- Supplementary Information Appendix - Homologation and Functionalization of Carbon Monoxide by a Recyclable Uranium Complex

Size: px
Start display at page:

Download "- Supplementary Information Appendix - Homologation and Functionalization of Carbon Monoxide by a Recyclable Uranium Complex"

Transcription

1 - Supplementary Information Appendix - Homologation and Functionalization of Carbon Monoxide by a Recyclable Uranium Complex Benedict M. Gardner, John C. Stewart, Adrienne L. Davis, Jonathan McMaster, William Lewis, Alexander J. Blake, and Stephen T. Liddle* School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. * stephen.liddle@nottingham.ac.uk Experimental General All manipulations were carried out using standard Schlenk techniques, or an MBraun UniLab glovebox, under an atmosphere of dry nitrogen or carbon monoxide. Solvents were dried by passage through activated alumina towers and degassed before use except for hexamethyldisiloxane which was dried over calcium hydride. All solvents were stored over potassium mirrors except for hexamethyldisiloxane which was stored over activated 4 Å molecular sieves. Deuterated solvent was distilled from potassium, degassed by three freeze-pump-thaw cycles and stored under nitrogen. [U(Tren DMSB )] [1, Tren DMSB = N(CH 2 CH 2 NSiMe 2 Bu t ) 3 ] and PhMe 2 SiI were synthesized according to published procedures. 1,2 Natural abundance and 99 atom% 13 C-enriched carbon monoxide were purchased from Aldrich. The organosilyl halides Me 3 SiI and Ph 3 SiI were purchased from Aldrich, filtered from activated magnesium to remove acid traces, degassed by three freezepump-thaw cycles and were stored under nitrogen. S1

2 1 H, 13 C, and 29 Si NMR spectra were recorded on a Bruker 400 spectrometer operating at 400.2, 100.6, and 79.5 MHz, respectively; chemical shifts are quoted in ppm and are relative to TMS. The conversion of 2 to 3 was initially assessed by periodic monitoring of an NMR tube scale reaction at 80 C in an oil bath using 20 mg of 2 in 0.55 ml of C 6 D 6. The thermolysis reaction of 2 only occurs at elevated temperatures so cooling to room temperature then recording spectra can be assumed to be under steady state conditions. A VT NMR thermolysis experiment of 20 mg of 2 in 0.55 ml of C 7 D 8 at a constant temperature of 80 C on a Bruker 400 spectrometer did not reveal any intermediates. FTIR spectra were recorded on a Bruker Tensor 27 spectrometer. UV/Vis/NIR spectra were recorded on a Perkin Elmer Lambda 750 spectrometer. Data were collected in 1mm path length cuvettes which were loaded in an MBraun UniLab glovebox and were run versus the appropriate solvent reference. Variable-temperature magnetic moment data were recorded in an applied dc field of 0.1 T on a Quantum Design MPMS XL5 SQUID magnetometer using doublyrecrystallized powdered samples. Samples were checked for purity before and after use and data reproducibility was carefully checked. Care was taken to ensure complete thermalization of the sample before each data point was measured. Diamagnetic corrections of cm 3 mol 1 and cm 3 mol 1 were applied for 2 and 3, respectively, using tabulated Pascal constants and measurements were corrected for the effect of the blank sample holders (flame sealed Wilmad NMR tube and straw). The slight discrepancies between solution and solid state magnetic moment measurements is attributed to weighing errors and the change in medium from solution to solid state. Mass Spectrometry was carried out using Bruker Apex IV FT-ICR (EI-MS) and Bruker MicroTOF (ESI-MS) instruments. All possible combinations of EI and ESI (acetonitrile and methanol) were attempted for all compounds reported herein, but only combinations which gave assignable responses are detailed. Elemental microanalyses were carried out at the University of Nottingham and by Stephen Boyer at the London Metropolitan University (UK). S2

3 Preparation of [{U(Tren DMSB )} 2 (μ-η 1 :η 1 -OCCO)] (2) A Schlenk flask (100 cm 3 volume) containing a cold ( 78 C) dark purple solution of 1 (3.10 g, 4.28 mmol) in pentane (20 ml) at a static pressure of 10 2 mbar was exposed to CO gas until the pressure inside the flask reached 1 atm. A color change to brown was immediately observed and at this point the flask was sealed and connected to a supply of N 2. The resulting suspension was stirred for 1 hour at 78 C before being filtered, concentrated to 2 ml and stored at 30 C for 18 hours to yield pale green crystals of 2, which were isolated by filtration at 30 C. Yield: 1.98 g, 61%. Anal. calc d for C 50 H 114 N 8 O 2 Si 6 U 2 : C 39.92; H 7.64; N 7.45%. Found: C 39.72; H 7.60; N 7.49%. 1 H NMR (C 6 D 6, 298 K): δ (s, 36H, SiMe 2, fwhm = 10 Hz); 0.37 (s, 54H, Bu t, fwhm = 5 Hz); (s, 12H, CH 2, fwhm = 16 Hz); (s, 12H, CH 2, fwhm = 15 Hz). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ (CH 2 ), 1.17 (SiMe 2 ), (Bu t -Me), (Bu t -C), (CH 2 ). The C C resonance was not observed in natural abundance CO samples. 29 Si{ 1 H} NMR (C 6 D 6, 298 K): δ μ eff (Evans method, 298 K): 4.32 μ B. FTIR ν/cm 1 (Nujol): 1546 (w), 1404 (m), 1341 (s), 1248 (m), 927 (s), 905 (m), 827 (s), 776 (s), 755 (m), 742 (m), 661 (m), 582 (w), 558 (w), 521 (w), 442 (m). Preparation of [{U(Tren DMSB )} 2 (μ-η 1 :η 1 -O 13 C 13 CO)] ( 13 C-2) A Schlenk flask (100 cm 3 volume) containing a cold ( 78 C) dark purple solution of 1 (3.10 g, 4.28 mmol) in pentane (20 ml) at a static pressure of 10 2 mbar was exposed to 13 CO gas until the pressure inside the flask reached 1 atm. A color change to brown was immediately observed and at this point the flask was sealed and connected to a supply of N 2. The resulting suspension was stirred for 1 hour at 78 C and filtered, affording a pale yellow solid after volatiles were removed in vacuo. Dissolution in pentane (2 ml) and storage at 30 afforded pale green crystals of 13 C-2. S3

4 Yield: 2.00 g, 62%. Anal. calc d for C 50 H 114 N 8 O 2 Si 6 U 2 : C 40.01; H 7.63; N 7.44%. Found: C 39.83; H 7.59; N 7.42%. 1 H NMR (C 6 D 6, 298 K): δ (s, 36H, SiMe 2, fwhm = 10 Hz); 0.37 (s, 54H, Bu t, fwhm = 5 Hz); (s, 12H, CH 2, fwhm = 16 Hz); (s, 12H, CH 2, fwhm = 15 Hz). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ (CH 2 ), 1.17 (SiMe 2 ), (Bu t -Me), (Bu t -C), (CH 2 ). 29 Si { 1 H} NMR (C 6 D 6, 298 K): δ μ eff (Evans method, 298 K): 4.33 μ B. FTIR ν/cm 1 (Nujol): 1548 (w), 1407 (m), 1316 (s), 1248 (m), 926 (s), 905 (m), 827 (s), 776 (s), 755 (m), 742 (m), 661 (m), 583 (w), 559 (w), 521 (w), 442 (m). Preparation of [U(Tren DMSB )(O)U{N(CH 2 CH 2 NSiMe 2 Bu t ) 2 (CH 2 CH 2 NC[OSiMe 2 Bu t ]CHO)}] (3) A yellow solution of 2 (0.43 g, 0.57 mmol) in benzene (20 ml) was heated at reflux for 48 hours under dinitrogen to afford, after cooling to ambient temperature, a brown solution. Volatiles were removed in vacuo and the brown residue was dissolved in hot (70 C) hexane (1.5 ml). The resulting brown solution was stored at 5 C for 24 hours to afford green crystals of 3 which were isolated by filtration and washed with cold hexane (2 2 ml). Yield: 0.26 g, 60%. Anal. calc d for C 50 H 114 N 8 O 3 Si 6 U 2 : C 39.51; H 7.56; N 7.37%. Found: C 39.02; H 7.41; N 7.36%. 1 H NMR (C 6 D 6, 298 K): δ (s, 2H, CH 2, fwhm = 80 Hz); (s, 9H, Bu t SiO, fwhm = 100 Hz); (s, 2H, CH 2, fwhm = 100 Hz); (s, 6H, Me 2 SiO, fwhm = 100 Hz); (s, 18H, SiMe 2, fwhm = 98 Hz); (s, 2H, CH 2, fwhm = 80 Hz); (s, 2H, CH 2, fwhm = 32 Hz); 9.61 (s, 27H, Bu t, fwhm = 95 Hz); 6.19 (s, 18H, Bu t, fwhm = 100 Hz); 1.09 (s, 9H, Bu t, fwhm = 5 Hz); 5.46 (s, 6H, CH 2, fwhm = 93 Hz); (s, 12H, SiMe 2, fwhm = 100 Hz); (s, 2H, CH 2, fwhm = 44 Hz); (s, 2H, CH 2, fwhm = 100 Hz). The OC(H)C(OSiMe 2 Bu t )N hydrogen was not observed. Complex 3 exhibits poor solubility in arene solvents after recrystallization and appears to react in polar solvents to give unidentified products which precluded the acquisition of 13 C and 29 Si NMR spectra. μ eff (Evans method, 298 K): 4.14 μ B. FTIR ν/cm 1 (Nujol): 1645 (s), 1564 (w), 1554 (w), S4

5 1512 (w), 1306 (w), 1260 (s), 1126 (m), 1092 (s), 1073 (m), 1049 (m), 1023 (m), 944 (w), 930 (w), 915 (w), 896 (w), 880 (w), 826 (s), 806 (s), 722 (w), 696 (w), 676 (w), 659 (w), 580 (w), 540 (w), 520 (w), 510 (w) 419 (m). Characterization Data Fig. S1. Electronic Absorption Spectra of 2 in THF (bottom trace) and 1( top trace) in Pentane Fig. S2. Zoom-in of NIR region of 2 in THF (bottom trace) and 1 (top trace) in Pentane The electronic absorption spectrum of 2 is dominated by strong charge transfer bands which tail in from the high energy region. Weak (ε ~ 20 cm 1 ) absorptions are observed in the 9,000-15,000 cm 1 region, which are characteristic of Laporte forbidden f f transitions for uranium(iv). 3 The spectrum of 3 was not obtained due to its poor solubility in aromatic solvents and incompatibility with polar media. The spectrum of 2 contrasts to 1 4 which contains f d transitions as well as weak f f transitions which are characteristic of its uranium(iii) formulation. S5

6 Variable Temperature SQUID Magnetometry Fig. S3. μ eff vs T for μeff / μb T / K Fig. S4. χ vs T for χ / cm 3 mol T / K S6

7 Fig. S5. χt vs T for 2 2 χt / cm 3 Kmol T / K Fig. S6. 1/χ vs T for χ -1 / mol cm T / K S7

8 Fig. S7. μ eff vs T for μeff / μb T / K Fig. S8. χ vs T for χ / cm 3 mol T / K S8

9 Fig. S9. χt vs T for χt / cm 3 Kmol T / K Fig. S10. 1/χ vs T for χ -1 / molcm T / K The μ eff values at 300 K for 2 and 3 are 4.00 and 4.28 μ B, respectively. These values decline slowly and smoothly to ~50 K where they begin to decrease more sharply. At 1.8 K the values for 2 and 3 are 0.69 and 0.87 μ B, respectively and the curves tend to zero. This is consistent with 2 and 3 containing f 2 uranium(iv) centers as 3 H 4 uranium normally has a singlet magnetic ground state. A plot of χ M vs T for 3 (Fig. S7.) shows a maximum at 3 K which is suggestive of antiferromagnetic exchange coupling which is very rare for U(IV). The analogous plot for 2 (Fig. S3.) is clearly approaching a maximum, but this is not reached in the experimentally accessible temperature range. S9

