

NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN NON LINEAR SPECTRAL SDP METHOD FOR BMI-CONSTRAINED PROBLEMS : APPLICATIONS TO CONTROL DESIGN Jean-Baptiste Thevenet ONERA-CERT, 2 av. Edouard Belin, 31055 Toulouse, France and UPS-MIP (Mathmatiques pour

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions Nathan Krislock and Henry Wolkowicz Dept. of Combinatorics and Optimization University of Waterloo Haifa Matrix

More information

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming

Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Project Discussions: SNL/ADMM, MDP/Randomization, Quadratic Regularization, and Online Linear Programming Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305,

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities

Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities Akın Delibaşı 1,2,3, Didier Henrion 1,2,4 June 1, 2010 Abstract Using Hermite s formulation of polynomial

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1,

minimize x x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x 2 u 2, 5x 1 +76x 2 1, 4 Duality 4.1 Numerical perturbation analysis example. Consider the quadratic program with variables x 1, x 2, and parameters u 1, u 2. minimize x 2 1 +2x2 2 x 1x 2 x 1 subject to x 1 +2x 2 u 1 x 1 4x

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities

Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities Akın Delibaşı 1,2,3, Didier Henrion 1,2,4 January 20, 2010 Abstract Using Hermite s formulation of polynomial

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL)

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL) Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization Nick Gould (RAL) x IR n f(x) subject to c(x) = Part C course on continuoue optimization CONSTRAINED MINIMIZATION x

More information

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem Exercises Basic terminology and optimality conditions 4.1 Consider the optimization problem f 0(x 1, x 2) 2x 1 + x 2 1 x 1 + 3x 2 1 x 1 0, x 2 0. Make a sketch of the feasible set. For each of the following

More information

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Antonis Papachristodoulou Department of Engineering Science University of Oxford www.eng.ox.ac.uk/control/sysos antonis@eng.ox.ac.uk with

More information

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING Kartik Krishnan Advanced Optimization Laboratory McMaster University Joint work with Gema Plaza Martinez and Tamás

More information

A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF

A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF JuMP-dev workshop 018 A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF Gilles Bareilles, Manuel Ruiz, Julie Sliwak 1. MathProgComplex.jl: A toolbox for Polynomial

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

SF2822 Applied nonlinear optimization, final exam Saturday December

SF2822 Applied nonlinear optimization, final exam Saturday December SF2822 Applied nonlinear optimization, final exam Saturday December 20 2008 8.00 13.00 Examiner: Anders Forsgren, tel. 790 71 27. Allowed tools: Pen/pencil, ruler and eraser; plus a calculator provided

More information

Truss topology design with integer variables made easy

Truss topology design with integer variables made easy Mathematical Programming manuscript No. (will be inserted by the editor) Michal Kočvara Truss topology design with integer variables made easy Dedicated to Herbert Hörnlein on the occasion of his 65th

More information

Optimal Power Flow. S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low. C. Clarke. Southern California Edison. Caltech. March 2012

Optimal Power Flow. S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low. C. Clarke. Southern California Edison. Caltech. March 2012 Optimal Power Flow over Radial Networks S. Bose, M. Chandy, M. Farivar, D. Gayme S. Low Caltech C. Clarke Southern California Edison March 2012 Outline Motivation Semidefinite relaxation Bus injection

More information

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method 446 CHAP. 8 NUMERICAL OPTIMIZATION Newton's Search for a Minimum of f(xy) Newton s Method The quadratic approximation method of Section 8.1 generated a sequence of seconddegree Lagrange polynomials. It

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 12: Nonlinear optimization, continued Prof. John Gunnar Carlsson October 20, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I October 20,

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

Solving large Semidefinite Programs - Part 1 and 2

Solving large Semidefinite Programs - Part 1 and 2 Solving large Semidefinite Programs - Part 1 and 2 Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Singapore workshop 2006 p.1/34 Overview Limits of Interior

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) D. Linear Matrix Inequality D.1 Convex Optimization D.2 Linear Matrix Inequality(LMI) D.3 Control Design and LMI Formulation

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Optimization

More information

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Ye Wang, Michael Orshansky, Constantine Caramanis ECE Dept., The University of Texas at Austin 1 Analog Synthesis

More information

Facial reduction for Euclidean distance matrix problems

Facial reduction for Euclidean distance matrix problems Facial reduction for Euclidean distance matrix problems Nathan Krislock Department of Mathematical Sciences Northern Illinois University, USA Distance Geometry: Theory and Applications DIMACS Center, Rutgers

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 14: and Applications 11th March 2019 Outline LP SOCP SDP LP SOCP SDP 1 / 21 Conic LP SOCP SDP Primal Conic Program: min c T x s.t. Ax K b (CP) : b T y s.t. A T y = c (CD) y K 0 Theorem. (Strong

More information

5.5 Quadratic programming

5.5 Quadratic programming 5.5 Quadratic programming Minimize a quadratic function subject to linear constraints: 1 min x t Qx + c t x 2 s.t. a t i x b i i I (P a t i x = b i i E x R n, where Q is an n n matrix, I and E are the

More information

Sparse Matrix Theory and Semidefinite Optimization

Sparse Matrix Theory and Semidefinite Optimization Sparse Matrix Theory and Semidefinite Optimization Lieven Vandenberghe Department of Electrical Engineering University of California, Los Angeles Joint work with Martin S. Andersen and Yifan Sun Third

