Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos, b Karla Ramírez-Gualito, c Gabriel Cuevas, d Karla A. Espinoza a and Ignacio A. Rivero *,a a Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, Tijuana, B.C., Mexico b Facultad de Química de la Universidad Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Mexico City, Mexico c Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Mexico City, Mexico d Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Zacatenco, Mexico City, Mexico Spectroscopy data for 2,3-dihydroquinazolin-4(1H)-ones (3a-3i) 3-Benzyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a) 1 White solid; yield 98%; mp C; Rf = 0.84 (DCM); IR (ATR) ν / cm (N H), 1631 (C=O), 1617 (=C H); 1 H NMR (200 MHz, CDCl 3 ) δ (m, 1H, Ar H), (m, 11H, Ar H), (m, 2H, Ar H), (d, J 8 Hz, 1H, Ar H), 4.54 (s, 1H, NH), (d, J 15 Hz, 2H, CH 2 ); 13 C NMR (50 MHz, CDCl 3 ) δ 163.2, 145.1, 139.3, 136.7, 133.6, 129.3, 128.9, 128.7, 128.6, 128.0, 127.4, 126.5, 119.1, 115.6, 114.3, 71.0, Benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3b) 2 Beige solid; yield 98%; mp C; Rf = 0.50 (DCM); IR (ATR) ν / cm (N H), 3215 (O H), 1614 (C=O), 1592 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ 9.58 (s, 1H, OH), (m, 13H, Ar H), 5.61 (s, H, CH), (d, J 16 Hz, 1H, CH 2 ), (d, J 16 Hz, 1H, CH 2 ); 13 C NMR (50 MHz, CDCl 3 ) δ 162.4, 157.6, 146.5, 137.5, 133.3, 130.7, 128.4, 127.6, 127.5, 127.4, 127.0, 117.0, 115.1, 114.4, 114.3, 69.8, 46.7; MS m/z C 21 H 18 N 2 O 2 [M] + : * irivero@tectijuana.mx

2 3-Benzyl-2-(3-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3c) 3 White solid; yield: 97%; mp C; Rf = 0.27 (DCM); IR (ATR) ν / cm (N H), 3227 (O H), 1607 (C=O), 1591 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ 9.58 (s, 1H, OH), (m, 13H, Ar H), 5.61 (s, H, CH), (d, J 16 Hz, 1H, CH 2 ) (d, J 16 Hz, 1H, CH 2 ); 13 C NMR (50 MHz, CDCl 3 ) δ 162.3, 157.6, 146.3, 142.1, 137.5, 133.4, 129.6, 128.5, 127.6, 127.5, 127.2, 117.1, 116.8, 115.4, 114.5, 114.3, 112.9, 69.7, 47.0; MS m/z C 21 H 18 N 2 O 2 [M] + : Benzyl-2-(2,4-dihydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3d) 4 Beige solid; yield: 95%; mp: C; Rf = 0.55 (DCM); IR (ATR) ν / cm (N H amina), 3152 (O H fenol), 1609 (C=O), 1567 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ 9.54 (s, 2H, OH), (m, 13H, Ar H), 5.62 (s, H, CH), (d, J 16 Hz, 1H, CH 2 ) (d, J 16 Hz, 1H, CH 2 ); 13 C NMR (50 MHz, CDCl 3 ) δ 162.5, 157.7, 146.6, 137.6, 133.4, 130.8, 128.4, 127.6, 127.6, 127.4, 127.1, 117.1, 115.2, 114.5, 114.3, 69.8, 46.8; MS m/z C 21 H 18 N 2 O 3 [M H] + : Benzyl-2-(2-hydroxynaphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one (3e) 4 Yellow solid; yield: 85%; mp C; Rf = 0.46 (DCM); IR (ATR) ν / cm (N H), 3219 (O H), 1648 (C=O), 1615 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ (s, 1H, OH), (d, J 8 Hz, 1H, NH), (m, 15H, Ar H), 5.75 (s, H, CH), (d, J 16 Hz, 1H, CH 2 ), (d, J 16 Hz, 1H, CH 2 ); 13 C NMR (50 MHz, CDCl 3 ) δ 164.2, 155.0, 148.8, 137.6, 133.4, 133.1, 131.4, 128.6, 128.5, 128.2, 128.0, 127.5, 126.7, 126.3, 124.2, 124.2, 122.8, 118.1, 117.1, 114.5, 114.0, 64.7, 45.8; MS m/z C 25 H 20 N 2 O 2 [M] + : Benzyl-2-(4-(dimethylamino)cyclohexa-1,3-dien-1-yl)-2,3-dihydroquinazolin-4(1H)-one (3f) 5 White solid; yield 95%; mp C; Rf = 0.55 (DCM); IR (ATR) ν / cm (N H), 1633 (C=O), 1606 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ 7.89 (d, J 8 Hz, 1H, NH), (m, 13H, Ar H), 5.54 (s, 1H, CH), (d, J 16 Hz, 1H, CH 2 ), (d, J 16 Hz, 1H, CH 2 ), 3.07 (s, 3H, CH 3 ), 2.91 (s, 3H, CH 3 ); 13 C NMR (50 MHz, CDCl 3 ) δ 162.5, 150.5, 146.6, 137.6, 133.3, 128.5, 127.6, 127.6, 127.4, 127.1, 127.0, 117.0, 114.5, 114.3, 112.1, 69.8, 46.7, 40.0, 40.0; MS m/z C 23 H 23 N 3 O [M] + : Benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g) 6 Beige solid; yield: 93%; mp C; Rf = 0.40 (DCM); IR (ATR) ν / cm (N H), 3304 (N H), (OH fenol), 1633 (C=O), 1606 (N H), 1593 (NH), 1129 (C C O); 1 H NMR (200 MHz, CDCl 3 ) δ (m, 12H, Ar H), 5.65 (s, 1H, CH), (d, J 16 Hz, 1H, CH 2 ), (d, J 16 Hz, 1H, CH 2 ), 3.63 (s, 3H, CH 3 ); 13 C NMR (50 MHz, CDCl 3 ) δ 162.7, 147.5, 146.9, 146.7, 137.7, 133.3, 130.9, 128.3, 127.6, 127.3, 127.0, 118.9, 117.2, 115.0, 114.6, 114.3, 110.9, 70.2, 55.3, 46.9; MS m/z C 22 H 20 N 2 O 3 [M] + :