10 Treatment of 2 and 13 C-2 with Organosilyl Halides Treatment of 2 with Me 3 SiI Me 3 SiI (0.27 ml, 1.89 mmol) was added to a cold ( 10 C) solution of 2 (1.42 g, 0.94 mmol) in pentane (10 ml) under dinitrogen. The resulting pale brown suspension was allowed to warm to ambient temperature over 1 hour and stirred for a further 16 hours. Volatiles were removed in vacuo to yield a pale brown solid. To this was added HMDSO (5 ml), the resulting mixture was stored at 30 C for 16 hours and filtered to afford a pale brown solid and a brown solution. The pale brown solid was recrystallized from toluene to afford green crystals identified as [U(Tren DMSB )I] (4) by a unit cell check and NMR spectroscopy. Volatiles were removed from the mother liquor in vacuo to yield an oily brown solid (5a). Yield: 0.17 g, (90%). [U(Tren DMSB )I] (4) was recovered in essentially quantitative yield. Anal. calc d for C 8 H 18 O 2 Si 2 : C 47.51; H 8.98%. Found: C 39.39; H 4.67%. Several independently prepared batches all returned the same CHN data on freshly prepared samples indicating that the oily organic compound produced in this reaction is already undergoing further reaction at this stage as detailed below. FTIR ν/cm 1 (Nujol): 2958 (vs), 2925 (vs), 2854 (vs), 1462 (s), 1412 (m), 1377 (s), 1260 (vs), 1094 (vs), 1020 (vs), 927 (m), 803 (vs), 722 (m), 707 (m), 662 (m), 627 (m), 513 (w). MS-EI m/z: (8.4%) [(Me 3 SiOCCOSiMe 3 ) 2 ] +. Treatment of 13 C-2 with Me 3 SiI Me 3 SiI (0.19 ml, 1.32 mmol) was added to a cold ( 10 C) solution of 13 C-2 (1.00 g, 0.66 mmol) in pentane (10 ml) under dinitrogen. The resulting pale brown suspension was allowed to warm to ambient temperature over 1 hour and stirred for a further 16 hours. Volatiles were removed in vacuo to yield a pale brown solid. To this was added HMDSO (5 ml), the resulting mixture was stored at 30 C for 16 hours and filtered to afford a pale brown solid and a brown solution. The pale brown S10

11 solid was recrystallized from toluene to afford green crystals identified as [U(Tren DMSB )I] (4) by a unit cell check and NMR spectroscopy. Volatiles were removed from the mother liquor in vacuo to yield an oily brown solid ( 13 C-5a). Yield: 0.12 g, (90%). [U(Tren DMSB )I] (4) was recovered in essentially quantitative yield. Anal. calc d for 13 C 2 C 6 H 18 O 2 Si 2 : C 47.98; H 8.88%. Found: C 35.63; H 7.35%. Several independently prepared batches all returned the same CHN data on freshly prepared samples indicating that the oily organic compound produced in this reaction is already undergoing further reaction at this stage as detailed below. FTIR ν/cm 1 (Nujol): 2960 (vs), 2926 (vs), 2854 (vs), 1462 (s), 1411 (m), 1377 (s), 1261 (vs), 1098 (vs), 1021 (vs), 928 (m), 805 (vs), 705 (m), 662 (m), 627 (m), 512 (w). MS-EI m/z: (13.8%) [(Me 3 SiO 13 C 13 COSiMe 3 ) 2 ] +. Treatment of 2 with PhMe 2 SiI PhMe 2 SiI (0.27 g, 1.00 mmol) was added to a cold ( 10 C) solution of 2 (0.75 g, 0.50 mmol) in pentane (10 ml) under dinitrogen. The resulting pale brown suspension was allowed to warm to ambient temperature over 1 hour and stirred for a further 16 hours. Volatiles were removed in vacuo to yield a pale brown solid. To this was added pentane (5 ml), the resulting mixture was stored at 30 C for 16 hours and filtered to afford a pale brown solid and a brown solution. The pale brown solid was recrystallized from toluene to afford green crystals identified as [U(Tren DMSB )I] (4) by a unit cell check and NMR spectroscopy. Volatiles were removed from the mother liquor in vacuo to yield an oily brown solid (5b). Yield: 0.15 g, (90%). [U(Tren DMSB )I] (4) was recovered in essentially quantitative yield. Anal. calc d for C 18 H 22 O 2 Si 2 : C 66.21; H 6.79%. Found: C 66.12; H 6.70%. FTIR ν/cm 1 (Nujol): 3136 (w), 3069 (w), 3049 (w), 2956 (vs), 2925 (vs), 2854 (vs), 1464 (s), 1412 (m), 1377 (m), 1259 (vs), 1095 (vs), 1020 (vs), 924 (m), 897 (m), 874 (m), 826 (s), 802 (vs), 726 (w), 703 (m), 672 (w), 662 (m), 562 (w), 472 (w). MS-ESI (+ve mode) m/z: (37.9%) [5b-Ph] +. S11

12 Treatment of 13 C-2 with PhMe 2 SiI PhMe 2 SiI (0.32 g, 1.20 mmol) was added to a cold ( 10 C) solution of 13 C-2 (0.90 g, 0.60 mmol) in pentane (10 ml) under dinitrogen. The resulting pale brown suspension was allowed to warm to ambient temperature over 1 hour and stirred for a further 16 hours. Volatiles were removed in vacuo to yield a pale brown solid. To this was added pentane (5 ml), the resulting mixture was stored at 30 C for 16 hours and filtered to afford a pale brown solid and a brown solution. The pale brown solid was recrystallized from toluene to afford green crystals identified as [U(Tren DMSB )I] (4) by a unit cell check and NMR spectroscopy. Volatiles were removed from the mother liquor in vacuo to yield an oily brown solid ( 13 C-5b). Yield: 0.15 g, (90%). [U(Tren DMSB )I] (4) was recovered in essentially quantitative yield. Anal. calc d for 13 C 2 C 16 H 22 O 2 Si 2 : C 66.44; H 6.75%. Found: C 66.04; H 6.60%. FTIR ν/cm 1 (Nujol): 3136 (w), 3070 (w), 3050 (w), 2954 (vs), 2926 (vs), 2856 (vs), 1463 (s), 1408 (m), 1377 (m), 1260 (vs), 1095 (vs), 1020 (vs), 924 (m), 897 (m), 875 (m), 827 (s), 801 (vs), 728 (w), 701 (m), 675, (w), 662 (m), 564 (w), 471 (w). MS-ESI (+ve mode) m/z: (5.00%) [ 13 C-5b-Ph] +. Aqueous Work-Up of Product from Treatment of 2 with Me 3 SiI 5a (0.17 g, 0.84 mmol) was extracted into hexane (50 ml) and transferred to a separation funnel. Distilled water (30 ml) was added to the flask which was vigorously shaken and then allowed to settle. The aqueous layer was separated and this procedure repeated a further two times (2 30 ml distilled water). The organic layer was dried over magnesium sulphate, filtered, and volatiles were removed in vacuo to yield a pale yellow oil (6a) which was further dried (10-3 mm Hg) for 1 hour. Yield: 0.10 g, 91%. 1 H NMR (C 6 D 6, 298 K): δ 0.34 (s, 18H, SiMe 3 ), 3.90 (m, br 2H, CH 2 ). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ 1.16 (s, SiMe 3 ), (s, C 1 ), (s, C 3 ), (s, C 2 ), (s, C 4 ). S12

13 29 Si{ 1 H} NMR (C 6 D 6, 298 K): δ FTIR ν/cm 1 (Nujol): 2962 (vs), 2930 (vs), 2904 (s), 2857 (s), 1781 (s), 1471 (s), 1464 (m), 1446 (m), 1410 (m), 1376 (s), 1362 (m), 1333 (m), 1261 (vs), 1096 (vs), 1021 (vs), 938 (m), 863 (s), 804 (vs), 703 (m), 686 (m), 662 (m), 628 (m), 576 (w), 515 (w), 498 (m). MS-EI m/z: (40.7%) [6a-Me] +. MS-ESI ( ve mode) m/z: (100%) [6a- H]. Aqueous Work-Up of Product from Treatment of 13 C-2 with Me 3 SiI 13 C-5a (0.17 g, 0.84 mmol) was extracted into hexane (50 ml) and transferred to a separation funnel. Distilled water (30 ml) was added to the flask which was vigorously shaken and then allowed to settle. The aqueous layer was separated and this procedure repeated a further two times (2 30 ml distilled water). The organic layer was dried over magnesium sulphate, filtered, and volatiles were removed in vacuo to yield a pale yellow oil ( 13 C-6a) which was further dried (10-3 mm Hg) for 1 hour. Yield: 0.10 g, 90%. 1 H NMR (C 6 D 6, 298 K): δ 0.40 (s, 18H, SiMe 3 ), 3.90 (dm, 2H, J HC = 152 Hz, 2 J HH = 6 Hz, CH 2 ). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ 1.16 (s, SiMe 3 ), (dd, J C1C2 = 50 Hz, 2 J C1C3 = 11 Hz, CH [C 1 ]), (ddd, J C3C2 = 96 Hz, J C3C4 = 82 Hz, 2 J C3C1 = 11 Hz, (Me 3 SiO)C(C=O) [C 3 ]), (ddd, J C2C3 = 96 Hz, J C2C1 = 50 Hz, 2 J C2C4 = 23 Hz, (Me 3 SiO)C(CH) [C 2 ]), (dd, J C4C3 = 82 Hz, 2 J C4C2 = 23 Hz, C=O [C 4 ]). Additional CH coupling observed in 1 H-coupled 13 C NMR (C 6 D 6, 298 K): δ 1.16 (q, J CH = 150 Hz), [C1] (tdd, J CH = 152 Hz), [C3] (dddt, 3 J CH = 2.5 Hz), [C2] (dddt, 2 J CH = 6.3 Hz). 29 Si{ 1 H} NMR (C 6 D 6, 298 K): δ FTIR ν/cm 1 (Nujol): 2963 (vs), 2932 (s), 2896 (s), 2859 (s), 1754 (s), 1464 (m), 1445 (m), 1413 (s), 1364 (m), 1341 (m), 1313 (m), 1262 (vs), 1097 (vs), 863 (s), 797 (vs), 702 (m), 663 (m), 627 (m), 588 (w), 498 (w). MS-EI m/z: (47.4%) [ 13 C-6a SiMe 3 ] +. MS-ESI ( ve mode) m/z: (100%) [ 13 C-6b-SiMe 3 ]. MS-ESI (+ve mode) m/z: (21.2%) [ 13 C- 6a+HCOONa] +. S13

14 Aqueous Work-Up of Product from Treatment of 2 with PhMe 2 SiI 5b (0.15 g, 0.46 mmol) was extracted into hexane (50 ml) and transferred to a separation funnel. Distilled water (30 ml) was added to the flask which was vigorously shaken and then allowed to settle. The aqueous layer was separated and this procedure repeated a further two times (2 30 ml distilled water). The organic layer was dried over magnesium sulphate, filtered, and volatiles were removed in vacuo to yield a pale yellow oil (6b) which was further dried (10-3 mm Hg) for 1 hour. Yield: 0.08 g, 88%. 1 H NMR (C 6 D 6, 298 K): δ 0.30 (s, 12H, SiMe 2 ), 3.83 (m, 2H, CH 2 ), 7.32 (m, 6H, Ph), 7.67 (m, 4H, Ph). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ 0.75 (s, SiMe 2 ), (s, C 1 ), (s, C 3 ), (s, Ph), (s, Ph), (s, C 2 ), (s, C 4 ). 29 Si{ 1 H} NMR (C 6 D 6, 298 K): δ FTIR ν/cm 1 (Nujol): 3136 (w), 3070 (w), 3051 (w), 2959 (vs), 2929 (vs), 2900 (m), 2856 (s), 1765 (m), 1471 (m), 1464 (m), 1428 (m), 1405 (m), 1361 (m), 1260 (vs), 1097 (vs), 1020 (vs), 938 (m), 867 (s), 804 (vs), 741 (m) 728 (m), 700 (m), 662 (m), 571 (w), 516 (w), 498 (m), 472 (w). MS-ESI (+ve mode) m/z: (60.6%) [6b Ph+NaNCMe] +. Aqueous Work-Up of Product from Treatment of 13 C-2 with PhMe 2 SiI 13 C-5b (0.15 g, 0.46 mmol) was extracted into hexane (50 ml) and transferred to a separation funnel. Distilled water (30 ml) was added to the flask which was vigorously shaken and then allowed to settle. The aqueous layer was separated and this procedure repeated a further two times (2 30 ml distilled water). The organic layer was dried over magnesium sulphate, filtered, and volatiles were removed in vacuo to yield a pale yellow oil ( 13 C-6b) which was further dried (10-3 mm Hg) for 1 hour. Yield: 0.08 g, 88%. 1 H NMR (C 6 D 6, 298 K): δ 0.39 (s, 12H, SiMe 2 ), 3.83 (dm, 2H, J HC = 151 Hz, 2 J HH = 6 Hz, CH 2 ), 7.32 (m, 6H, Ph), 7.67 (m, 4H, Ph). 13 C{ 1 H} NMR (C 6 D 6, 298 K): δ 1.06 (s, SiMe 2 ), (dd, J C1C2 = 48 Hz, 2 J C1C3 = 11 Hz, CH [C 1 ]), (ddd, J C3C2 = S14

