Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Wiley-VCH Weinheim, Germany

2 An Alkylidyne Analogue of Tebbe s Reagent. Trapping Reactions of a Titanium Neopentylidyne by incomplete and Complete 1,2 Additions B. C. Bailey, A. R. Fout, H. Fan, J. Tomaszewski, J. C. Huffman, and D. J. Mindiola* Experimental Section General Considerations. Unless otherwise stated, all operations were performed in an M. Braun Lab Master double-dry box under an atmosphere of purified nitrogen or using high vacuum standard Schlenk techniques under an argon atmosphere. Anhydrous n- hexane, pentane, toluene, and benzene were purchased from Aldrich in sure-sealed reservoirs (18 L) and dried by passage through two columns of activated alumina and a Q-5 column. Diethylether was dried by passage through a column of activated alumina. THF was distilled, under nitrogen, from purple sodium benzophenone ketyl and stored under sodium metal. Distilled THF was transferred under vacuum into bombs before being pumped into a dry box. C 6 D 6 and C 7 D 8 were purchased from Cambridge Isotope Laboratory (CIL), degassed and vacuum transferred to 4 Å molecular sieves. THF-d 8 was purchased from CIL and used as received. Celite, alumina, and 4 Å molecular sieves were activated under vacuum overnight at 200 ºC. Li(PNP) (PNP = N[2-P(CHMe 2 )2-4- methylphenyl] 2 ) [1] and (PNP)Ti=CH t Bu(CH t 2 Bu) (1) [2] were prepared according to the literature. B(OMe) 3 was dried by adding to the solution chunks of sodium metal and left to sit for two days forming a white solid on the bottom of the vial. The suspension is then filtered through two pipette columns of alumina to obtain a clear colorless liquid (8 ml). All other chemicals were used as received. CHN analyses were performed by Desert Analytics, Tucson, AZ or Midwest Microlabs, Indianapolis, IN. 1 H, 13 C, 19 F, 11 B and 31 P S1

3 NMR spectra were recorded on Varian 400 or 300 MHz NMR spectrometers. 1 H and 13 C NMR are reported with reference to solvent resonances (residual C 6 D 5 H in C 6 D 6, 7.16 ppm and ppm). 31 P NMR chemical shifts are reported with respect to external H 3 PO 4 (aqueous solution, δ 0.0 ppm). 27 Al NMR chemical shifts are reported with respect to AlMe 3 (153.0 ppm). 11 B NMR chemical shifts are reported with respect to external BF 3 (0.0 ppm). X-ray iffraction data were collected on a SMART6000 (Bruker) system under a stream of N 2 (g) at low temperatures. [3] Preparation of (PNP)Ti[C( t Bu)Al(CH 3 ) 3 ] (2) In a vial (PNP)Ti=CH t Bu(CH t 2 Bu) (1) [88 mg, mmol] was dissolved in pentane and cooled to 77 K. Room temperature Al(CH 3 ) 3 (~4 drops, excess) was added to the frozen solution. The solution was allowed to warm to room temperature and stirred for 1 hour. Upon thawing, the solution instantly turned to a deep-red color. The solution was dried under vacuum and the residue was extracted with hexane and filtered. The filtrate was reduced in volume under reduced pressure, and then cooled to 35 o C. Red crystals of 2 [50 mg, mmol, 57% yield] were collected. For 2: 1 H NMR (23 o C, MHz, C 6 D 6 ): δ 7.38 (dd, 1H, C 6 H 3 ), (m, 3H, C 6 H 3 ), (m, 2H, C 6 H 3 ), 2.82 (septet, 1H, CHMe 2 ), (m, 3H, CHMe 2 ), 2.20 (s, 3H, C 6 H 3 CH 3 ), 2.09 (s, 3H, C 6 H 3 CH 3 ), (m, 6H, CHMe 2 ), (m, 6H, CHMe 2 ), 1.17 (dd, 3H, CHMe 2 ), 0.92 (s, 9H, Ti=CCMe 3 ), (m, 6H, CHMe 2 ), 0.67 (t, 3H, Ti=C t BuAl(Me 2 )(µ CH 3 )), 0.49 (dd, 3H, CHMe 2 ), 0.18 (s, 3H, Ti=C t BuAl(Me 2 )(µ CH 3 )), 0.09 (s, 3H, Ti=C t BuAl(Me 2 )(µ CH 3 )). 13 C NMR (23 o C, MHz, C 6 D 6 ): δ (Ti=C t BuAl(Me 2 )(µ CH 3 )), (d, C 6 H 3 ), (d, S2