3 3-Benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h) 2 White solid; yield 98%; mp C; Rf = 0.24 (DCM); IR (ATR) ν / cm (N H), 1613 (C=O), 1588 (N H); 1 H NMR (200 MHz, CDCl 3 ) δ (m, 13H, Ar H), 5.58 (s, 1H, CH), (d, J 14 Hz, 1H, CH 2 ), (d, J 14 Hz, 1H, CH 2 ), 2.31 (s, 3H, CH 3 ); 13 C NMR (50 MHz, CDCl 3 ) δ 163.3, 146.0, 138.6, 138.6, 136.9, 133.4, 129.2, 128.6, 128.6, 128.4, 128.1, 127.7, 127.2, 126.6, 126.4, 117.8, 114.7, 114.3, 70.4, 46.7, 21.0; MS m/z C 22 H 20 N 2 O [M] + : Benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3i) White solid; yield: 97%; mp C; Rf = 0.25 (DCM); IR (ATR) ν / cm (N H), 1641 (C=O), 1607 (N H), (C O C); 1 H NMR (200 MHz, CDCl 3 ) δ (m, 12H, Ar H), 5.88 (s, 1H, CH), (d, J 14.8 Hz, 1H, CH 2 ), (d, J 16 Hz, 1H, CH 2 ), 3.70 (s, 3H, CH 3 ), 3.62 (s, 3H, CH 3 ); 13 C NMR (50 MHz, CDCl 3 ) δ 163.3, 160.6, 157.2, 145.6, 136.7, 132.9, 128.0, 127.7, 127.1, 126.8, 126.7, 118.8, 117.7, 114.7, 114.1, 103.3, 98.3, 64.8, 54.9, 54.8, 46.7; MS m/z C 23 H 22 N 2 O 3 [M] + : General All reagents were purchased in the higher quality available and were used without further purification. The solvents used in column chromatography were obtained from commercial suppliers and used without further distillation. IR spectra were recorded on a PerkinElmer FT-IR 1600 spectrophotometer. Nuclear magnetic resonance 1 H and 13 C spectra at Hz were recorded on a Varian Mercury 200 MHz Spectrometer in CDCl 3 and DMSO-d 6 with TMS as internal standard. Electrospray ionization mass spectra (ESI-MS) were obtained with an ion trap, and the intensities are reported as a percentage relative to the base peak after the corresponding m/z value. The purity was obtained on a High-Pressure Liquid Chromatograph 1090 series II, column HPC-18. Diffraction data were collected on a Smart Apex X-ray diffractometer.

4 Figure S1. IR (ATR) spectrum of 3-benzyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a).

5 Figure S2. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a).

6 Figure S3. 13 C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a).

7 Figure S4. IR (ATR) spectrum of 3-benzyl-2-phenylquinazolin-4(3H)-one (3ax).

8 Figure S5. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-phenylquinazolin-4(3H)-one (3ax).

9 Figure S6. 13 C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-phenylquinazolin-4(3H)-one (3ax).

10 Figure S7. IR (ATR) spectrum of 3-benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3b).

11 Figure S8. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)- one (3b).

12 Figure S9. 13 C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)- one (3b).

13 Figure S10. MS spectrum of 3-benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3b).

14 Figure S11. Fluorescence spectrum of 3-benzyl-2-(4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3b).

15 Figure S12. IR (ATR) spectrum of 3-benzyl-2-(3-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3c).

16 Figure S13. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(3-hydroxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3c).