15 94 Hz, J C3C4 = 83 Hz, 2 J C3C1 = 11 Hz, (Me 3 SiO)C(C=O) [C 3 ]), (s, Ph), (s, Ph), (ddd, J C2C3 = 94 Hz, J C2C1 = 48 Hz, 2 J C2C4 = 23 Hz, (Me 3 SiO)C(CH) [C 2 ]), (dd, J C4C3 = 83 Hz, 2 J C4C2 = 23 Hz, C=O [C 4 ]). Additional CH coupling observed in 1 H-coupled 13 C NMR (C6D6, 298 K): δ 1.06 (q, J CH = 118 Hz), [C1] (tdd, J CH = 103 Hz), [C3] (dddt, 3 J CH = 2.5 Hz), [C2] (dddt, 2 J CH = 6.1 Hz). 29 Si{ 1 H} NMR (C 6 D 6, 298 K): δ FTIR ν/cm 1 (Nujol): 3091 (w), 3071 (m), 3053 (m), 3024 (w), 2963 (vs), 2905 (s), 2858 (m), 1719 (m), 1487 (m), 1472 (m), 1463 (s), 1428 (s), 1363 (m), 1261 (vs), 1094 (vs), 865 (vs), 795 (s), 742 (m), 727 (m), 700 (s), 662 (m), 620 (w), 471 (m). MS-ESI ( ve mode) m/z: (100%) [ 13 C-6b H]. It should be noted that the accidental equivalence of the silyl resonances for 6 is commensurate with their remote placement on the ring. For example, the silyl methyls are 4 J with respect to the C2/3 positions. S15

16 Fig. S11. Initial 13 C{ 1 H} NMR of 13 C-5a/6a After Aqueous Wash Fig. S12. Final 13 C{ 1 H} NMR of 13 C-6a After Aqueous Wash S16

17 Fig. S C{ 1 H} NMR Comparison of Initial 13 C-5a/6a Mix (Top) and Final 13 C-6a (Bottom) Fig. S14. Comparison of 13 C{ 1 H} NMR of 6a (Top) versus 13 C NMR of 13 C-6a (Bottom) S17

18 Fig. S15. Initial 13 C{ 1 H} NMR of 13 C-5b/6b After Aqueous Wash Fig. S16. Final 13 C{ 1 H} NMR of 13 C-6b After Aqueous Wash S18

19 Fig. S C{ 1 H} NMR Comparison of Initial 13 C-5b/6b Mix (Top) and Final 13 C-6b (Bottom) Fig. S18. Comparison of 13 C{ 1 H} NMR of 6b (Top) versus 13 C NMR of 13 C-6b (Bottom) S19

20 Representative Conversion of 4 to 1 Under argon, complex 4 (1.50 g, 1.76 mmol), isolated from a liberation reaction as described above, in pentane (10 ml) was vigorously stirred over a potassium mirror (0.2 g, 5.1 mmol) until the green solution turned dark purple. The reaction was adjudged complete after 24 hours under these conditions by 1 H NMR spectroscopic analysis of an aliquot of the reaction mixture. The mixture was filtered and volatiles removed in vacuo to afford a dark purple solid. Yield: 1.08 g, 99%. Characterization data matches an authentic sample of 1 and exposure to dinitrogen affords the dinitrogen adduct as described by Scott. 1 Representative Recycling Procedure As described above, a solution of 1 in pentane was treated with CO. The CO atmosphere was replaced with dinitrogen and the relevant amount of silyl iodide was added. Following extraction and precipitation of 4 the isolated 4 was placed in pentane and stirred over a potassium mirror. Once 1 was obtained it was recycled back into another reaction. Typically, the first pass recovered 1 in essentially quantitative yield, but subsequent passes resulted in yields of 1 of ca 80-90%. Overall, at least 4 cycles could be accomplished, generating 5 in yields of ca 90% relative to the quantity of 1 used in a given cycle before separation became difficult due to reduced solvent volumes. X-ray Crystallography [{U(Tren DMSB )} 2 (μ-η 1 :η 1 -OCCO)] (2) and [U(Tren DMSB )(µ -O)U{N(CH 2 CH 2 NSiMe 2 Bu t ) 2 (CH 2 CH 2 -NC[OSiMe 2 Bu t ]CHO)}] (5) have been deposited with the CCDC, numbers and S20

21 Table S1. Crystal data and structure refinement for 2. Identification code 2 Chemical formula C 50 H 114 N 8 O 2 Si 6 U 2 Formula weight Temperature 90(2) K Radiation, wavelength MoKα, Å Crystal system, space group Monoclinic, P21 1 /n Unit cell parameters a = (5) Å α = 90 b = (12) Å β = (1) c = (5) Å γ = 90 Cell volume (3) Å 3 Z 2 Calculated density g/cm 3 Absorption coefficient μ mm 1 F(000) 1508 Crystal color and size pale green, mm 3 Reflections for cell refinement 8199 (θ range 2.29 to ) Data collection method Bruker SMART APEX CCD diffractometer ω rotation with narrow frames θ range for data collection 2.18 to Index ranges h 6 to 14, k 36 to 36, l 15 to 15 Completeness to θ = % Intensity decay 0% Reflections collected Independent reflections 7642 (R int = ) Reflections with F 2 >2σ 6401 Absorption correction semi-empirical from equivalents Min. and max. transmission and Structure solution direct methods Refinement method Full-matrix least-squares on F 2 Weighting parameters a, b , Data / restraints / parameters 7642 / 0 / 322 Final R indices [F 2 >2σ] R1 = , wr2 = R indices (all data) R1 = , wr2 = Goodness-of-fit on F Largest and mean shift/su and Largest diff. peak and hole and e Å 3 Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å 2 ) for 2. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) U(1) (15) (5) (13) (5) N(1) (4) (12) (3) (8) Si(1) (12) (4) (11) (2) C(1) (4) (15) (5) (10) S21

22 C(2) (5) (17) (4) (11) C(3) (5) (17) (4) (10) C(4) (5) (2) (4) (12) C(5) (6) (19) (5) (15) C(6) (6) (2) (5) (14) C(7) (5) (15) (5) (11) C(8) (5) (15) (5) (11) N(2) (4) (12) (3) (7) Si(2) (11) (4) (10) (2) C(9) (4) (16) (4) (9) C(10) (5) (16) (4) (10) C(11) (4) (15) (4) (9) C(12) (5) (18) (5) (12) C(13) (6) (2) (5) (15) C(14) (6) (19) (5) (14) C(15) (5) (15) (4) (10) C(16) (5) (16) (5) (11) N(3) (4) (12) (3) (7) Si(3) (12) (4) (10) (2) C(17) (5) (16) (4) (10) C(18) (5) (18) (4) (11) C(19) (4) (15) (4) (9) C(20) (5) (18) (5) (11) C(21) (5) (17) (4) (12) C(22) (5) (16) (4) (10) C(23) (5) (15) (4) (10) C(24) (5) (15) (4) (11) N(4) (4) (11) (3) (7) O(1) (3) (10) (3) (7) C(25) (5) (14) (4) (9) Table S3. Bond lengths [Å] and angles [ ] for 2. U(1) O(1) 2.156(3) U(1) N(2) 2.246(4) U(1) N(3) 2.263(3) U(1) N(1) 2.265(4) U(1) N(4) 2.534(3) N(1) C(7) 1.483(5) N(1) Si(1) 1.734(4) Si(1) C(1) 1.855(4) Si(1) C(2) 1.876(5) Si(1) C(3) 1.911(5) C(1) H(1B) C(1) H(1C) C(1) H(1A) C(2) H(2A) C(2) H(2C) C(2) H(2B) C(3) C(6) 1.519(7) C(3) C(4) 1.525(7) C(3) C(5) 1.541(7) C(4) H(4A) C(4) H(4C) C(4) H(4B) C(5) H(5B) C(5) H(5C) C(5) H(5A) C(6) H(6B) C(6) H(6C) C(6) H(6A) C(7) C(8) 1.490(7) C(7) H(7A) S22

23 C(7) H(7B) C(8) N(4) 1.469(5) C(8) H(8B) C(8) H(8A) N(2) C(15) 1.483(5) N(2) Si(2) 1.742(4) Si(2) C(9) 1.870(4) Si(2) C(10) 1.876(4) Si(2) C(11) 1.900(5) C(9) H(9B) C(9) H(9C) C(9) H(9A) C(10) H(10B) C(10) H(10C) C(10) H(10A) C(11) C(13) 1.523(6) C(11) C(12) 1.524(7) C(11) C(14) 1.530(6) C(12) H(12B) C(12) H(12C) C(12) H(12A) C(13) H(13A) C(13) H(13C) C(13) H(13B) C(14) H(14B) C(14) H(14C) C(14) H(14A) C(15) C(16) 1.505(6) C(15) H(15B) C(15) H(15A) C(16) N(4) 1.458(6) C(16) H(16A) C(16) H(16B) N(3) C(23) 1.474(5) N(3) Si(3) 1.750(3) Si(3) C(17) 1.867(5) Si(3) C(18) 1.872(5) Si(3) C(19) 1.900(5) C(17) H(17A) C(17) H(17C) C(17) H(17B) C(18) H(18B) C(18) H(18C) C(18) H(18A) C(19) C(20) 1.526(7) C(19) C(22) 1.535(6) C(19) C(21) 1.551(6) C(20) H(20A) C(20) H(20C) C(20) H(20B) C(21) H(21A) C(21) H(21C) C(21) H(21B) C(22) H(22B) C(22) H(22C) C(22) H(22A) C(23) C(24) 1.495(6) C(23) H(23B) C(23) H(23A) C(24) N(4) 1.484(5) C(24) H(24B) C(24) H(24A) O(1) C(25) 1.302(5) C(25) C(25)# (8) O(1) U(1) N(2) (12) O(1) U(1) N(3) (11) N(2) U(1) N(3) (13) O(1) U(1) N(1) (13) N(2) U(1) N(1) (13) N(3) U(1) N(1) (13) O(1) U(1) N(4) (11) N(2) U(1) N(4) 70.98(12) N(3) U(1) N(4) 70.65(11) N(1) U(1) N(4) 70.75(12) C(7) N(1) Si(1) 116.5(3) C(7) N(1) U(1) 120.8(3) Si(1) N(1) U(1) (17) N(1) Si(1) C(1) (19) N(1) Si(1) C(2) 111.1(2) C(1) Si(1) C(2) 108.1(2) N(1) Si(1) C(3) 112.7(2) C(1) Si(1) C(3) 107.0(2) C(2) Si(1) C(3) 109.0(2) Si(1) C(1) H(1B) Si(1) C(1) H(1C) H(1B) C(1) H(1C) Si(1) C(1) H(1A) H(1B) C(1) H(1A) H(1C) C(1) H(1A) Si(1) C(2) H(2A) Si(1) C(2) H(2C) H(2A) C(2) H(2C) Si(1) C(2) H(2B) H(2A) C(2) H(2B) H(2C) C(2) H(2B) C(6) C(3) C(4) 108.9(4) C(6) C(3) C(5) 107.8(5) C(4) C(3) C(5) 110.1(4) S23