4 C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (dd, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (dd, C 6 H 3 ), 55.0 (Ti=CCMe 3 ), 32.9 (q, Ti=CCMe 3 ), 25.1 (d, CHMe 2 ), 25.0 (d, CHMe 2 ), 24.9 (C 6 H 3 CH 3 ), 25.8 (d, CHMe 2 ), 21.8 (d, CHMe 2 ), 21.6 (d, CHMe 2 ), 21.0 (d, CHMe 2 ), 20.7 (d, CHMe 2 ), 20.6 (d, CHMe 2 ), 20.5 (d, CHMe2), 20.2 (AlMe 2 ), 19.5 (AlMe 2 ), 18.8 (C 6 H 3 CH 3 ), 18.6 (d, CHMe 2 ), 18.0 (d, CHMe 2 ), 17.1 (d, CHMe 2 ), 1.40 (br s, Ti CH 3 AlMe 2 ). 31 P NMR (23 o C, MHz, C 6 D 6 ): δ 31.5 (d, J P P = 36 Hz), 15.3 (d, J P P = 36 Hz). 27 Al (25 o C, MHz, C 7 D 8 ): δ 56.7 ( ν 1/2 = 5890 Hz). Anal. Calcd. for C 34 H 58 NAlP 2 Ti: C, 66.12; H, 9.46; N, Found: C, 65.81; H, 9.77; N, Caution: trimethylaluminum spontaneously combusts in the presence of air or moisture. Special care must be taken to remove Al(CH 3 ) 3 collected in the vacuum trap. In general, the contents in the trap should be transferred cold (thawing from liquid N 2 ) rapidly to a safe vacuum hood. After several hours the contents in the trap are quenched with cold isopropanol. Preparation of 2 from (PNP)Ti=CH t Bu(Ph) (3) In a vial (PNP)Ti=CH t Bu(Ph) (3) [50 mg, mmol] was dissolved in pentane and cooled to 77 K. Room temperature Al(CH 3 ) 3 (~4 drops, excess) was added to the frozen solution. The solution was allowed to warm to room temperature. Upon thawing, the solution instantly turned to a deep-red color. The solution was dried under vacuum (Caution: trimethylaluminum spontaneously combusts in the presence of air or moisture) and the residue was extracted with hexane and filtered. The filtrate was reduced in volume under reduced pressure, and then cooled to 35 o C. The reaction was quantitative S3

5 by 1 H and 31 P NMR spectroscopy. Spectral data matched an independently prepared sample of 2. Preparation of (PNP)Ti(C( t Bu)CC 4 H 4 NH) (4) from 2 In a J. Young tube [50 mg, mmol] was dissolved in neat pyridine (~2 ml) and heated to 40 o C for 48 hours. The conversion to 4 was formed quantitatively by 1 H and 31 P NMR spectroscopy. The spectroscopic data matched an independently prepared sample of 4. [4] Preparation of (PNP)Ti[C( t Bu)B(OCH 3 ) 2 ](OCH 3 ) (5) In a vial (PNP)Ti=CH t Bu(CH t 2 Bu) [67 mg, mmol] was dissolved in neat B(OMe) 3 (~2 ml) and heated to 50 o C for 1 hour. The solution changed from green to red-brown. Upon completion of the reaction, the solution was dried under vacuum and the residue was extracted with pentane and filtered. The filtrate was reduced in volume under reduced pressure, and then cooled to 35 o C. Red-brown crystals of 5 [60 mg, mmol, 86% yield] were collected. For 5: 1 H NMR (23 o C, MHz, C 6 D 6 ): δ 7.38 (dd, 1H, C 6 H 3 ), 7.19 (dd, 1H, C 6 H 3 ), (m, 3H, C 6 H 3 ), 6.76 (br d, 1H, C 6 H 3 ), 4.05 (s, 3H, Ti OMe), 3.50 (s, 6H, Ti=C t BuB(OMe) 2, 2.32 (septet, 1H, CHMe 2 ), 2.21 (s, 3H, C 6 H 3 Me), 2.16 (s, 3H, C 6 H 3 Me), (m, 2H, CHMe 2 ), 1.91 (septet, 1H, CHMe 2 ), 1.64 (s, 9H, Ti=CCMe 3 ), (m, 6H, CHMe 2 ), (m, 15H, CHMe 2 ), 0.90 (dd, 3H, CHMe 2 ). 13 C NMR (23 o C, MHz, C 6 D 6 ): δ (Ti=CCMe 3 ), (dd, C 6 H 3 ), (dd, C 6 H 3 ), (C 6 H 3 ), (C 6 H 3 ), (C 6 H 3 ), (C 6 H 3 ), (d, C 6 H 3 ), S4