17 Figure S14. Fluorescence spectrum of 3-benzyl-2-(3-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3c).

18 Figure S15. IR (ATR) spectrum of 3-benzyl-2-(2,4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3d).

19 Figure S16. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(2,4-hydroxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3d).

20 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(2,4-hydroxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3d).

21 Figure S18. MS spectrum of 3-benzyl-2-(2,4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3d).

22 Figure S19. Fluorescence spectrum of 3-benzyl-2-(2,4-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3d).

23 Figure S20. IR (ATR) spectrum of 3-benzyl-2-(2-hydroxynaphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one (3e).

24 Figure S21. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(2-hydroxynaphthalen-1-yl)-2,3- dihydroquinazolin-4(1h)-one (3e).

25 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(2-hydroxynaphthalen-1-yl)-2,3- dihydroquinazolin-4(1h)-one (3e).

26 Figure S23. MS spectrum of 3-benzyl-2-(2-hydroxynaphthalen-1-yl)-2,3-dihydroquinazolin-4(1H)-one (3e).

27 Figure S24. IR (ATR) spectrum of 3-benzyl-2-(4-(dimethylamino)cyclohexa1,3-dien-1-yl)-2,3-dihydroquinazolin- 4(1H)-one (3f).

28 Figure S25. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(4-(dimethylamino)cyclohexa1,3-dien-1-yl)-2,3- dihydroquinazolin-4(1h)-one (3f).

29 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(4-(dimethylamino)cyclohexa1,3-dien-1-yl)-2,3- dihydroquinazolin-4(1h)-one (3f).

30 Figure S27. MS spectrum of 3-benzyl-2-(4-(dimethylamino)cyclohexa1,3-dien-1-yl)-2,3-dihydroquinazolin- 4(1H)-one (3f).

31 Figure S28. IR (ATR) spectrum of 3-benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g).

32 Figure S29. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3- dihydroquinazolin-4(1h)-one (3g).

33 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3- dihydroquinazolin-4(1h)-one (3g).

34 Figure S31. MS spectrum of 3-benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g).

35 Figure S32. Fluorescence spectrum of 3-benzyl-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)- one (3g).

36 Figure S33. IR (ATR) spectrum of 3-benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h).

37 Figure S34. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h).

38 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h).

39 Figure S36. MS spectrum of 3-benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h).

40 Figure S37. Fluorescence spectrum of 3-benzyl-2-(p-tolyl)-2,3-dihydroquinazolin-4(1H)-one (3h).

41 Figure S38. IR (ATR) spectrum of 3-benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3i).

42 Figure S39. 1 H NMR spectrum (200 MHz, CDCl 3 ) of 3-benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3i).

43 Figure S C NMR spectrum (50 MHz, CDCl 3 ) of 3-benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3i).

44 Figure S41. MS spectrum of 3-benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3i).

45 Figure S42. Fluorescence spectrum of 3-benzyl-2-(2,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3i).

46 Table S1. Crystal data and structure refinement for 3b Identification code Project Title 152XYZ14 (Solved by: Rubén A. Toscano) E77 Empirical formula C 21 H 18 N 2 O 2 Formula weight Temperature / K 298(2) Wavelength / Å Crystal system orthorhombic Space group P b c a Unit cell dimensions a = (1) Å = 90 b = (2) Å = 90 c = (4) Å = 90 Volume / Å (8) Z 8 Density (calculated) / (Mg m -3 ) Absorption coefficient / mm F(000) 1392 Crystal size / color / shape mm / colorless / prism Theta range for data collection / to Index ranges 13 h 13, 13 k 13, 41 l 41 Reflections collected Independent reflections 3917 [R(int) = ] Completeness to theta = % Measurement device Bruker Smart Apex CCD diffractometer Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 3917 / 0 / 235 Goodness-of-fit on F