24 C(6) C(3) Si(1) 109.8(3) C(4) C(3) Si(1) 109.1(3) C(5) C(3) Si(1) 111.2(4) C(3) C(4) H(4A) C(3) C(4) H(4C) H(4A) C(4) H(4C) C(3) C(4) H(4B) H(4A) C(4) H(4B) H(4C) C(4) H(4B) C(3) C(5) H(5B) C(3) C(5) H(5C) H(5B) C(5) H(5C) C(3) C(5) H(5A) H(5B) C(5) H(5A) H(5C) C(5) H(5A) C(3) C(6) H(6B) C(3) C(6) H(6C) H(6B) C(6) H(6C) C(3) C(6) H(6A) H(6B) C(6) H(6A) H(6C) C(6) H(6A) N(1) C(7) C(8) 111.1(4) N(1) C(7) H(7A) C(8) C(7) H(7A) N(1) C(7) H(7B) C(8) C(7) H(7B) H(7A) C(7) H(7B) N(4) C(8) C(7) 112.4(4) N(4) C(8) H(8B) C(7) C(8) H(8B) N(4) C(8) H(8A) C(7) C(8) H(8A) H(8B) C(8) H(8A) C(15) N(2) Si(2) 117.2(3) C(15) N(2) U(1) 120.6(3) Si(2) N(2) U(1) (18) N(2) Si(2) C(9) (19) N(2) Si(2) C(10) (19) C(9) Si(2) C(10) 108.3(2) N(2) Si(2) C(11) (19) C(9) Si(2) C(11) 108.6(2) C(10) Si(2) C(11) 109.4(2) Si(2) C(9) H(9B) Si(2) C(9) H(9C) H(9B) C(9) H(9C) Si(2) C(9) H(9A) H(9B) C(9) H(9A) H(9C) C(9) H(9A) Si(2) C(10) H(10B) Si(2) C(10) H(10C) H(10B) C(10) H(10C) Si(2) C(10) H(10A) H(10B) C(10) H(10A) H(10C) C(10) H(10A) C(13) C(11) C(12) 108.5(4) C(13) C(11) C(14) 109.0(4) C(12) C(11) C(14) 108.6(4) C(13) C(11) Si(2) 110.6(3) C(12) C(11) Si(2) 109.5(3) C(14) C(11) Si(2) 110.6(3) C(11) C(12) H(12B) C(11) C(12) H(12C) H(12B) C(12) H(12C) C(11) C(12) H(12A) H(12B) C(12) H(12A) H(12C) C(12) H(12A) C(11) C(13) H(13A) C(11) C(13) H(13C) H(13A) C(13) H(13C) C(11) C(13) H(13B) H(13A) C(13) H(13B) H(13C) C(13) H(13B) C(11) C(14) H(14B) C(11) C(14) H(14C) H(14B) C(14) H(14C) C(11) C(14) H(14A) H(14B) C(14) H(14A) H(14C) C(14) H(14A) N(2) C(15) C(16) 111.9(4) N(2) C(15) H(15B) C(16) C(15) H(15B) N(2) C(15) H(15A) C(16) C(15) H(15A) H(15B) C(15) H(15A) N(4) C(16) C(15) 112.1(4) N(4) C(16) H(16A) C(15) C(16) H(16A) N(4) C(16) H(16B) C(15) C(16) H(16B) H(16A) C(16) H(16B) C(23) N(3) Si(3) 113.2(3) C(23) N(3) U(1) 121.2(3) Si(3) N(3) U(1) (18) N(3) Si(3) C(17) (19) N(3) Si(3) C(18) 110.3(2) C(17) Si(3) C(18) 107.3(2) N(3) Si(3) C(19) (19) C(17) Si(3) C(19) 108.9(2) C(18) Si(3) C(19) 108.0(2) Si(3) C(17) H(17A) S24

25 Si(3) C(17) H(17C) H(17A) C(17) H(17C) Si(3) C(17) H(17B) H(17A) C(17) H(17B) H(17C) C(17) H(17B) Si(3) C(18) H(18B) Si(3) C(18) H(18C) H(18B) C(18) H(18C) Si(3) C(18) H(18A) H(18B) C(18) H(18A) H(18C) C(18) H(18A) C(20) C(19) C(22) 108.3(4) C(20) C(19) C(21) 109.2(4) C(22) C(19) C(21) 108.6(4) C(20) C(19) Si(3) 111.1(3) C(22) C(19) Si(3) 110.0(3) C(21) C(19) Si(3) 109.6(3) C(19) C(20) H(20A) C(19) C(20) H(20C) H(20A) C(20) H(20C) C(19) C(20) H(20B) H(20A) C(20) H(20B) H(20C) C(20) H(20B) C(19) C(21) H(21A) C(19) C(21) H(21C) H(21A) C(21) H(21C) C(19) C(21) H(21B) H(21A) C(21) H(21B) H(21C) C(21) H(21B) C(19) C(22) H(22B) C(19) C(22) H(22C) H(22B) C(22) H(22C) C(19) C(22) H(22A) H(22B) C(22) H(22A) H(22C) C(22) H(22A) N(3) C(23) C(24) 111.9(4) N(3) C(23) H(23B) C(24) C(23) H(23B) N(3) C(23) H(23A) C(24) C(23) H(23A) H(23B) C(23) H(23A) N(4) C(24) C(23) 112.3(4) N(4) C(24) H(24B) C(23) C(24) H(24B) N(4) C(24) H(24A) C(23) C(24) H(24A) H(24B) C(24) H(24A) C(16) N(4) C(8) 114.3(4) C(16) N(4) C(24) 111.8(4) C(8) N(4) C(24) 110.1(4) C(16) N(4) U(1) 106.1(2) C(8) N(4) U(1) 107.9(3) C(24) N(4) U(1) 106.2(2) C(25) O(1) U(1) 158.8(3) C(25)#1 C(25) O(1) 173.8(6) Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+2 Table S4. Anisotropic displacement parameters (Å 2 ) for 2. The anisotropic displacement factor exponent takes the form: 2π 2 [h 2 a* 2 U hka*b*U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 U(1) (8) (7) (8) (6) (6) (6) N(1) 0.024(2) (16) (19) (14) (16) (15) Si(1) (6) (5) (6) (5) (5) (5) C(1) 0.020(2) 0.026(2) 0.039(3) 0.003(2) 0.013(2) (18) C(2) 0.036(3) 0.037(3) 0.025(2) 0.003(2) 0.017(2) 0.000(2) C(3) 0.029(3) 0.036(3) 0.025(2) (19) 0.010(2) 0.008(2) C(4) 0.039(3) 0.051(3) 0.022(2) 0.001(2) 0.007(2) 0.002(3) C(5) 0.044(4) 0.044(3) 0.047(3) 0.010(3) 0.006(3) 0.021(3) C(6) 0.031(3) 0.064(4) 0.035(3) 0.011(3) 0.005(2) 0.003(3) C(7) 0.040(3) 0.019(2) 0.044(3) 0.002(2) 0.023(3) 0.000(2) C(8) 0.041(3) 0.020(2) 0.038(3) (19) 0.021(2) 0.002(2) N(2) (18) (17) (17) (14) (15) (14) S25

26 Si(2) (6) (5) (5) (4) (5) (5) C(9) 0.023(2) 0.029(2) 0.024(2) (18) (19) (18) C(10) 0.028(2) 0.033(2) 0.020(2) (18) (19) 0.005(2) C(11) 0.025(2) 0.024(2) 0.021(2) (17) (19) (18) C(12) 0.030(3) 0.038(3) 0.054(3) 0.002(2) 0.019(3) 0.004(2) C(13) 0.034(3) 0.055(3) 0.041(3) 0.024(3) 0.004(3) 0.011(3) C(14) 0.059(4) 0.038(3) 0.048(3) 0.020(3) 0.029(3) 0.021(3) C(15) 0.026(3) 0.024(2) 0.027(2) (18) 0.001(2) (19) C(16) 0.029(3) 0.025(2) 0.038(3) 0.000(2) 0.006(2) 0.008(2) N(3) (19) (16) (16) (13) (15) (14) Si(3) (6) (6) (5) (4) (5) (5) C(17) 0.030(3) 0.035(2) 0.020(2) (19) 0.005(2) 0.010(2) C(18) 0.037(3) 0.048(3) 0.024(2) 0.005(2) 0.016(2) 0.009(2) C(19) 0.023(2) 0.024(2) 0.022(2) (18) (18) (18) C(20) 0.025(3) 0.036(3) 0.039(3) 0.003(2) 0.005(2) 0.005(2) C(21) 0.036(3) 0.035(3) 0.024(2) 0.011(2) 0.000(2) 0.007(2) C(22) 0.032(3) 0.030(2) 0.024(2) (18) 0.005(2) 0.007(2) C(23) 0.040(3) 0.024(2) 0.021(2) (18) 0.007(2) 0.007(2) C(24) 0.048(3) 0.017(2) 0.028(2) (18) 0.014(2) 0.005(2) N(4) (19) (15) (17) (13) (15) (14) O(1) (19) (13) (16) (12) (14) (13) C(25) 0.029(2) (17) 0.021(2) (16) (19) (17) Table S5. Hydrogen coordinates and isotropic displacement parameters (Å 2 ) for 2. x y z U(eq) H(1B) H(1C) H(1A) H(2A) H(2C) H(2B) H(4A) H(4C) H(4B) H(5B) H(5C) H(5A) H(6B) H(6C) H(6A) H(7A) H(7B) H(8B) H(8A) S26

27 H(9B) H(9C) H(9A) H(10B) H(10C) H(10A) H(12B) H(12C) H(12A) H(13A) H(13C) H(13B) H(14B) H(14C) H(14A) H(15B) H(15A) H(16A) H(16B) H(17A) H(17C) H(17B) H(18B) H(18C) H(18A) H(20A) H(20C) H(20B) H(21A) H(21C) H(21B) H(22B) H(22C) H(22A) H(23B) H(23A) H(24B) H(24A) S27

28 Table S6. Crystal data and structure refinement for 3. Identification code 3 Chemical formula C 56 H 115 D 6 N 8 O 3 Si 6 U 2 Formula weight Temperature 90(2) K Radiation, wavelength MoKα, Å Crystal system, space group Monoclinic, P21 1 /c Unit cell parameters a = (6) Å α = 90 b = (10) Å β = (1) c = (9) Å γ = 90 Cell volume (5) Å 3 Z 4 Calculated density g/cm 3 Absorption coefficient μ mm 1 F(000) 3220 Crystal color and size green, mm 3 Reflections for cell refinement (θ range 2.28 to ) Data collection method Bruker SMART APEX CCD diffractometer ω rotation with narrow frames θ range for data collection 1.95 to Index ranges h 18 to 18, k 28 to 31, l 25 to 28 Completeness to θ = % Intensity decay 0% Reflections collected Independent reflections (R int = ) Reflections with F 2 >2σ Absorption correction semi-empirical from equivalents Min. and max. transmission and Structure solution direct methods Refinement method Full-matrix least-squares on F 2 Weighting parameters a, b , Data / restraints / parameters / 0 / 706 Final R indices [F 2 >2σ] R1 = , wr2 = R indices (all data) R1 = , wr2 = Goodness-of-fit on F Largest and mean shift/su and Largest diff. peak and hole and e Å 3 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å 2 ) for 3. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) U(1) (11) (7) (7) (5) N(1) (2) (16) (17) (8) Si(1) (8) (5) (6) (3) C(1) (3) (2) (2) (10) S28