6 (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), (d, C 6 H 3 ), 63.0 (Ti OMe), 51.9 (Ti=CCMe 3 B(OMe) 2 ), 45.1 (Ti=CCMe 3 ), 36.6 (Ti=CCMe 3 ), 25.9 (d, CHMe 2 ), 23.1 (d, CHMe 2 ), 20.9 (C 6 H 3 Me), 20.8 (C 6 H 3 Me), 20.7 (d, CHMe 2 ), 20.6 (d, CHMe 2 ), 20.3 (d, CHMe 2 ), 20.1 (d, CHMe 2 ), 18.8 (d, CHMe 2 ), 18.4 (d, CHMe 2 ), 18.1 (d, CHMe 2 ), 18.0 (d, CHMe 2 ), 17.0 (d, CHMe 2 ), 15.8 (d, CHMe 2 ). 31 P NMR (23 o C, MHz, C 6 D 6 ): δ 33.3 (d, J P P = 47 Hz), 30.0 (d, J P P = 47 Hz). 11 B NMR (23 o C, MHz, C 6 D 6 ): 40.2 ( ν 1/2 = 11,692 Hz). References 1. (a) Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, (b) Ozerov, O. V.; Guo, C.; Papkov, V. A.; Foxman, B. M. J. Am. Chem. Soc. 2004, 126, (c) Weng, W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, (a) SAINT 6.1, Bruker Analytical X-Ray Systems, Madison, WI. (b) SHELXTL- Plus V5.10, Bruker Analytical X-Ray Systems, Madison, WI. 4. Bailey, B. C.; Fan, H.; Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2006, 128, S5

7 Computational Details All calculations were carried out using Density Functional Theory as implemented in the Jaguar 6.0 suite 1 of ab initio quantum chemistry programs. Geometry optimizations were performed with the B3LYP 2-5 functional and the 6-31G** basis set with no symmetry restrictions. Titanium was represented using the Los Alamos LACVP basis 6, 7. The bond order is calculated using the definition of Mayer. 8 The models used in this study consist of ~100 atoms, which represent the nontruncated substrates that were also used in the experimental work. Although a smaller model may also able to reproduce the most important features of the studied reaction qualitatively, we chose to employ the large scale model to faithfully construct realistic model chemistry. These calculations challenge the current state of computational capabilities, whereas the numerical efficiency of the Jaguar program allows us to accomplish this task in a bearable time frame. References (1) Jaguar, 6.0 schrödinger, L.L.C, Portland, OR, (2) A. D. Becke, Phys. Rev. A 1988, 38, (3) A. D. Becke, J. Chem. Phys. 1993, 98, (4) C. T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. (5) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, (6) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. (7) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284. (8) I. Mayer, Chem. Phys. Lett. 1983, 97, 270. S1. Optimized structure and bond order. S6

8 Selected bond lengths (in Å) and bond angles (in º): Ti1-C C5-Al Al7-C Ti1-C Ti1-Al Ti1-H Ti1-H C8-H C8-H Ti1-C5-C Mayer bond order: Ti1-C Ti1-C Ti1-N Al7-C Al7-C Al7-C(terminal CH 3 ) 0.92, 0.91 S2. Front orbitals. HOMO HOMO-2 HOMO-7 S7

9 LUMO S8

10 S3. Optimized Structure Ti P P C C C C C C C N C C C C C C C C C C C C C C C C C C C C C C C C Al C C C H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H S9

11 S4. Computed components E(SCF) (ev, LACVP**) S10

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Data for: Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Early-Late Heterobimetallic Rh-Ti and Rh-Zr Complexes via Addition of Early Metal Chlorides to Mono- and Divalent Rhodium Dan A. Smith and Oleg V. Ozerov* Department

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Iridium-Catalyzed Dehydrocoupling of Primary Amine-Borane Adducts: A Route to High Molecular Weight Polyaminoboranes, Boron-Nitrogen Analogues

More information

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for: Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their

More information

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand

Zero-field slow magnetic relaxation in a uranium(iii) complex with a radical ligand Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information for: Zero-field slow magnetic relaxation in a uranium(iii) complex with

More information

Supplementary Information

Supplementary Information Supplementary Information NE Difference Spectroscopy: SnPh 3 CH (b) Me (b) C()CH (a) Me (a) C()N Me (d) Me (c) Irradiated signal Enhanced signal(s) (%) Me (a) Me (c) 0.5, Me (d) 0.6 Me (b) - Me (c) H (a)

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Carbene Activation of P 4 and Subsequent Derivatization Jason D. Masuda, Wolfgang W. Schoeller, Bruno Donnadieu, and Guy Bertrand * [*] Dr.