47 Final R indices [I > 2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient (5) Largest diff. peak and hole / e.å and Table S2. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for 3b. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor x y z U(eq) O(1) 9668(1) 3801(1) 1270(1) 63(1) O(2) 2018(1) 2925(1) 1517(1) 71(1) N(1) 7006(2) 6476(2) 1573(1) 56(1) C(2) 6707(2) 5703(2) 1210(1) 48(1) N(3) 7881(1) 4959(1) 1098(1) 47(1) C(4) 8763(2) 4536(2) 1378(1) 47(1) C(5) 9448(2) 4542(2) 2125(1) 73(1) C(6) 9360(3) 5028(3) 2521(1) 97(1) C(7) 8482(3) 5986(3) 2606(1) 101(1) C(8) 7669(2) 6464(2) 2300(1) 80(1) C(9) 7732(2) 5969(2) 1896(1) 54(1) C(10) 8627(2) 5001(2) 1809(1) 51(1) C(11) 5475(1) 4901(2) 1262(1) 41(1) C(12) 4257(2) 5404(2) 1153(1) 49(1) C(13) 3090(2) 4760(2) 1232(1) 53(1) C(14) 3128(2) 3599(2) 1424(1) 47(1) C(15) 4340(2) 3070(2) 1530(1) 50(1) C(16) 5497(2) 3718(2) 1449(1) 48(1) C(17) 8541(2) 5698(2) 397(1) 49(1) C(18) 9437(2) 6544(2) 558(1) 66(1) C(19) 9955(2) 7506(2) 317(1) 76(1) C(20) 9582(2) 7629(2) -90(1) 80(1) C(21) 8704(3) 6792(3) -256(1) 92(1) C(22) 8177(2) 5835(2) -15(1) 74(1) C(23) 8000(2) 4626(2) 656(1) 56(1)

48 Table S3. Bond lengths and angles for 3b Bond length / Å O(1)-C(4) (19) C(11)-C(16) 1.387(2) O(2)-C(14) (19) C(12)-C(13) 1.382(2) O(2)-H(2A) 0.96(3) C(12)-H(12) N(1)-C(9) 1.375(2) C(13)-C(14) 1.374(2) N(1)-C(2) 1.453(2) C(13)-H(13) N(1)-H(1) 0.88(2) C(14)-C(15) 1.387(2) C(2)-N(3) (19) C(15)-C(16) 1.377(2) C(2)-C(11) 1.514(2) C(15)-H(15) C(2)-H(2) C(16)-H(16) N(3)-C(4) 1.341(2) C(17)-C(18) 1.374(2) N(3)-C(23) 1.462(2) C(17)-C(22) 1.375(2) C(4)-C(10) 1.470(2) C(17)-C(23) 1.507(2) C(5)-C(6) 1.369(3) C(18)-C(19) 1.380(3) C(5)-C(10) 1.395(2) C(18)-H(18) C(5)-H(5) C(19)-C(20) 1.363(3) C(6)-C(7) 1.373(4) C(19)-H(19) C(6)-H(6) C(20)-C(21) 1.359(3) C(7)-C(8) 1.374(4) C(20)-H(20) C(7)-H(7) C(21)-C(22) 1.379(3) C(8)-C(9) 1.398(3) C(21)-H(21) C(8)-H(8) C(22)-H(22) C(9)-C(10) 1.393(2) C(23)-H(23A) C(11)-C(12) 1.384(2) C(23)-H(23B) Bond angle / C(14)-O(2)-H(2A) 110.7(17) C(4)-N(3)-C(23) (14) C(9)-N(1)-C(2) (15) C(4)-N(3)-C(2) (14) C(9)-N(1)-H(1) 117.4(14) C(23)-N(3)-C(2) (13) C(2)-N(1)-H(1) 113.7(14) O(1)-C(4)-N(3) (16) N(1)-C(2)-N(3) (13) O(1)-C(4)-C(10) (15) N(1)-C(2)-C(11) (13) N(3)-C(4)-C(10) (15) N(3)-C(2)-C(11) (13) C(6)-C(5)-C(10) 120.2(2) N(1)-C(2)-H(2) C(6)-C(5)-H(5) N(3)-C(2)-H(2) C(10)-C(5)-H(5) C(11)-C(2)-H(2) C(5)-C(6)-C(7) 120.1(2)

49 C(5)-C(6)-H(6) C(14)-C(15)-H(15) C(7)-C(6)-H(6) C(15)-C(16)-C(11) (14) C(6)-C(7)-C(8) 121.0(2) C(15)-C(16)-H(16) C(6)-C(7)-H(7) C(11)-C(16)-H(16) C(8)-C(7)-H(7) C(18)-C(17)-C(22) (17) C(7)-C(8)-C(9) 119.7(2) C(18)-C(17)-C(23) (15) C(7)-C(8)-H(8) C(22)-C(17)-C(23) (17) C(9)-C(8)-H(8) C(17)-C(18)-C(19) (18) N(1)-C(9)-C(10) (16) C(17)-C(18)-H(18) N(1)-C(9)-C(8) (19) C(19)-C(18)-H(18) C(10)-C(9)-C(8) (19) C(20)-C(19)-C(18) 120.1(2) C(9)-C(10)-C(5) (18) C(20)-C(19)-H(19) C(9)-C(10)-C(4) (15) C(18)-C(19)-H(19) C(5)-C(10)-C(4) (18) C(21)-C(20)-C(19) 119.4(2) C(12)-C(11)-C(16) (14) C(21)-C(20)-H(20) C(12)-C(11)-C(2) (14) C(19)-C(20)-H(20) C(16)-C(11)-C(2) (13) C(20)-C(21)-C(22) 120.7(2) C(13)-C(12)-C(11) (15) C(20)-C(21)-H(21) C(13)-C(12)-H(12) C(22)-C(21)-H(21) C(11)-C(12)-H(12) C(17)-C(22)-C(21) 120.7(2) C(14)-C(13)-C(12) (15) C(17)-C(22)-H(22) C(14)-C(13)-H(13) C(21)-C(22)-H(22) C(12)-C(13)-H(13) N(3)-C(23)-C(17) (14) O(2)-C(14)-C(13) (15) N(3)-C(23)-H(23A) O(2)-C(14)-C(15) (15) C(17)-C(23)-H(23A) C(13)-C(14)-C(15) (15) N(3)-C(23)-H(23B) C(16)-C(15)-C(14) (15) C(17)-C(23)-H(23B) C(16)-C(15)-H(15) H(23A)-C(23)-H(23B) 107.8