29 C(2) (3) (19) (2) (10) C(3) (3) (2) (2) (10) C(4) (3) (2) (3) (12) C(5) (4) (2) (2) (13) C(6) (3) (2) (2) (12) C(7) (3) (19) (2) (10) C(8) (3) (2) (2) (10) N(2) (2) (16) (18) (8) Si(2) (9) (5) (6) (3) C(9) (4) (2) (2) (11) C(10) (3) (19) (2) (10) C(11) (3) (2) (2) (10) C(12) (3) (2) (2) (11) C(13) (3) (2) (2) (12) C(14) (3) (2) (2) (11) C(15) (3) (2) (2) (11) C(16) (3) (19) (2) (10) N(3) (3) (17) (18) (8) Si(3) (9) (6) (6) (3) C(17) (3) (2) (3) (12) C(18) (4) (2) (3) (13) C(19) (3) (2) (2) (11) C(20) (4) (2) (3) (13) C(21) (4) (3) (3) (16) C(22) (4) (3) (2) (13) C(23) (4) (2) (2) (12) C(24) (4) (2) (2) (11) N(4) (3) (16) (18) (8) O(1) (2) (13) (15) (7) U(2) (11) (7) (8) (5) N(5) (3) (16) (17) (8) Si(4) (9) (6) (6) (3) C(25) (3) (2) (2) (11) C(26) (4) (3) (2) (13) C(27) (3) (2) (2) (11) C(28) (4) (3) (3) (15) C(29) (4) (2) (3) (12) C(30) (4) (2) (3) (14) C(31) (4) (2) (2) (11) C(32) (4) (2) (3) (14) N(6) (3) (17) (17) (8) Si(5) (10) (5) (6) (3) C(33) (3) (2) (2) (11) C(34) (4) (2) (2) (12) C(35) (5) (2) (2) (14) C(36) (5) (3) (3) (19) C(37) (5) (2) (3) (18) C(38) (6) (3) (3) (19) C(39) (4) (2) (2) (11) C(40) (4) (3) (3) (14) S29

30 N(7) (3) (17) (2) (10) C(41) (4) (2) (3) (14) C(42) (4) (3) (3) (15) N(8) (3) (16) (19) (9) O(2) (3) (17) (17) (9) C(43) (4) (2) (3) (13) C(44) (4) (2) (2) (11) O(3) (3) (17) (19) (10) Si(6) (11) (7) (7) (3) C(45) (5) (3) (4) 0.067(2) C(46) (4) (3) (3) (17) C(47) (4) (3) (3) (16) C(48) (5) (3) (3) (19) C(49) (6) (3) (4) 0.071(2) C(50) (5) (3) (4) 0.077(2) C(51) (5) (3) (4) 0.070(2) C(52) (5) (3) (4) 0.074(2) C(53) (5) (3) (3) (17) C(54) (5) (2) (3) (14) C(55) (6) (3) (3) 0.069(2) C(56) (5) (3) (4) 0.066(2) Table S8. Bond lengths [Å] and angles [ ] for 3. U(1) O(1) 2.116(3) U(1) N(3) 2.284(4) U(1) N(1) 2.300(4) U(1) N(2) 2.316(4) U(1) N(4) 2.580(4) N(1) C(7) 1.473(6) N(1) Si(1) 1.720(4) Si(1) C(2) 1.864(5) Si(1) C(1) 1.885(5) Si(1) C(3) 1.904(4) C(1) H(1B) C(1) H(1C) C(1) H(1A) C(2) H(2B) C(2) H(2C) C(2) H(2A) C(3) C(6) 1.527(7) C(3) C(4) 1.539(7) C(3) C(5) 1.544(7) C(4) H(4B) C(4) H(4C) C(4) H(4A) C(5) H(5A) C(5) H(5C) C(5) H(5B) C(6) H(6B) C(6) H(6C) C(6) H(6A) C(7) C(8) 1.491(6) C(7) H(7A) C(7) H(7B) C(8) N(4) 1.488(5) C(8) H(8B) C(8) H(8A) N(2) C(15) 1.464(6) N(2) Si(2) 1.724(4) Si(2) C(9) 1.882(5) Si(2) C(10) 1.898(5) Si(2) C(11) 1.916(5) C(9) H(9B) C(9) H(9C) C(9) H(9A) C(10) H(10B) C(10) H(10C) C(10) H(10A) C(11) C(14) 1.519(7) C(11) C(13) 1.534(6) C(11) C(12) 1.542(7) C(12) H(12B) C(12) H(12C) S30

31 C(12) H(12A) C(13) H(13A) C(13) H(13C) C(13) H(13B) C(14) H(14A) C(14) H(14B) C(14) H(14C) C(15) C(16) 1.527(6) C(15) H(15A) C(15) H(15B) C(16) N(4) 1.481(6) C(16) H(16B) C(16) H(16A) N(3) C(23) 1.480(6) N(3) Si(3) 1.724(4) Si(3) C(17) 1.866(5) Si(3) C(18) 1.877(5) Si(3) C(19) 1.900(5) C(17) H(17A) C(17) H(17C) C(17) H(17B) C(18) H(18A) C(18) H(18C) C(18) H(18B) C(19) C(22) 1.526(7) C(19) C(20) 1.531(7) C(19) C(21) 1.538(7) C(20) H(20B) C(20) H(20C) C(20) H(20A) C(21) H(21B) C(21) H(21C) C(21) H(21A) C(22) H(22A) C(22) H(22C) C(22) H(22B) C(23) C(24) 1.509(7) C(23) H(23B) C(23) H(23A) C(24) N(4) 1.473(6) C(24) H(24B) C(24) H(24A) O(1) U(2) 2.138(3) U(2) O(2) 2.186(4) U(2) N(6) 2.289(4) U(2) N(5) 2.322(4) U(2) N(7) 2.541(4) U(2) N(8) 2.691(4) N(5) C(31) 1.471(6) N(5) Si(4) 1.725(4) Si(4) C(25) 1.861(5) Si(4) C(26) 1.880(5) Si(4) C(27) 1.916(5) C(25) H(25B) C(25) H(25C) C(25) H(25A) C(26) H(26A) C(26) H(26C) C(26) H(26B) C(27) C(29) 1.517(7) C(27) C(28) 1.526(7) C(27) C(30) 1.537(7) C(28) H(28A) C(28) H(28C) C(28) H(28B) C(29) H(29B) C(29) H(29C) C(29) H(29A) C(30) H(30B) C(30) H(30C) C(30) H(30A) C(31) C(32) 1.466(8) C(31) H(31B) C(31) H(31A) C(32) N(8) 1.516(7) C(32) H(32A) C(32) H(32B) N(6) C(39) 1.474(6) N(6) Si(5) 1.714(4) Si(5) C(34) 1.863(5) Si(5) C(33) 1.867(5) Si(5) C(35) 1.913(6) C(33) H(33B) C(33) H(33C) C(33) H(33A) C(34) H(34B) C(34) H(34C) C(34) H(34A) C(35) C(38) 1.521(8) C(35) C(37) 1.534(8) C(35) C(36) 1.556(9) C(36) H(36B) C(36) H(36C) C(36) H(36A) C(37) H(37B) C(37) H(37C) C(37) H(37A) C(38) H(38A) C(38) H(38C) C(38) H(38B) S31

32 C(39) C(40) 1.533(8) C(39) H(39B) C(39) H(39A) C(40) N(8) 1.439(7) C(40) H(40A) C(40) H(40B) N(7) C(44) 1.254(6) N(7) C(41) 1.464(6) C(41) C(42) 1.573(8) C(41) H(41A) C(41) H(41B) C(42) N(8) 1.473(7) C(42) H(42B) C(42) H(42A) O(2) C(43) 1.343(7) C(43) C(44) 1.478(7) C(43) H(43) C(44) O(3) 1.372(6) O(3) Si(6) 1.684(4) Si(6) C(45) 1.851(6) Si(6) C(46) 1.868(7) Si(6) C(47) 1.871(7) C(45) H(45A) C(45) H(45C) C(45) H(45B) C(46) H(46B) C(46) H(46C) C(46) H(46A) C(47) C(49) 1.505(10) C(47) C(48) 1.536(8) C(47) C(50) 1.544(9) C(48) H(48B) C(48) H(48C) C(48) H(48A) C(49) H(49B) C(49) H(49C) C(49) H(49A) C(50) H(50A) C(50) H(50C) C(50) H(50B) C(51) C(56) 1.344(10) C(51) C(52) 1.412(10) C(51) D(51) C(52) C(53) 1.359(9) C(52) D(52) C(53) C(54) 1.382(9) C(53) D(53) C(54) C(55) 1.362(9) C(54) D(54) C(55) C(56) 1.380(9) C(55) D(55) C(56) D(56) O(1) U(1) N(3) 98.58(13) O(1) U(1) N(1) (13) N(3) U(1) N(1) (13) O(1) U(1) N(2) (13) N(3) U(1) N(2) (14) N(1) U(1) N(2) 97.12(13) O(1) U(1) N(4) (12) N(3) U(1) N(4) 68.70(13) N(1) U(1) N(4) 67.32(12) N(2) U(1) N(4) 71.37(12) C(7) N(1) Si(1) 115.5(3) C(7) N(1) U(1) 121.9(3) Si(1) N(1) U(1) (19) N(1) Si(1) C(2) 105.9(2) N(1) Si(1) C(1) 111.5(2) C(2) Si(1) C(1) 108.8(2) N(1) Si(1) C(3) (19) C(2) Si(1) C(3) 110.0(2) C(1) Si(1) C(3) 107.3(2) Si(1) C(1) H(1B) Si(1) C(1) H(1C) H(1B) C(1) H(1C) Si(1) C(1) H(1A) H(1B) C(1) H(1A) H(1C) C(1) H(1A) Si(1) C(2) H(2B) Si(1) C(2) H(2C) H(2B) C(2) H(2C) Si(1) C(2) H(2A) H(2B) C(2) H(2A) H(2C) C(2) H(2A) C(6) C(3) C(4) 109.7(4) C(6) C(3) C(5) 108.2(4) C(4) C(3) C(5) 108.1(4) C(6) C(3) Si(1) 109.2(3) C(4) C(3) Si(1) 111.5(3) C(5) C(3) Si(1) 110.1(3) C(3) C(4) H(4B) C(3) C(4) H(4C) H(4B) C(4) H(4C) C(3) C(4) H(4A) H(4B) C(4) H(4A) H(4C) C(4) H(4A) C(3) C(5) H(5A) C(3) C(5) H(5C) H(5A) C(5) H(5C) S32