More information

Supporting Information

Supporting Information Supporting Information A Diiron Amido-Imido Complex [(Cp*Fe) 2 (µ 2 -NHPh)(µ 2 -NPh)]: Synthesis and a Net Hydrogen Atom Abstraction Reaction to Form a Bis(imido) Complex Shin Takemoto, Shin-ichiro Ogura,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Substitution of Two Fluorine Atoms in a Trifluoromethyl Group: Regioselective Synthesis of 3-Fluoropyrazoles** Kohei Fuchibe, Masaki Takahashi,

More information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes Olga Ekkert, Gerald Kehr, Roland Fröhlich and Gerhard Erker Supporting Information Experimental Section

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012 Ring Expansion of Alkynyl Cyclopropanes to Highly substituted Cyclobutenes via a N-Sulfonyl-1,2,3-Triazole Intermediate Renhe Liu, Min Zhang, Gabrielle Winston-Mcerson, and Weiping Tang* School of armacy,

More information

Supporting Information

Supporting Information Supporting Information (Tetrahedron. Lett.) Cavitands with Inwardly and Outwardly Directed Functional Groups Mao Kanaura a, Kouhei Ito a, Michael P. Schramm b, Dariush Ajami c, and Tetsuo Iwasawa a * a

More information

Supporting Information

Supporting Information Supporting Information Tris(allyl)indium Compounds: Synthesis and Structural Characterization Ilja Peckermann, Gerhard Raabe, Thomas P. Spaniol and Jun Okuda* Synthesis and characterization Figure S1:

More information

Supporting Information

Supporting Information Supporting Information One Pot Synthesis of 1,3- Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes Wei-Chun Shih and Oleg V. Ozerov* Department of Chemistry, Texas A&M University,

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

Supporting Information

Supporting Information Supporting Information Tris(2-dimethylaminoethyl)amine: A simple new tripodal polyamine ligand for Group 1 metals David M. Cousins, Matthew G. Davidson,* Catherine J. Frankis, Daniel García-Vivó and Mary

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z52710 Wiley-VCH 2003 69451 Weinheim, Germany Anionic amido- N-heterocyclic carbenes; synthesis of covalently tethered lanthanide carbene complexes Polly

More information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Binuclear Rare-Earth Polyhydride Complexes Bearing both Supporting Information Binuclear Rare-Earth Polyhydride Complexes Bearing both Terminal and Bridging Hydride Ligands Jianhua Cheng, Haiyu Wang, Masayoshi Nishiura and Zhaomin Hou* S1 Contents Experimental

More information

Heterolytic dihydrogen activation by B(C 6 F 5 ) 3 and carbonyl compounds

Heterolytic dihydrogen activation by B(C 6 F 5 ) 3 and carbonyl compounds Heterolytic dihydrogen activation by B(C 6 5 ) 3 and carbonyl compounds Markus Lindqvist, Nina Sarnela, Victor Sumerin, Konstantin Chernichenko, Markku Leskelä and Timo Repo* epartment of Chemistry, Laboratory

More information

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom).

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom). Supplementary Figure 2. ATR-IR spectra of 3 (top) and 3D (bottom). 1 Supplementary Figure 3. ATR-IR spectra of 5

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Facile Heterolytic H 2 Activation by Amines and B(C 6 F 5 ) 3 Victor Sumerin, Felix Schulz, Martin Nieger, Markku Leskelä, Timo Repo,* and

More information

Supporting Information

Supporting Information Supporting Information An efficient and general method for the Heck and Buchwald- Hartwig coupling reactions of aryl chlorides Dong-Hwan Lee, Abu Taher, Shahin Hossain and Myung-Jong Jin* Department of

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

SUPPORTING INFORMATION. Carbon Sulfur Bond Cleavage and Hydrodesulfurization of Thiophenes by Tungsten