50 Table S4. Anisotropic displacement parameters (Å ) for 3b. The anisotropic displacement factor exponent takes the form: 2 2 [h 2 a* 2 U hka*b*U 12] U 11 U 22 U 33 U 23 U 13 U 12

51 Table S5. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for 152XYZ14_0m x y z U(eq) H(2A) 1240(30) 3380(30) 1435(9) 134(10) H(1) 6370(20) 7010(20) 1638(6) 82(7) H(2) H(5) H(6) H(7) H(8) H(12) H(13) H(15) H(16) H(18) H(19) H(20) H(21) H(22) H(23A) H(23B) Table S6. Hydrogen bonds for 3b D H A d(d H) / Å d(h A) / Å d(d A) / Å < (DHA) / O(2)-H(2A)...O(1)#1 0.96(3) 1.73(3) (17) 165(3) N(1)-H(1)...O(1)#2 0.88(2) 2.46(2) 3.137(2) 133.7(17) Symmetry transformations used to generate equivalent atoms: #1: x 1, y, z; #2: x + 3/2, y + 1/2, z.

52 Figure S43. ORTEP structure of 3b.

53 Figure S44. Unit cell of the structure 3b.

54 Table S7. Crystal data and structure refinement for 3d Identification code 162XYZ14 (Solved by: Rubén A. Toscano) Project Title E 79 Empirical formula C 21 H 18 N 2 O 3 Formula weight Temperature / K 298(2) Wavelength / Å Crystal system monoclinic Space group C 2/c Unit cell dimensions a = (2) Å = 90 b = (1) Å = (1) c = (4) Å = 90 Volume / Å (9) Z 8 Density (calculated) / (Mg m -3 ) Absorption coefficient / mm F(000) 1456 Crystal size / color / shape mm / orange / prism Theta range for data collection / to Index ranges h k l 32 Reflections collected Independent reflections 4251 [R(int) = ] Completeness to theta = % Measurement device Bruker Smart Apex CCD diffractometer Absorption correction semi-empirical from equivalents Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 4251 / 229 / 299

55 Goodness-of-fit on F Final R indices [I > 2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole / e.å and Remarks main residue disorder 23%

56 Table S8. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for 3d. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor x y z U(eq) O(1) 9800(1) 10911(1) 3496(1) 37(1) O(2) 6607(1) 6831(1) 3550(1) 44(1) O(3) 5955(1) 8298(1) 1750(1) 42(1) N(1) 8496(1) 7628(1) 3888(1) 34(1) C(2) 7907(1) 8725(1) 3760(1) 30(1) N(3) 8503(1) 9874(1) 3796(1) 31(1) C(4) 9352(1) 9888(1) 3564(1) 28(1) C(5) 10565(1) 8540(2) 3117(1) 38(1) C(6) 10950(1) 7363(2) 3004(1) 46(1) C(7) 10519(1) 6261(2) 3191(1) 49(1) C(8) 9712(1) 6320(1) 3486(1) 41(1) C(9) 9303(1) 7508(1) 3594(1) 31(1) C(10) 9736(1) 8632(1) 3411(1) 30(1) C(11) 7398(1) 8638(1) 3217(1) 28(1) C(12) 6740(1) 7651(1) 3133(1) 31(1) C(13) 6262(1) 7517(1) 2646(1) 33(1) C(14) 6414(1) 8383(1) 2235(1) 31(1) C(15) 7048(1) 9387(1) 2314(1) 33(1) C(16) 7529(1) 9495(1) 2799(1) 31(1) C17a 7821(2) 10856(3) 4592(1) 39(1) C18a 8530(2) 10664(3) 4970(1) 74(1) C19a 8306(3) 10553(3) 5511(1) 96(1) C20a 7385(3) 10622(3) 5661(1) 90(1) C21a 6703(3) 10796(4) 5301(1) 88(1) C22a 6907(2) 10911(3) 4762(1) 64(1) C17Bb 7583(14) 10970(40) 4532(6) 63(2) C18Bb 8063(14) 10580(30) 4984(7) 76(2) C19Bb 7577(17) 10420(30) 5461(6) 86(2) C20Bb 6646(17) 10770(40) 5481(6) 84(2) C21Bb 6168(12) 11060(20) 5035(7) 79(2) C22Bb 6645(13) 11280(20) 4562(6) 68(2) C(23) 8061(1) 11036(1) 4012(1) 37(1)