33 C(3) C(5) H(5B) H(5A) C(5) H(5B) H(5C) C(5) H(5B) C(3) C(6) H(6B) C(3) C(6) H(6C) H(6B) C(6) H(6C) C(3) C(6) H(6A) H(6B) C(6) H(6A) H(6C) C(6) H(6A) N(1) C(7) C(8) 112.3(4) N(1) C(7) H(7A) C(8) C(7) H(7A) N(1) C(7) H(7B) C(8) C(7) H(7B) H(7A) C(7) H(7B) N(4) C(8) C(7) 111.2(4) N(4) C(8) H(8B) C(7) C(8) H(8B) N(4) C(8) H(8A) C(7) C(8) H(8A) H(8B) C(8) H(8A) C(15) N(2) Si(2) 116.3(3) C(15) N(2) U(1) 118.6(3) Si(2) N(2) U(1) 124.9(2) N(2) Si(2) C(9) 112.4(2) N(2) Si(2) C(10) 106.6(2) C(9) Si(2) C(10) 108.3(2) N(2) Si(2) C(11) 114.3(2) C(9) Si(2) C(11) 106.9(2) C(10) Si(2) C(11) 108.1(2) Si(2) C(9) H(9B) Si(2) C(9) H(9C) H(9B) C(9) H(9C) Si(2) C(9) H(9A) H(9B) C(9) H(9A) H(9C) C(9) H(9A) Si(2) C(10) H(10B) Si(2) C(10) H(10C) H(10B) C(10) H(10C) Si(2) C(10) H(10A) H(10B) C(10) H(10A) H(10C) C(10) H(10A) C(14) C(11) C(13) 107.9(4) C(14) C(11) C(12) 109.3(4) C(13) C(11) C(12) 108.8(4) C(14) C(11) Si(2) 111.8(3) C(13) C(11) Si(2) 110.0(3) C(12) C(11) Si(2) 109.0(3) C(11) C(12) H(12B) C(11) C(12) H(12C) H(12B) C(12) H(12C) C(11) C(12) H(12A) H(12B) C(12) H(12A) H(12C) C(12) H(12A) C(11) C(13) H(13A) C(11) C(13) H(13C) H(13A) C(13) H(13C) C(11) C(13) H(13B) H(13A) C(13) H(13B) H(13C) C(13) H(13B) C(11) C(14) H(14A) C(11) C(14) H(14B) H(14A) C(14) H(14B) C(11) C(14) H(14C) H(14A) C(14) H(14C) H(14B) C(14) H(14C) N(2) C(15) C(16) 112.8(4) N(2) C(15) H(15A) C(16) C(15) H(15A) N(2) C(15) H(15B) C(16) C(15) H(15B) H(15A) C(15) H(15B) N(4) C(16) C(15) 111.1(4) N(4) C(16) H(16B) C(15) C(16) H(16B) N(4) C(16) H(16A) C(15) C(16) H(16A) H(16B) C(16) H(16A) C(23) N(3) Si(3) 115.5(3) C(23) N(3) U(1) 120.6(3) Si(3) N(3) U(1) 120.9(2) N(3) Si(3) C(17) 107.7(2) N(3) Si(3) C(18) 110.6(2) C(17) Si(3) C(18) 107.6(3) N(3) Si(3) C(19) 114.5(2) C(17) Si(3) C(19) 108.4(2) C(18) Si(3) C(19) 107.8(2) Si(3) C(17) H(17A) Si(3) C(17) H(17C) H(17A) C(17) H(17C) Si(3) C(17) H(17B) H(17A) C(17) H(17B) H(17C) C(17) H(17B) Si(3) C(18) H(18A) Si(3) C(18) H(18C) H(18A) C(18) H(18C) Si(3) C(18) H(18B) H(18A) C(18) H(18B) H(18C) C(18) H(18B) C(22) C(19) C(20) 108.1(4) S33

34 C(22) C(19) C(21) 108.9(4) C(20) C(19) C(21) 108.3(5) C(22) C(19) Si(3) 110.5(4) C(20) C(19) Si(3) 110.3(3) C(21) C(19) Si(3) 110.7(4) C(19) C(20) H(20B) C(19) C(20) H(20C) H(20B) C(20) H(20C) C(19) C(20) H(20A) H(20B) C(20) H(20A) H(20C) C(20) H(20A) C(19) C(21) H(21B) C(19) C(21) H(21C) H(21B) C(21) H(21C) C(19) C(21) H(21A) H(21B) C(21) H(21A) H(21C) C(21) H(21A) C(19) C(22) H(22A) C(19) C(22) H(22C) H(22A) C(22) H(22C) C(19) C(22) H(22B) H(22A) C(22) H(22B) H(22C) C(22) H(22B) N(3) C(23) C(24) 108.7(4) N(3) C(23) H(23B) C(24) C(23) H(23B) N(3) C(23) H(23A) C(24) C(23) H(23A) H(23B) C(23) H(23A) N(4) C(24) C(23) 109.6(4) N(4) C(24) H(24B) C(23) C(24) H(24B) N(4) C(24) H(24A) C(23) C(24) H(24A) H(24B) C(24) H(24A) C(24) N(4) C(16) 112.4(4) C(24) N(4) C(8) 110.3(4) C(16) N(4) C(8) 111.5(4) C(24) N(4) U(1) 111.1(3) C(16) N(4) U(1) 105.8(3) C(8) N(4) U(1) 105.5(3) U(1) O(1) U(2) (16) O(1) U(2) O(2) 88.19(13) O(1) U(2) N(6) 97.25(13) O(2) U(2) N(6) (14) O(1) U(2) N(5) (13) O(2) U(2) N(5) (13) N(6) U(2) N(5) (13) O(1) U(2) N(7) (12) O(2) U(2) N(7) 65.06(14) N(6) U(2) N(7) 89.23(14) N(5) U(2) N(7) 93.85(14) O(1) U(2) N(8) (12) O(2) U(2) N(8) (13) N(6) U(2) N(8) 67.73(13) N(5) U(2) N(8) 67.50(13) N(7) U(2) N(8) 63.30(12) C(31) N(5) Si(4) 113.6(3) C(31) N(5) U(2) 121.8(3) Si(4) N(5) U(2) (19) N(5) Si(4) C(25) 109.1(2) N(5) Si(4) C(26) 111.6(2) C(25) Si(4) C(26) 106.5(3) N(5) Si(4) C(27) 112.8(2) C(25) Si(4) C(27) 109.0(2) C(26) Si(4) C(27) 107.5(2) Si(4) C(25) H(25B) Si(4) C(25) H(25C) H(25B) C(25) H(25C) Si(4) C(25) H(25A) H(25B) C(25) H(25A) H(25C) C(25) H(25A) Si(4) C(26) H(26A) Si(4) C(26) H(26C) H(26A) C(26) H(26C) Si(4) C(26) H(26B) H(26A) C(26) H(26B) H(26C) C(26) H(26B) C(29) C(27) C(28) 109.4(4) C(29) C(27) C(30) 107.9(4) C(28) C(27) C(30) 109.1(5) C(29) C(27) Si(4) 111.0(3) C(28) C(27) Si(4) 110.2(3) C(30) C(27) Si(4) 109.2(3) C(27) C(28) H(28A) C(27) C(28) H(28C) H(28A) C(28) H(28C) C(27) C(28) H(28B) H(28A) C(28) H(28B) H(28C) C(28) H(28B) C(27) C(29) H(29B) C(27) C(29) H(29C) H(29B) C(29) H(29C) C(27) C(29) H(29A) H(29B) C(29) H(29A) H(29C) C(29) H(29A) C(27) C(30) H(30B) C(27) C(30) H(30C) H(30B) C(30) H(30C) C(27) C(30) H(30A) S34

35 H(30B) C(30) H(30A) H(30C) C(30) H(30A) C(32) C(31) N(5) 113.1(4) C(32) C(31) H(31B) N(5) C(31) H(31B) C(32) C(31) H(31A) N(5) C(31) H(31A) H(31B) C(31) H(31A) C(31) C(32) N(8) 111.7(4) C(31) C(32) H(32A) N(8) C(32) H(32A) C(31) C(32) H(32B) N(8) C(32) H(32B) H(32A) C(32) H(32B) C(39) N(6) Si(5) 119.3(3) C(39) N(6) U(2) 115.2(3) Si(5) N(6) U(2) 125.4(2) N(6) Si(5) C(34) 111.1(2) N(6) Si(5) C(33) 106.5(2) C(34) Si(5) C(33) 109.4(2) N(6) Si(5) C(35) 114.6(2) C(34) Si(5) C(35) 108.5(3) C(33) Si(5) C(35) 106.4(2) Si(5) C(33) H(33B) Si(5) C(33) H(33C) H(33B) C(33) H(33C) Si(5) C(33) H(33A) H(33B) C(33) H(33A) H(33C) C(33) H(33A) Si(5) C(34) H(34B) Si(5) C(34) H(34C) H(34B) C(34) H(34C) Si(5) C(34) H(34A) H(34B) C(34) H(34A) H(34C) C(34) H(34A) C(38) C(35) C(37) 108.1(5) C(38) C(35) C(36) 108.5(5) C(37) C(35) C(36) 108.4(5) C(38) C(35) Si(5) 108.4(4) C(37) C(35) Si(5) 112.5(4) C(36) C(35) Si(5) 110.7(4) C(35) C(36) H(36B) C(35) C(36) H(36C) H(36B) C(36) H(36C) C(35) C(36) H(36A) H(36B) C(36) H(36A) H(36C) C(36) H(36A) C(35) C(37) H(37B) C(35) C(37) H(37C) H(37B) C(37) H(37C) C(35) C(37) H(37A) H(37B) C(37) H(37A) H(37C) C(37) H(37A) C(35) C(38) H(38A) C(35) C(38) H(38C) H(38A) C(38) H(38C) C(35) C(38) H(38B) H(38A) C(38) H(38B) H(38C) C(38) H(38B) N(6) C(39) C(40) 109.0(4) N(6) C(39) H(39B) C(40) C(39) H(39B) N(6) C(39) H(39A) C(40) C(39) H(39A) H(39B) C(39) H(39A) N(8) C(40) C(39) 110.0(5) N(8) C(40) H(40A) C(39) C(40) H(40A) N(8) C(40) H(40B) C(39) C(40) H(40B) H(40A) C(40) H(40B) C(44) N(7) C(41) 120.4(4) C(44) N(7) U(2) 114.7(3) C(41) N(7) U(2) 124.8(3) N(7) C(41) C(42) 106.3(4) N(7) C(41) H(41A) C(42) C(41) H(41A) N(7) C(41) H(41B) C(42) C(41) H(41B) H(41A) C(41) H(41B) N(8) C(42) C(41) 109.1(5) N(8) C(42) H(42B) C(41) C(42) H(42B) N(8) C(42) H(42A) C(41) C(42) H(42A) H(42B) C(42) H(42A) C(40) N(8) C(42) 114.1(5) C(40) N(8) C(32) 108.5(4) C(42) N(8) C(32) 109.3(4) C(40) N(8) U(2) 110.4(3) C(42) N(8) U(2) 112.5(3) C(32) N(8) U(2) 101.2(3) C(43) O(2) U(2) 129.8(3) O(2) C(43) C(44) 109.8(5) O(2) C(43) H(43) C(44) C(43) H(43) N(7) C(44) O(3) 121.0(5) N(7) C(44) C(43) 119.6(5) O(3) C(44) C(43) 119.3(5) C(44) O(3) Si(6) 134.5(3) S35

36 O(3) Si(6) C(45) 107.5(3) O(3) Si(6) C(46) 112.7(2) C(45) Si(6) C(46) 110.2(3) O(3) Si(6) C(47) 102.1(2) C(45) Si(6) C(47) 112.4(3) C(46) Si(6) C(47) 111.7(3) Si(6) C(45) H(45A) Si(6) C(45) H(45C) H(45A) C(45) H(45C) Si(6) C(45) H(45B) H(45A) C(45) H(45B) H(45C) C(45) H(45B) Si(6) C(46) H(46B) Si(6) C(46) H(46C) H(46B) C(46) H(46C) Si(6) C(46) H(46A) H(46B) C(46) H(46A) H(46C) C(46) H(46A) C(49) C(47) C(48) 110.4(6) C(49) C(47) C(50) 108.2(6) C(48) C(47) C(50) 108.3(6) C(49) C(47) Si(6) 110.3(5) C(48) C(47) Si(6) 110.7(5) C(50) C(47) Si(6) 108.8(4) C(47) C(48) H(48B) C(47) C(48) H(48C) H(48B) C(48) H(48C) C(47) C(48) H(48A) H(48B) C(48) H(48A) H(48C) C(48) H(48A) C(47) C(49) H(49B) C(47) C(49) H(49C) H(49B) C(49) H(49C) C(47) C(49) H(49A) H(49B) C(49) H(49A) H(49C) C(49) H(49A) C(47) C(50) H(50A) C(47) C(50) H(50C) H(50A) C(50) H(50C) C(47) C(50) H(50B) H(50A) C(50) H(50B) H(50C) C(50) H(50B) C(56) C(51) C(52) 119.1(7) C(56) C(51) D(51) C(52) C(51) D(51) C(53) C(52) C(51) 119.9(7) C(53) C(52) D(52) C(51) C(52) D(52) C(52) C(53) C(54) 120.1(6) C(52) C(53) D(53) C(54) C(53) D(53) C(55) C(54) C(53) 119.6(6) C(55) C(54) D(54) C(53) C(54) D(54) C(54) C(55) C(56) 120.4(7) C(54) C(55) D(55) C(56) C(55) D(55) C(51) C(56) C(55) 120.8(7) C(51) C(56) D(56) C(55) C(56) D(56) Symmetry transformations used to generate equivalent atoms: Table S9. Anisotropic displacement parameters (Å 2 ) for 3. The anisotropic displacement factor exponent takes the form: 2π 2 [h 2 a* 2 U hka*b*U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 U(1) (8) (9) (9) (6) (6) (6) N(1) (18) 0.028(2) (19) (15) (15) (15) Si(1) (6) (7) (6) (5) (5) (5) C(1) 0.035(2) 0.033(3) 0.026(3) 0.006(2) 0.011(2) 0.002(2) C(2) 0.031(2) 0.032(3) 0.018(2) (18) (18) (19) C(3) 0.024(2) 0.036(3) 0.021(2) (19) (18) (19) C(4) 0.029(2) 0.048(3) 0.036(3) 0.008(2) 0.003(2) 0.014(2) C(5) 0.030(3) 0.064(4) 0.025(3) 0.007(2) 0.004(2) 0.002(2) C(6) 0.022(2) 0.063(4) 0.028(3) 0.000(2) 0.006(2) 0.002(2) C(7) 0.023(2) 0.030(3) 0.027(2) (19) (18) (18) S36