SUPPORTING INFORMATION. Carbon Sulfur Bond Cleavage and Hydrodesulfurization of Thiophenes by Tungsten SUPPORTING INFORMATION Carbon Sulfur Bond Cleavage and Hydrodesulfurization of Thiophenes by Tungsten Aaron Sattler and Gerard Parkin,* Department of Chemistry, Columbia University, New York, New York

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109

Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109 Role of a Non-Innocent Pincer Ligand in the Activation of CO 2 at (PNN)Ru(H)(CO) Chelsea A. Huff, Jeff W. Kampf, and Melanie S. Sanford* Department of Chemistry, University of Michigan, 930 N. University

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Addition of n-butyllithium to an Aldimine: On the Role of Chelation, Aggregation, and Cooperative Solvation

Addition of n-butyllithium to an Aldimine: On the Role of Chelation, Aggregation, and Cooperative Solvation Addition of n-butyllithium to an Aldimine: On the Role of Chelation, Aggregation, and Cooperative Solvation Bo Qu and David B. Collum* Department of Chemistry and Chemical Biology Baker Laboratory, Cornell

More information

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes

Supporting Information. for. Synthetic routes to [Au(NHC)(OH)] (NHC = N- heterocyclic carbene) complexes Supporting Information for Synthetic routes to [Au(HC)(OH)] (HC = - heterocyclic carbene) complexes Adrián Gómez-Suárez, Rubén S, Alexandra M. Z. Slawin and Steven P. olan* EaStChem School of chemistry,

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst Benjamin K. Keitz, Koji Endo, Myles B. Herbert, Robert H. Grubbs* Arnold and Mabel Beckman Laboratories

More information

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene

Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Cationic scandium aminobenzyl complexes. synthesis, structure, and unprecedented catalysis of copolymerization of 1-hexene and dicyclopentadiene Xiaofang Li, Masayoshi Nishiura, Kyouichi Mori, Tomohiro

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis** Myles B. Herbert, Vanessa M. Marx, Richard L. Pederson, and Robert

More information

Supporting Information

Supporting Information Remarkably Variable Reaction Modes of Frustrated Lewis Pairs with Non-Conjugated Terminal Diacetylenes Chao Chen, Roland Fröhlich, Gerald Kehr, Gerhard Erker Organisch-Chemisches Institut, Westfälische

More information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 S1 Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3 David Bézier, Sehoon Park and Maurice Brookhart* Department of Chemistry, University of North Carolina at Chapel Hill,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Cis-Selective Ring-Opening Metathesis Polymerization with Ruthenium Catalysts Benjamin K. Keitz, Alexey Fedorov, Robert H. Grubbs* Arnold and Mabel Beckman Laboratories of Chemical

More information

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings SUPPORTING INFORMATION [(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings Nicolas Marion, Rubén S. Ramón, and Steven P. Nolan Institute of Chemical Research of

More information

Supporting Information

Supporting Information Supporting Information Total Synthesis of (±)-Grandilodine B Chunyu Wang, Zhonglei Wang, Xiaoni Xie, Xiaotong Yao, Guang Li, and Liansuo Zu* School of Pharmaceutical Sciences, Tsinghua University, Beijing,

More information

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes

Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Influence of anellation in N-heterocyclic carbenes: Detection of novel quinoxalineanellated NHC by trapping as transition metal complexes Shanmuganathan Saravanakumar, a Markus K. Kindermann, a Joachim

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Sandwich Complexes Containing Bent Palladium ains Yasuki Tatsumi, Katsunori Shirato, Tetsuro Murahashi,* Sensuke Ogoshi and Hideo Kurosawa*

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information General and highly active catalyst for mono and double Hiyama coupling reactions of unreactive aryl chlorides in water Dong-Hwan Lee, Ji-Young Jung, and Myung-Jong

More information

Supporting Information: Palladium Catalyzed Carboxylation of Allylstannanes and Allylboranes Using CO 2

Supporting Information: Palladium Catalyzed Carboxylation of Allylstannanes and Allylboranes Using CO 2 Supporting Information: Palladium Catalyzed Carboxylation of Allylstannanes and Allylboranes Using C 2 Jianguo Wu and Nilay Hazari * The Department of Chemistry, Yale University, P.. Box 208107, New Haven,

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts

Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Supplementary Information for: Targeting an Achilles Heel in Olefin Metathesis: A Strategy for High-Yield Synthesis of Second-Generation Grubbs Methylidene Catalysts Justin A.M. Lummiss, a Nicholas J.