57 Table S9. Bond lengths and angles for 3d Bond length / Å O(1)-C(4) (16) C(15)-C(16) 1.380(2) O(2)-C(12) (17) C(15)-H(15) O(2)-H(2A) 0.84(2) C(16)-H(16) O(3)-C(14) (18) C17a-C22a 1.372(3) O(3)-H(3) 0.88(2) C17a-C18a 1.378(3) N(1)-C(9) (18) C17a-C(23) 1.507(2) N(1)-C(2) (18) C18a-C19a 1.399(4) N(1)-H(1) 0.828(18) C18a-H18a C(2)-N(3) (17) C19a-C20a 1.365(5) C(2)-C(11) (19) C19a-H19a C(2)-H(2) C20a-C21a 1.316(5) N(3)-C(4) (17) C20a-H20a N(3)-C(23) (17) C21a-C22a 1.389(4) C(4)-C(10) (19) C21a-H21a C(5)-C(6) 1.375(2) C22a-H22a C(5)-C(10) (19) C17Bb-C18Bb 1.366(9) C(5)-H(5) C17Bb-C22Bb 1.370(9) C(6)-C(7) 1.386(2) C17Bb-C(23) 1.480(8) C(6)-H(6) C18Bb-C19Bb 1.400(9) C(7)-C(8) 1.375(2) C18Bb-H18Bb C(7)-H(7) C19Bb-C20Bb 1.368(10) C(8)-C(9) 1.396(2) C19Bb-H19Bb C(8)-H(8) C20Bb-C21Bb 1.325(10) C(9)-C(10) (19) C20Bb-H20Bb C(11)-C(16) (19) C21Bb-C22Bb 1.393(9) C(11)-C(12) (18) C21Bb-H21Bb C(12)-C(13) 1.386(2) C22Bb-H22Bb C(13)-C(14) 1.386(2) C(23)-H(23A) C(13)-H(13) C(23)-H(23B) C(14)-C(15) (19) Bond angle / C(12)-O(2)-H(2A) 111.1(15) C(9)-N(1)-H(1) 117.4(12) C(14)-O(3)-H(3) 109.4(14) C(2)-N(1)-H(1) 112.8(12)

58 C(9)-N(1)-C(2) (11) N(1)-C(2)-N(3) (11) N(1)-C(2)-C(11) (11) C(12)-C(13)-H(13) N(3)-C(2)-C(11) (11) C(14)-C(13)-H(13) N(1)-C(2)-H(2) O(3)-C(14)-C(13) (13) N(3)-C(2)-H(2) O(3)-C(14)-C(15) (13) C(11)-C(2)-H(2) C(13)-C(14)-C(15) (13) C(4)-N(3)-C(2) (11) C(16)-C(15)-C(14) (13) C(4)-N(3)-C(23) (11) C(16)-C(15)-H(15) C(2)-N(3)-C(23) (11) C(14)-C(15)-H(15) O(1)-C(4)-N(3) (12) C(15)-C(16)-C(11) (13) O(1)-C(4)-C(10) (12) C(15)-C(16)-H(16) N(3)-C(4)-C(10) (11) C(11)-C(16)-H(16) C(6)-C(5)-C(10) (14) C22a-C17a-C18a 118.0(2) C(6)-C(5)-H(5) C22a-C17a-C(23) 121.9(2) C(10)-C(5)-H(5) C18a-C17a-C(23) 120.1(2) C(5)-C(6)-C(7) (15) C17a-C18a-C19a 119.8(3) C(5)-C(6)-H(6) C17a-C18a-H18a C(7)-C(6)-H(6) C19a-C18a-H18a C(8)-C(7)-C(6) (15) C20a-C19a-C18a 119.9(3) C(8)-C(7)-H(7) C20a-C19a-H19a C(6)-C(7)-H(7) C18a-C19a-H19a C(7)-C(8)-C(9) (14) C21a-C20a-C19a 120.7(3) C(7)-C(8)-H(8) C21a-C20a-H20a C(9)-C(8)-H(8) C19a-C20a-H20a N(1)-C(9)-C(8) (13) C20a-C21a-C22a 120.6(3) N(1)-C(9)-C(10) (12) C20a-C21a-H21a C(8)-C(9)-C(10) (13) C22a-C21a-H21a C(5)-C(10)-C(9) (13) C17a-C22a-C21a 121.0(3) C(5)-C(10)-C(4) (12) C17a-C22a-H22a C(9)-C(10)-C(4) (12) C21a-C22a-H22a C(16)-C(11)-C(12) (13) C18Bb-C17Bb-C22Bb 119.3(7) C(16)-C(11)-C(2) (12) C18Bb-C17Bb-C(23) 120.7(12) C(12)-C(11)-C(2) (12) C22Bb-C17Bb-C(23) 119.9(12) O(2)-C(12)-C(13) (12) C17Bb-C18Bb-C19Bb 119.6(8) O(2)-C(12)-C(11) (13) C17Bb-C18Bb-H18Bb C(13)-C(12)-C(11) (13) C19Bb-C18Bb-H18Bb 120.2