37 C(8) 0.029(2) 0.034(3) 0.025(2) (19) (19) (19) N(2) (17) 0.027(2) 0.027(2) (16) (15) (15) Si(2) (6) (7) (7) (5) (5) (5) C(9) 0.035(3) 0.045(3) 0.026(3) 0.002(2) 0.007(2) 0.000(2) C(10) 0.026(2) 0.029(3) 0.031(3) 0.002(2) 0.007(2) (19) C(11) 0.026(2) 0.036(3) 0.029(3) 0.003(2) 0.013(2) (19) C(12) 0.024(2) 0.043(3) 0.036(3) 0.001(2) 0.004(2) 0.001(2) C(13) 0.030(2) 0.039(3) 0.040(3) 0.006(2) 0.014(2) 0.001(2) C(14) 0.027(2) 0.039(3) 0.037(3) 0.002(2) 0.010(2) 0.008(2) C(15) 0.027(2) 0.031(3) 0.039(3) 0.003(2) 0.010(2) 0.003(2) C(16) 0.026(2) 0.025(2) 0.033(3) (19) (19) (18) N(3) (19) 0.031(2) 0.023(2) (16) (16) (16) Si(3) (6) (8) (7) (6) (5) (5) C(17) 0.029(2) 0.041(3) 0.035(3) 0.003(2) 0.007(2) 0.006(2) C(18) 0.032(3) 0.053(4) 0.042(3) 0.006(3) 0.004(2) 0.005(2) C(19) 0.031(2) 0.045(3) 0.022(2) 0.007(2) (19) 0.003(2) C(20) 0.037(3) 0.054(3) 0.029(3) 0.011(2) 0.003(2) 0.008(2) C(21) 0.037(3) 0.073(4) 0.040(3) 0.019(3) 0.005(3) 0.004(3) C(22) 0.048(3) 0.060(4) 0.022(3) 0.001(2) 0.005(2) 0.005(3) C(23) 0.040(3) 0.038(3) 0.027(3) 0.004(2) 0.005(2) 0.005(2) C(24) 0.035(3) 0.037(3) 0.032(3) 0.001(2) 0.003(2) 0.003(2) N(4) (18) 0.033(2) 0.021(2) (16) (15) (15) O(1) (16) (18) (18) (13) (14) (13) U(2) (8) (10) (9) (6) (6) (6) N(5) (18) 0.035(2) (19) (16) (15) (16) Si(4) (6) (7) (6) (5) (5) (5) C(25) 0.024(2) 0.034(3) 0.036(3) 0.002(2) 0.010(2) (19) C(26) 0.038(3) 0.055(4) 0.030(3) 0.008(2) 0.003(2) 0.006(2) C(27) 0.025(2) 0.039(3) 0.031(3) 0.004(2) (19) 0.000(2) C(28) 0.026(2) 0.078(4) 0.040(3) 0.003(3) 0.002(2) 0.001(3) C(29) 0.033(3) 0.035(3) 0.042(3) 0.003(2) 0.011(2) 0.004(2) C(30) 0.033(3) 0.040(3) 0.058(4) 0.010(3) 0.019(3) 0.000(2) C(31) 0.039(3) 0.040(3) 0.023(3) 0.010(2) 0.002(2) 0.003(2) C(32) 0.047(3) 0.054(4) 0.035(3) 0.012(3) 0.007(2) 0.004(3) N(6) (19) 0.033(2) 0.019(2) (16) (15) (16) Si(5) (7) (7) (7) (5) (5) (5) C(33) 0.033(2) 0.040(3) 0.025(3) 0.004(2) 0.005(2) 0.003(2) C(34) 0.038(3) 0.050(3) 0.026(3) 0.001(2) 0.005(2) 0.007(2) C(35) 0.079(4) 0.029(3) 0.025(3) 0.003(2) 0.009(3) 0.007(3) C(36) 0.078(5) 0.051(4) 0.054(4) 0.002(3) 0.001(4) 0.030(3) C(37) 0.104(5) 0.030(3) 0.041(4) 0.002(3) 0.028(4) 0.005(3) C(38) 0.116(6) 0.038(3) 0.028(3) 0.008(2) 0.009(3) 0.017(3) C(39) 0.032(2) 0.046(3) 0.023(3) 0.002(2) 0.001(2) 0.011(2) C(40) 0.060(4) 0.050(4) 0.033(3) 0.009(3) 0.008(3) 0.012(3) N(7) 0.037(2) 0.032(2) 0.032(2) (18) (18) (18) C(41) 0.041(3) 0.043(3) 0.045(3) 0.024(3) 0.002(3) 0.019(3) C(42) 0.051(3) 0.057(4) 0.044(4) 0.020(3) 0.010(3) 0.001(3) N(8) (19) 0.029(2) 0.029(2) (17) (17) (16) S37

38 O(2) 0.040(2) 0.055(2) 0.029(2) (18) (16) (18) C(43) 0.048(3) 0.041(3) 0.039(3) 0.012(2) 0.010(3) 0.007(2) C(44) 0.035(2) 0.038(3) 0.028(3) 0.002(2) 0.007(2) 0.003(2) O(3) 0.037(2) 0.057(3) 0.042(2) (19) (18) (18) Si(6) (7) (10) (8) (7) (6) (7) C(45) 0.066(4) 0.053(4) 0.089(6) 0.004(4) 0.035(4) 0.006(3) C(46) 0.047(3) 0.085(5) 0.036(3) 0.001(3) 0.002(3) 0.001(3) C(47) 0.033(3) 0.065(4) 0.055(4) 0.020(3) 0.001(3) 0.008(3) C(48) 0.055(4) 0.069(5) 0.060(5) 0.006(4) 0.016(3) 0.011(3) C(49) 0.084(5) 0.047(4) 0.077(5) 0.005(4) 0.019(4) 0.017(4) C(50) 0.064(4) 0.064(5) 0.103(7) 0.024(5) 0.017(4) 0.001(4) C(51) 0.052(4) 0.083(6) 0.073(5) 0.001(4) 0.009(4) 0.012(4) C(52) 0.066(5) 0.068(5) 0.086(6) 0.018(4) 0.004(4) 0.022(4) C(53) 0.054(4) 0.070(5) 0.042(4) 0.011(3) 0.002(3) 0.007(3) C(54) 0.054(4) 0.046(4) 0.039(3) 0.002(3) 0.001(3) 0.000(3) C(55) 0.095(6) 0.050(4) 0.057(4) 0.012(3) 0.022(4) 0.016(4) C(56) 0.065(4) 0.071(5) 0.057(5) 0.010(4) 0.022(4) 0.008(4) Table S10. Hydrogen coordinates and isotropic displacement parameters (Å 2 ) for 3. x y z U(eq) H(1B) H(1C) H(1A) H(2B) H(2C) H(2A) H(4B) H(4C) H(4A) H(5A) H(5C) H(5B) H(6B) H(6C) H(6A) H(7A) H(7B) H(8B) H(8A) H(9B) H(9C) H(9A) H(10B) H(10C) H(10A) S38

39 H(12B) H(12C) H(12A) H(13A) H(13C) H(13B) H(14A) H(14B) H(14C) H(15A) H(15B) H(16B) H(16A) H(17A) H(17C) H(17B) H(18A) H(18C) H(18B) H(20B) H(20C) H(20A) H(21B) H(21C) H(21A) H(22A) H(22C) H(22B) H(23B) H(23A) H(24B) H(24A) H(25B) H(25C) H(25A) H(26A) H(26C) H(26B) H(28A) H(28C) H(28B) H(29B) H(29C) H(29A) H(30B) H(30C) H(30A) H(31B) H(31A) H(32A) S39

40 H(32B) H(33B) H(33C) H(33A) H(34B) H(34C) H(34A) H(36B) H(36C) H(36A) H(37B) H(37C) H(37A) H(38A) H(38C) H(38B) H(39B) H(39A) H(40A) H(40B) H(41A) H(41B) H(42B) H(42A) H(43) H(45A) H(45C) H(45B) H(46B) H(46C) H(46A) H(48B) H(48C) H(48A) H(49B) H(49C) H(49A) H(50A) H(50C) H(50B) D(51) D(52) D(53) D(54) D(55) D(56) S40

41 Density Functional Calculations of 2 and Reaction Enthalpy Calculations General Unrestricted geometry optimizations were performed for the full models of 2, 4 5, [(UN 3 ) 2 (μ-η 1 :η 1 - OCCO)], 6 and [UN" 3 I] 7 using coordinates derived from the experimental X-ray crystal structures. Restricted calculations were performed on models of Me 3 SiI, PhMe 2 SiI, Ph 2 MeSiI, Ph 3 SiI, Me 3 SiOCCOSiMe 3 (5a), PhMe 2 SiOCCOSiMe 2 Ph (5b), Ph 2 MeSiOCCOSiMePh 2, and Ph 3 SiOCCOSiPh 3, generated in silico. No constraints were imposed on the structures during the geometry optimizations. The calculations were performed using ADF version ,9 The DFT geometry optimizations employed Slater-type orbital (STO) triple-ζ-plus polarization all-electron basis sets (from the ZORA/TZP database of the ADF suite). Scalar relativistic approaches were used within the ZORA Hamiltonian for the inclusion of relativistic effects and the local density approximation (LDA) with the correlation potential due to Vosko et al. 10 was used in all of the calculations. Gradient corrections were performed using the functionals of Becke 11 and Perdew. 12 MOLEKEL 13 was used to prepare the three-dimensional electron density plots. Ligand Relaxation Energy Calculation The coordinates for the [U(Tren DMSB )] + fragment were extracted from the crystal structure of 2 and a single point energy calculation was performed. A geometry optimization was run on the same coordinates and then a single point energy was calculated on the optimized structure. The difference in energies is 10.8 kcal mol 1, which equates to the ligand relaxation energy. The single point energy and geometry optimized structures are illustrated below viewed down the uranium-amine vector and they reveal very little difference in the geometries (Fig. S19). S41

42 Fig. S19. Single Point Energy Geometry Optimized The Six Highest Occupied Frontier Orbitals of A 13.13% 1 P:z C 13.13% 1 P:z C 9.07% 1 P:y C 9.07% 1 P:y C 7.98% 1 P:z O 7.98% 1 P:z O 5.49% 1 P:y O 5.49% 1 P:y O 1.64% 2 F:x U 1.64% 2 F:x U 1.47% 1 P:y N 1.47% 1 P:y N 1.04% 1 P:z N 1.04% 1 P:z N 1.02% 1 P:y N 1.02% 1 P:y N A 13.03% 1 P:y C 13.03% 1 P:y C 8.91% 1 P:z C 8.91% 1 P:z C 7.92% 1 P:y O 7.92% 1 P:y O 5.27% 1 P:z O 5.27% 1 P:z O 2.72% 1 P:y N 2.72% 1 P:y N 1.47% 2 F:y U S42

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z52710 Wiley-VCH 2003 69451 Weinheim, Germany Anionic amido- N-heterocyclic carbenes; synthesis of covalently tethered lanthanide carbene complexes Polly