More information

Neal P. Mankad and Jonas C. Peters* Supporting Information

Neal P. Mankad and Jonas C. Peters* Supporting Information Diazoalkanes react with a bis(phosphino)borate copper(i) source to generate [Ph 2 BP tbu 2]Cu(η 1 -N 2 CR 2 ), [Ph 2 BP tbu 2]Cu(CR 2 ), and [Ph 2 BP tbu 2]Cu-N(CPh 2 )(NCPh 2 ) Neal P. Mankad and Jonas

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

Formation of Benzynes from 2,6-Dihaloaryllithiums: Mechanistic Basis of the Regioselectivity

Formation of Benzynes from 2,6-Dihaloaryllithiums: Mechanistic Basis of the Regioselectivity Formation of Benzynes from 2,6-Dihaloaryllithiums: Mechanistic Basis of the Regioselectivity Antonio Ramírez a, John Candler b, Crystal G. Bashore b, Michael C. Wirtz b, Jotham W. Coe a *, and David B.

More information

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A Fuerst et al. Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A S1 Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers:

More information

Supporting Information

Supporting Information Supporting Information An Extremely Active and General Catalyst for Suzuki Coupling Reactions of Unreactive Aryl Chlorides Dong-Hwan Lee and Myung-Jong Jin* School of Chemical Science and Engineering,

More information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol An Efficient Total Synthesis and Absolute Configuration Determination of Varitriol Ryan T. Clemens and Michael P. Jennings * Department of Chemistry, University of Alabama, 500 Campus Dr. Tuscaloosa, AL

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Reactions of Tp(NH=CPh 2 )(PPh 3 )Ru Cl with HC CPh in the presence of H 2 O: Insertion/Hydration Products Chih-Jen Cheng, a Hung-Chun Tong, a Yih-Hsing Lo,* b Po-Yo Wang,

More information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information

Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. Supporting Information Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms Theodore A. Betley and Jonas C. Peters Division of Chemistry and Chemical Engineering Arnold and Mabel Beckman Laboratories of

More information

A Highly Reactive Scandium Phosphinoalkylidene Complex: C H and H H Bonds Activation

A Highly Reactive Scandium Phosphinoalkylidene Complex: C H and H H Bonds Activation A Highly Reactive Scandium Phosphinoalkylidene Complex: C H and H H Bonds Activation Weiqing Mao, Li Xiang, Carlos Alvarez Lamsfus, Laurent Maron,*, Xuebing Leng, Yaofeng Chen*, State Key Laboratory of

More information

Supporting Information

Supporting Information Supporting Information Activation of Ene-Diamido Samarium Methoxide with Hydrosilane for Selectively Catalytic Hydrosilylation of Alkenes and Polymerization of Styrene: an Experimental and Theoretical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Supporting Information Difluorocarbene-derived trifluoromethylselenolation of benzyl halides Xin-Lei

More information

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials

Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Supporting Information Functional nickel complexes of N-heterocyclic carbene ligands in pre-organized and supported thin film materials Xinjiao Wang, a Marek Sobota, b Florian T. U. Kohler, c Bruno Morain,

More information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C Supporting Information The First Asymmetric Total Syntheses and Determination of Absolute Configurations of Xestodecalactones B and C Qiren Liang, Jiyong Zhang, Weiguo Quan, Yongquan Sun, Xuegong She*,,

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Supporting Information:

Supporting Information: Enantioselective Synthesis of (-)-Codeine and (-)-Morphine Barry M. Trost* and Weiping Tang Department of Chemistry, Stanford University, Stanford, CA 94305-5080 1. Aldehyde 7. Supporting Information:

More information

Supporting Information for

Supporting Information for Supporting Information for Deuteration of boranes: catalysed versus non-catalysed processes David J. Nelson, Jonathan B. Egbert and Steven P. Nolan* EaStCHEM, School of Chemistry, University of St. Andrews,

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Efficient Pd-Catalyzed Amination of Heteroaryl Halides 1 Efficient Pd-Catalyzed Amination of Heteroaryl Halides Mark D. Charles, Philip Schultz, Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 Supporting

More information

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl*

Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl* Oxidatively-Induced Reductive Elimination of Dioxygen from an η 2 -Peroxopalladium(II) Complex Promoted by Electron-Deficient Alkenes Brian V. Popp and Shannon S. Stahl* Department of Chemistry, University

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Synthesis of Hydrosiloxanes by Au-Catalyzed Dehydrogenative Cross-Coupling Reaction of Silanols with Hydrosilanes Yasushi Satoh, Masayasu Igarashi, Kazuhiko Sato,