59 C(12)-C(13)-C(14) (13) C20Bb-C19Bb-C18Bb 119.5(8) C20Bb-C19Bb-H19Bb C21Bb-C22Bb-H22Bb C18Bb-C19Bb-H19Bb N(3)-C(23)-C17Bb 119.2(14) C21Bb-C20Bb-C19Bb 120.1(8) N(3)-C(23)-C17a (14) C21Bb-C20Bb-H20Bb N(3)-C(23)-H(23A) C19Bb-C20Bb-H20Bb C17Bb-C(23)-H(23A) 95.1 C20Bb-C21Bb-C22Bb 120.2(9) C17a-C(23)-H(23A) C20Bb-C21Bb-H21Bb N(3)-C(23)-H(23B) C22Bb-C21Bb-H21Bb C17Bb-C(23)-H(23B) C17Bb-C22Bb-C21Bb 119.7(8) C17a-C(23)-H(23B) C17Bb-C22Bb-H22Bb H(23A)-C(23)-H(23B) 108.1

60 Table S10. Anisotropic displacement parameters (Å ) for 3d. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 31(1) 27(1) 53(1) 4(1) 2(1) 6(1) O(2) 36(1) 45(1) 51(1) 18(1) 5(1) 17(1) O(3) 53(1) 35(1) 38(1) 2(1) 3(1) 6(1) N(1) 30(1) 29(1) 43(1) 8(1) 4(1) 5(1) C(2) 26(1) 29(1) 34(1) 0(1) 8(1) 4(1) N(3) 30(1) 26(1) 36(1) 4(1) 6(1) 3(1) C(4) 26(1) 29(1) 31(1) 2(1) 1(1) 4(1) C(5) 30(1) 37(1) 46(1) 2(1) 6(1) 3(1) C(6) 33(1) 47(1) 58(1) 4(1) 11(1) 6(1) C(7) 42(1) 37(1) 67(1) 6(1) 3(1) 10(1) C(8) 38(1) 28(1) 56(1) 3(1) 1(1) 0(1) C(9) 28(1) 30(1) 34(1) 2(1) 2(1) 2(1) C(10) 26(1) 29(1) 34(1) 1(1) 1(1) 2(1) C(11) 22(1) 26(1) 36(1) 1(1) 6(1) 0(1) C(12) 25(1) 27(1) 41(1) 5(1) 5(1) 2(1) C(13) 28(1) 26(1) 44(1) 0(1) 3(1) 4(1) C(14) 30(1) 28(1) 34(1) 4(1) 4(1) 3(1) C(15) 36(1) 28(1) 35(1) 2(1) 9(1) 2(1) C(16) 28(1) 26(1) 40(1) 2(1) 8(1) 4(1) C17a 57(1) 27(1) 34(1) 2(1) 10(1) 4(1) C18a 83(2) 89(2) 49(1) 3(1) 7(1) 19(2) C19a 140(3) 99(2) 49(1) 14(1) 14(2) 18(2) C20a 160(3) 60(2) 52(2) 2(1) 38(2) 11(2) C21a 115(2) 75(2) 75(2) 3(2) 54(2) 1(2) C22a 69(1) 62(2) 63(2) 5(1) 27(1) 1(1) C17Bb 79(4) 57(5) 53(4) 0(4) 16(4) 2(5) C18Bb 105(4) 69(4) 54(4) 6(4) 15(3) 8(4) C19Bb 123(4) 79(4) 57(4) 4(4) 22(4) 11(4) C20Bb 119(4) 68(5) 65(4) 1(5) 32(4) 2(5) C21Bb 98(4) 72(5) 68(5) 0(5) 37(4) 0(5) C22Bb 82(4) 60(5) 63(4) 3(4) 31(4) 1(4) C(23) 44(1) 32(1) 36(1) 2(1) 6(1) 4(1)