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Supporting Information

Supporting Information Supporting Information A Diiron Amido-Imido Complex [(Cp*Fe) 2 (µ 2 -NHPh)(µ 2 -NPh)]: Synthesis and a Net Hydrogen Atom Abstraction Reaction to Form a Bis(imido) Complex Shin Takemoto, Shin-ichiro Ogura,

More information

Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes. Experimental details and characterising data

Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes. Experimental details and characterising data Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes Polly L. Arnold,* a Zoe R. Turner, a,b Ian J. Casely, a,c Ronan Bellabarba, c and Robert P. Tooze c Experimental

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Rare double spin canting antiferromagnetic behaviours in a [Co 24 ] cluster Guang-Ming Liang, Qing-Ling

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information for: Zero-field slow magnetic relaxation in a uranium(iii) complex with

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Supporting Information

Supporting Information Supporting Information Tris(2-dimethylaminoethyl)amine: A simple new tripodal polyamine ligand for Group 1 metals David M. Cousins, Matthew G. Davidson,* Catherine J. Frankis, Daniel García-Vivó and Mary

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Supporting Information for

Supporting Information for Supporting Information for Reactivity of Uranium(IV) Bridged Chalcogenido Complexes U IV E U IV (E = S, Se) with Elemental Sulfur and Selenium: Synthesis of Polychalcogenide-Bridged Uranium Complexes Sebastian

More information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms Theodore A. Betley and Jonas C. Peters Division of Chemistry and Chemical Engineering Arnold and Mabel Beckman Laboratories of

More information

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species Steven D. Brown and Jonas C. Peters Division of Chemistry and Chemical Engineering,

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

One-dimensional organization of free radicals via halogen bonding. Supporting information

One-dimensional organization of free radicals via halogen bonding. Supporting information One-dimensional organization of free radicals via halogen bonding Guillermo Mínguez Espallargas,* a Alejandro Recuenco, a Francisco M. Romero, a Lee Brammer, b and Stefano Libri. b a Instituto de Ciencia

More information

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Hydrophobic Ionic Liquids with Strongly Coordinating Anions Supporting material Hydrophobic Ionic Liquids with Strongly Coordinating Anions Hasan Mehdi, Koen Binnemans*, Kristof Van Hecke, Luc Van Meervelt, Peter Nockemann* Experimental details: General techniques.

More information

,

, 2013. 54, 6. 1115 1120 UDC 548.737:547.12 CHARACTERIZATION AND CRYSTAL STRUCTURES OF SOLVATED N -(4-HYDROXY-3-NITROBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE AND N -(4-DIMETHYLAMINOBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE

More information

Supporting Information Borata-alkene Derivatives Conveniently Made by Frustrated Lewis Pair Chemistry

Supporting Information Borata-alkene Derivatives Conveniently Made by Frustrated Lewis Pair Chemistry Supporting Information Borata-alkene Derivatives Conveniently Made by Frustrated Lewis Pair Chemistry Juri Möbus 1, Gerald Kehr, Constantin G. Daniliuc $, Roland Fröhlich $, Gerhard Erker* General Procedures.

More information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes Olga Ekkert, Gerald Kehr, Roland Fröhlich and Gerhard Erker Supporting Information Experimental Section

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Supporting Information

Supporting Information Supporting Information Activation of Ene-Diamido Samarium Methoxide with Hydrosilane for Selectively Catalytic Hydrosilylation of Alkenes and Polymerization of Styrene: an Experimental and Theoretical

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Tuning the Lewis Acidity of Boranes in rustrated Lewis Pair Chemistry: Implications for the Hydrogenation of Electron-Poor

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni Supplementary Figure 1 IR Spectroscopy. IR spectra of 1Cu and 1Ni as well as of the starting compounds, recorded as KBr-pellets on a Bruker Alpha FTIR spectrometer. Supplementary Figure 2 UV/Vis Spectroscopy.

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Manganese-Calcium Clusters Supported by Calixarenes

Manganese-Calcium Clusters Supported by Calixarenes Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Manganese-Calcium Clusters Supported by Calixarenes Rebecca O. Fuller, George A. Koutsantonis*,

More information

Supporting Information

Supporting Information Supporting Information Heteroligand o-semiquinonato-formazanato cobalt complexes Natalia A. Protasenko, Andrey I. Poddel sky,*, Artem S. Bogomyakov, Georgy K. Fukin, Vladimir K. Cherkasov G.A. Razuvaev

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Heterolytic dihydrogen activation by B(C 6 F 5 ) 3 and carbonyl compounds

Heterolytic dihydrogen activation by B(C 6 F 5 ) 3 and carbonyl compounds Heterolytic dihydrogen activation by B(C 6 5 ) 3 and carbonyl compounds Markus Lindqvist, Nina Sarnela, Victor Sumerin, Konstantin Chernichenko, Markku Leskelä and Timo Repo* epartment of Chemistry, Laboratory

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Supporting Information for

Supporting Information for Supporting Information for Nickel(I)-mediated transformations of carbon dioxide in closed synthetic cycles: reductive cleavage and coupling of CO 2 generating Ni I CO, Ni II CO 3 and Ni II C 2 O 4 Ni II

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Solvent-Dependent Conductance Decay Constants in Single Cluster

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Supporting Information Synthesis and Structures of N-Arylcyano-β-diketiminate Zinc Complexes

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Xiaofang Li, Masayoshi Nishiura, Kyouichi Mori, Tomohiro

More information

Supporting Information

Supporting Information Supporting Information New Hexaphosphane Ligands 1,3,5-C 6 H 3 {p-c 6 H 4 N(PX 2 ) 2 } 3 [X = Cl, F, C 6 H 3 OMe(C 3 H 5 )]: Synthesis, Derivatization and, Palladium(II) and Platinum(II) Complexes Sowmya

More information

Supporting Information

Supporting Information Supporting Information The Heptacyanotungstate(IV) Anion: A New 5 d Transition-Metal Member of the Rare Heptacyanometallate Family of Anions Francisco J. Birk, Dawid Pinkowicz, and Kim R. Dunbar* anie_201602949_sm_miscellaneous_information.pdf

More information

Supplementary Information

Supplementary Information Supplementary Information NE Difference Spectroscopy: SnPh 3 CH (b) Me (b) C()CH (a) Me (a) C()N Me (d) Me (c) Irradiated signal Enhanced signal(s) (%) Me (a) Me (c) 0.5, Me (d) 0.6 Me (b) - Me (c) H (a)

More information

Supporting Information

Supporting Information -S1- of 18 Functional Group Chemistry at the Group 4 Bent Metallocene Frameworks: Formation and Metal-free Catalytic Hydrogenation of Bis(imino-Cp)zirconium Complexes Kirill V. Axenov, Gerald Kehr, Roland

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides -1- An Unexpected Rearrangement which Disassembles Alkyne Moiety Through Formal Nitrogen Atom Insertion between Two Acetylenic Carbons and Related Cascade Transformations: New Approach to Sampagine derivatives

More information

Supplemental Information

Supplemental Information Supplemental Information Template-controlled Face-to-Face Stacking of Olefinic and Aromatic Carboxylic Acids in the Solid State Xuefeng Mei, Shuanglong Liu and Christian Wolf* Department of Chemistry,

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Supplementary Information Synthesis of Low-Oxidation-State Germanium Clusters Comprising

More information

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom).

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figure 2. ATR-IR spectra of 3 (top) and 3D (bottom). 1 Supplementary Figure 3. ATR-IR spectra of 5

More information

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Supplementary Information for: Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Justin A.M. Lummiss, a Nicholas J.

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A New Melt Approach to the Synthesis of catena- Phosphorus Dications to Access the First Derivatives of 2+ ** [P 6 Ph 4 R 4 ] Jan J. Weigand*,

More information

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Supplementary Information Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Kenji Hirata, Toshiaki Suzuki, Ai Noya, Izuru Takei and Masanobu

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Supporting Information for Controlled Synthesis of C 70 Equatorial Multiadducts with Mixed Addends from an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Shu-Hui Li, Zong-Jun Li,* Wei-Wei

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany An Alkylidyne Analogue of Tebbe s Reagent. Trapping Reactions of a Titanium Neopentylidyne by incomplete and Complete 1,2 Additions B. C. Bailey,

More information

Supporting Information for

Supporting Information for Supporting Information for Deuteration of boranes: catalysed versus non-catalysed processes David J. Nelson, Jonathan B. Egbert and Steven P. Nolan* EaStCHEM, School of Chemistry, University of St. Andrews,

More information

The oxide-route for the preparation of

The oxide-route for the preparation of Supporting Information for: The oxide-route for the preparation of mercury(ii) N-heterocyclic carbene complexes. Simon Pelz and Fabian Mohr* Fachbereich C-Anorganische Chemie, Bergische Universität Wuppertal,

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1 Electronic Supporting Information Reduction-free synthesis of stable acetylide cobalamins Mikołaj Chromiński, a Agnieszka Lewalska a and Dorota Gryko* a Table of Contents General information Numbering

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

Reactions. James C. Anderson,* Rachel H. Munday. School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK Vinyl-dimethylphenylsilanes as Safety Catch Silanols in Fluoride free Palladium Catalysed Cross Coupling Reactions. James C. Anderson,* Rachel H. Munday School of Chemistry, University of Nottingham, Nottingham,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Facile Heterolytic H 2 Activation by Amines and B(C 6 F 5 ) 3 Victor Sumerin, Felix Schulz, Martin Nieger, Markku Leskelä, Timo Repo,* and

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Solution and solid-state spin-crossover behavior in a. pseudo-tetrahedral d 7 ion.

Solution and solid-state spin-crossover behavior in a. pseudo-tetrahedral d 7 ion. Solution and solid-state spin-crossover behavior in a pseudo-tetrahedral d 7 ion. David M. Jenkins and Jonas C. Peters* Division of Chemistry and Chemical Engineering, Arnold and Mabel Beckman Laboratories

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Supplementary information

Supplementary information Supplementary information Dinitrogen leavage and Functionalization by arbon Monoxide Promoted by a Hafnium omplex Donald J. Knobloch, Emil Lobkovsky, Paul J. hirik* Department of hemistry and hemical Biology,

More information

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes Supporting Information for Synthetic routes to [Au(HC)(OH)] (HC = - heterocyclic carbene) complexes Adrián Gómez-Suárez, Rubén S, Alexandra M. Z. Slawin and Steven P. olan* EaStChem School of chemistry,

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C

C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene. Complexes: Application in a Catalytic Tandem Reaction Involving C-C SUPPORTING INFORMATION C-H Activation Reactions of Ruthenium N-Heterocyclic Carbene Complexes: Application in a Catalytic Tandem Reaction Involving C-C Bond Formation from Alcohols Suzanne Burling, Belinda

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Shanmuganathan Saravanakumar, a Markus K. Kindermann, a Joachim

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Photoenolization of 2-(2-Methyl Benzoyl) Benzoic Acid, Methyl Ester: The Effect of The Lifetime of the E Photoenol on the Photochemistry Armands Konosonoks, P. John Wright,

More information

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds Supporting Information Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds Reinald Fischer, Jens Langer, Sven Krieck, Helmar Görls, Matthias Westerhausen*

More information

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004 Supporting Information for Angew. Chem. Int. Ed. 246736 Wiley-VCH 24 69451 Weinheim, Germany 1 Challenges in Engineering Spin Crossover. Structures and Magnetic Properties of six Alcohol Solvates of Iron(II)

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Supporting Information

Supporting Information Supporting Information Manuscript Title: Synthesis of Semibullvalene Derivatives via Co 2 (CO) 8 -Mediated Cyclodimerization of 1,4-Dilithio-1,3-butadienes Corresponding Author: Zhenfeng Xi Affiliations:

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Chiral Sila[1]ferrocenophanes

Chiral Sila[1]ferrocenophanes Supporting Information Thermal Ring-Opening Polymerization of Planar- Chiral Sila[1]ferrocenophanes Elaheh Khozeimeh Sarbisheh, Jose Esteban Flores, Brady Anderson, Jianfeng Zhu, # and Jens Müller*, Department

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for uminum complexes containing salicylbenzoxazole

More information