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Rekha R. Thomas University of Washington, Seattle References Monique Laurent, Sums of squares, moment matrices and optimization

More information

An ADMM algorithm for optimal sensor and actuator selection

An ADMM algorithm for optimal sensor and actuator selection An ADMM algorithm for optimal sensor and actuator selection Neil K. Dhingra, Mihailo R. Jovanović, and Zhi-Quan Luo 53rd Conference on Decision and Control, Los Angeles, California, 2014 1 / 25 2 / 25

More information

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method

On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method Optimization Methods and Software Vol. 00, No. 00, Month 200x, 1 11 On the Local Quadratic Convergence of the Primal-Dual Augmented Lagrangian Method ROMAN A. POLYAK Department of SEOR and Mathematical

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Convex relaxation. In example below, we have N = 6, and the cut we are considering

Convex relaxation. In example below, we have N = 6, and the cut we are considering Convex relaxation The art and science of convex relaxation revolves around taking a non-convex problem that you want to solve, and replacing it with a convex problem which you can actually solve the solution

More information

Effective reformulations of the truss topology design problem

Effective reformulations of the truss topology design problem Effective reformulations of the truss topology design problem Michal Kočvara and Jiří V. Outrata Abstract We present a new formulation of the truss topology problem that results in unique design and unique

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints

Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Lift me up but not too high Fast algorithms to solve SDP s with block-diagonal constraints Nicolas Boumal Université catholique de Louvain (Belgium) IDeAS seminar, May 13 th, 2014, Princeton The Riemannian

More information

Analysis/Calculus Review Day 3

Analysis/Calculus Review Day 3 Analysis/Calculus Review Day 3 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 15, 2010 Big- Oh and Little- Oh Notation We write

More information

Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization

Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization Trust Region Problems with Linear Inequality Constraints: Exact SDP Relaxation, Global Optimality and Robust Optimization V. Jeyakumar and G. Y. Li Revised Version: September 11, 2013 Abstract The trust-region

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-284 Research Reports on Mathematical and Computing Sciences Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion Sunyoung Kim, Masakazu

More information

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones

A General Framework for Convex Relaxation of Polynomial Optimization Problems over Cones Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

Homework 5. Convex Optimization /36-725

Homework 5. Convex Optimization /36-725 Homework 5 Convex Optimization 10-725/36-725 Due Tuesday November 22 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

LMI solvers. Some notes on standard. Laboratoire d Analyse et d Architecture des Systèmes. Denis Arzelier - Dimitri Peaucelle - Didier Henrion

LMI solvers. Some notes on standard. Laboratoire d Analyse et d Architecture des Systèmes. Denis Arzelier - Dimitri Peaucelle - Didier Henrion Some notes on standard LMI solvers Denis Arzelier - Dimitri Peaucelle - Didier Henrion Laboratoire d Analyse et d Architecture des Systèmes LAAS-CNRS 5 L = h l 1 l i Motivation State-feedback stabilization:

More information

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs 2015 American Control Conference Palmer House Hilton July 1-3, 2015. Chicago, IL, USA Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Raphael Louca and Eilyan Bitar

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) G. Sum of Squares (SOS) G.1 SOS Program: SOS/PSD and SDP G.2 Duality, valid ineqalities and Cone G.3 Feasibility/Optimization

More information

On Conic QPCCs, Conic QCQPs and Completely Positive Programs

On Conic QPCCs, Conic QCQPs and Completely Positive Programs Noname manuscript No. (will be inserted by the editor) On Conic QPCCs, Conic QCQPs and Completely Positive Programs Lijie Bai John E.Mitchell Jong-Shi Pang July 28, 2015 Received: date / Accepted: date

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Relaxations and Randomized Methods for Nonconvex QCQPs

Relaxations and Randomized Methods for Nonconvex QCQPs Relaxations and Randomized Methods for Nonconvex QCQPs Alexandre d Aspremont, Stephen Boyd EE392o, Stanford University Autumn, 2003 Introduction While some special classes of nonconvex problems can be

More information

Alvaro F. M. Azevedo A. Adão da Fonseca

Alvaro F. M. Azevedo A. Adão da Fonseca SECOND-ORDER SHAPE OPTIMIZATION OF A STEEL BRIDGE Alvaro F. M. Azevedo A. Adão da Fonseca Faculty of Engineering University of Porto Portugal 16-18 March 1999 OPTI 99 Orlando - Florida - USA 1 PROBLEM

More information

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Laura Galli 1 Adam N. Letchford 2 Lancaster, April 2011 1 DEIS, University of Bologna, Italy 2 Department of Management Science,

More information

Further Relaxations of the SDP Approach to Sensor Network Localization

Further Relaxations of the SDP Approach to Sensor Network Localization Further Relaxations of the SDP Approach to Sensor Network Localization Zizhuo Wang, Song Zheng, Stephen Boyd, and Yinyu Ye September 27, 2006; Revised May 2, 2007 Abstract Recently, a semi-definite programming

More information

Network Localization via Schatten Quasi-Norm Minimization

Network Localization via Schatten Quasi-Norm Minimization Network Localization via Schatten Quasi-Norm Minimization Anthony Man-Cho So Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong (Joint Work with Senshan Ji Kam-Fung

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley A. d Aspremont, INFORMS, Denver,

More information