More information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides Ashish Thakur, Kainan Zhang, Janis Louie* SUPPORTING INFORMATION General Experimental: All reactions were conducted under an atmosphere

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany A Distinctive Organocatalytic Approach to Complex Macromolecular Architectures Olivier Coulembier, Matthew 5. 5iesewetter, Andrew Mason, Philippe

More information

Decarboxylation of Aromatic Carboxylic Acids by Gold(I)- N-heterocyclic carbene (NHC) Complexes

Decarboxylation of Aromatic Carboxylic Acids by Gold(I)- N-heterocyclic carbene (NHC) Complexes Supporting information For Decarboxylation of Aromatic Carboxylic Acids by Gold(I)- N-heterocyclic carbene (NHC) Complexes Stéphanie Dupuy, Faima Lazreg, Alexandra M. Z. Slawin, Catherine S. J. Cazin*

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN A Direct, ne-step Synthesis of Condensed Heterocycles: A Palladium-Catalyzed Coupling Approach Farnaz Jafarpour and Mark Lautens* Davenport Chemical Research Laboratories, Chemistry

More information

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes. Supporting information A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes Tieqiao Chen, a,b Cancheng Guo, a Midori Goto, b and Li-Biao Han* a,b

More information

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis

Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis Supplementary information to: Decisive Ligand Metathesis Effects in Au/Pd Bimetallic Catalysis Juan delpozo, Juan A. Casares * and Pablo Espinet * Química Inorgánica, I. U. CINQUIMA, Facultad de Ciencias.

More information

Highly efficient P-N nickel(ii) complexes for the dimerisation of ethylene

Highly efficient P-N nickel(ii) complexes for the dimerisation of ethylene Highly efficient P-N nickel(ii) complexes for the dimerisation of ethylene Antoine Buchard, Audrey Auffrant, Christian Klemps, Laurence Vu-Do, Leïla Boubekeur, Xavier F. Le Goff and Pascal Le Floch* Laboratoire

More information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S Supporting Text Synthesis of (2S,3S)-2,3-bis(3-bromophenoxy)butane (3). Under N 2 atmosphere and at room temperature, a mixture of 3-bromophenol (0.746 g, 4.3 mmol) and Cs 2 C 3 (2.81 g, 8.6 mmol) in DMS

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

A novel smart polymer responsive to CO 2

A novel smart polymer responsive to CO 2 A novel smart polymer responsive to CO 2 Zanru Guo, a,b Yujun Feng,* a Yu Wang, a Jiyu Wang, a,b Yufeng Wu, a,b and Yongmin Zhang a,b a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

More information

Supplementary information

Supplementary information Supplementary information Dinitrogen leavage and Functionalization by arbon Monoxide Promoted by a Hafnium omplex Donald J. Knobloch, Emil Lobkovsky, Paul J. hirik* Department of hemistry and hemical Biology,

More information

Supporting Information

Supporting Information Supporting Information Manuscript Title: Synthesis of Semibullvalene Derivatives via Co 2 (CO) 8 -Mediated Cyclodimerization of 1,4-Dilithio-1,3-butadienes Corresponding Author: Zhenfeng Xi Affiliations:

More information

Light irradiation experiments with coumarin [1]

Light irradiation experiments with coumarin [1] Materials and instruments All the chemicals were purchased from commercial suppliers and used as received. Thin-layer chromatography (TLC) analysis was carried out on pre-coated silica plates. Column chromatography

More information

Versatile Coordination of Cyclopentadienyl-Arene Ligands and its Role in Titanium-Catalyzed Ethylene Trimerization

Versatile Coordination of Cyclopentadienyl-Arene Ligands and its Role in Titanium-Catalyzed Ethylene Trimerization Supporting Information to: Versatile Coordination of Cyclopentadienyl-Arene Ligands and its Role in Titanium-Catalyzed Ethylene Trimerization Edwin Otten, Aurora A. Batinas, Auke Meetsma and Bart Hessen

More information

Cobalt- and Iron-Catalyzed Isomerization-Hydroboration of Branched Alkenes: Terminal Hydroboration with Pinacolborane and 1,3,2-Diazaborolanes

Cobalt- and Iron-Catalyzed Isomerization-Hydroboration of Branched Alkenes: Terminal Hydroboration with Pinacolborane and 1,3,2-Diazaborolanes Cobalt- and Iron-Catalyzed Isomerization-Hydroboration of Branched Alkenes: Terminal Hydroboration with Pinacolborane and 1,3,2-Diazaborolanes Takahiko Ogawa, a Adam J. Ruddy, a Orson L. Sydora, *,b Mark

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION S1 Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe

More information

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Supplementary Information Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Kenji Hirata, Toshiaki Suzuki, Ai Noya, Izuru Takei and Masanobu

More information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4) A solution of propenyl magnesium bromide in THF (17.5 mmol) under nitrogen atmosphere was cooled in an ice bath and

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Photoenolization of 2-(2-Methyl Benzoyl) Benzoic Acid, Methyl Ester: The Effect of The Lifetime of the E Photoenol on the Photochemistry Armands Konosonoks, P. John Wright,

More information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information

Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis. Supporting Information Cationic Alkylaluminum-Complexed Zirconocene Hydrides as Participants in Olefin-Polymerization Catalysis Steven M. Baldwin, John E. Bercaw, *, and Hans H. Brintzinger*, Contribution from the Arnold and

More information

Sharareh Bagherzadeh and Neal P. Mankad* Department of Chemistry, University of Illinois at Chicago, Chicago, IL *

Sharareh Bagherzadeh and Neal P. Mankad* Department of Chemistry, University of Illinois at Chicago, Chicago, IL * Catalyst Control of Selectivity in CO 2 Reduction Using a Tunable Heterobimetallic Effect Sharareh Bagherzadeh and Neal P. Mankad* Department of Chemistry, University of Illinois at Chicago, Chicago, IL

More information

Alkali Metal Hydridotriphenylborates [(L)M][HBPh3] (M = Li, Na, K): Chemoselective Catalysts for Carbonyl and CO2 Hydroboration

Alkali Metal Hydridotriphenylborates [(L)M][HBPh3] (M = Li, Na, K): Chemoselective Catalysts for Carbonyl and CO2 Hydroboration Supporting Information Alkali Metal Hydridotriphenylborates [(L)M][HBPh3] (M = Li, Na, K): Chemoselective Catalysts for Carbonyl and CO2 Hydroboration Debabrata Mukherjee, Hassan Osseili, Thomas P. Spaniol,

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3. Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes Charlene Tsay, Neal P. Mankad, Jonas C. Peters* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters Supporting Information For A Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters Bin Li, Jiancheng Li, Rui Liu, Hongping Zhu*, and Herbert W. Roesky*, State Key Laboratory

More information

6,6 -Dihydroxy terpyridine: A proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones

6,6 -Dihydroxy terpyridine: A proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones Electronic Supplementary Information for: 6,6 -Dihydroxy terpyridine: A proton-responsive bifunctional ligand and its application in catalytic transfer hydrogenation of ketones Cameron M. Moore a and Nathaniel

More information

Supporting Information

Supporting Information Supporting Information Frustrated Lewis Pair-Like Splitting of Aromatic C-H bonds and Abstraction of Halogen Atoms by a Cationic [( F PNP)Pt] + Species Jessica C. DeMott, Nattamai Bhuvanesh and Oleg V.

More information

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol. SI-1 Supporting Information Non-Racemic Bicyclic Lactam Lactones Via Regio- and cis-diastereocontrolled C H insertion. Asymmetric Synthesis of (8S,8aS)-octahydroindolizidin-8-ol and (1S,8aS)-octahydroindolizidin-1-ol.

More information

Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation

Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation Supporting Information For Hafnium(II) Complexes with Cyclic (Alkyl)(amino)carbene Ligation Qing Liu, Qi Chen, Xuebing Leng, Qing-Hai Deng,,* and Liang Deng, * The Education Ministry Key Lab of Resource

More information

Supporting Information for. Hydrogen-Bond Symmetry in Difluoromaleate Monoanion

Supporting Information for. Hydrogen-Bond Symmetry in Difluoromaleate Monoanion S1 Supporting Information for Hydrogen-Bond Symmetry in Difluoromaleate Monoanion Charles L. Perrin,* Phaneendrasai Karri, Curtis Moore, and Arnold L. Rheingold Department of Chemistry, University of California

More information

Supporting Information for

Supporting Information for Supporting Information for Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis Koji Endo and Robert H. Grubbs* Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A New Melt Approach to the Synthesis of catena- Phosphorus Dications to Access the First Derivatives of 2+ ** [P 6 Ph 4 R 4 ] Jan J. Weigand*,

More information

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes Electronic Supplementary Information (ESI) Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes Ryosuke Kondo, a Takuma Yasuda,*

More information