61 Table S11. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for 3d x y z U(eq) H(2A) 6081(16) 6460(20) 3521(8) 67 H(3) 5676(15) 7550(20) 1722(8) 63 H(1) 8185(12) 6968(17) 3942(7) 41 H(2) H(5) H(6) H(7) H(8) H(13) H(15) H(16) H18a H19a H20a H21a H22a H18Bb H19Bb H20Bb H21Bb H22Bb H(23A) H(23B) Table S12. Hydrogen bonds for 3d D H A d(d H) / Å d(h A) / Å d(d A) / Å < (DHA) / O(2)-H(2A)...O(1)#1 0.84(2) 1.90(2) (14) 169(2) O(3)-H(3)...O(1)#2 0.88(2) 1.91(2) (15) 167(2) N(1)-H(1)...O(2) 0.828(18) 2.422(17) (17) 118.1(14) Symmetry transformations used to generate equivalent atoms: #1: x 1/2, y 1/2, z; #2: x + 3/2, y 1/2, z + 1/2.

62 Figure S45. ORTEP structure of 3d.

63 Figure S46. Unit cell of the structure 3d.

64 Table S13. Crystal data and structure refinement for 3f Identification code 166XYZ14 (Solved by: Rubén A. Toscano) Project Title E 81 Empirical formula C 23 H 23 N 3 O Formula weight Temperature / K 298(2) Wavelength / Å Crystal system monoclinic Space group P 21/c Unit cell dimensions a = (8) Å = 90 b = (8) Å = (15) c = (7) Å = 90 Volume / Å (2) Z 4 Density (calculated) / (Mg m -3 ) Absorption coefficient / mm F(000) 760 Crystal size / color / shape mm / colorless / block Theta range for data collection / to Index ranges h k l Reflections collected Independent reflections 4369 [R(int) = ] Completeness to theta = % Measurement device Bruker Smart Apex CCD diffractometer Absorption correction semi-empirical from equivalents Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 4369 / 0 / 250

65 Goodness-of-fit on F Final R indices [I > 2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient (18) Largest diff. peak and hole / e.å and

66 Table S14. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for 3f. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor x y z U(eq) O(1) 4909(1) 6329(1) 2278(1) 71(1) N(1) 4715(1) 9204(1) 2612(2) 56(1) N(2) 1059(1) 10899(1) -944(2) 74(1) C(2) 4465(1) 8802(1) 1401(2) 51(1) N(3) 4268(1) 7751(1) 1562(1) 53(1) C(4) 4932(2) 7220(1) 2312(2) 54(1) C(5) 6352(2) 7277(1) 3960(2) 69(1) C(6) 6942(2) 7761(2) 4844(2) 81(1) C(7) 6808(2) 8750(2) 4982(2) 78(1) C(8) 6089(2) 9243(1) 4235(2) 65(1) C(9) 5489(1) 8751(1) 3335(2) 50(1) C(10) 5622(1) 7756(1) 3195(2) 54(1) C(11) 3547(1) 9332(1) 796(2) 49(1) C(12) 2690(2) 9631(1) 1445(2) 56(1) C(13) 1877(2) 10148(1) 887(2) 61(1) C(14) 1884(2) 10392(1) -372(2) 56(1) C(15) 2744(2) 10084(1) -1014(2) 57(1) C(16) 3552(2) 9574(1) -439(2) 54(1) C(17) 307(2) 11384(2) -190(3) 88(1) C(18) 1146(2) 11244(2) -2193(2) 96(1) C(19) 2601(2) 6907(1) 906(2) 55(1) C(20) 2204(2) 7049(2) 2047(2) 68(1) C(21) 1215(2) 6725(2) 2318(3) 93(1) C(22) 603(2) 6259(2) 1464(4) 110(1) C(23) 962(3) 6107(2) 323(4) 114(1) C(24) 1966(2) 6421(2) 36(2) 91(1) C(25) 3677(2) 7240(1) 578(2) 61(1)

67 Table S15. Bond lengths and angles for 3f Bond length / Å O(1)-C(4) 1.237(2) C(13)-C(14) 1.406(3) N(1)-C(9) 1.381(2) C(13)-H(13) N(1)-C(2) 1.448(2) C(14)-C(15) 1.389(3) N(1)-H(1) 0.84(2) C(15)-C(16) 1.374(3) N(2)-C(14) 1.386(3) C(15)-H(15) N(2)-C(18) 1.444(3) C(16)-H(16) N(2)-C(17) 1.451(3) C(17)-H(17A) C(2)-N(3) 1.492(2) C(17)-H(17B) C(2)-C(11) 1.505(2) C(17)-H(17C) C(2)-H(2) C(18)-H(18A) N(3)-C(4) 1.362(2) C(18)-H(18B) N(3)-C(25) 1.460(2) C(18)-H(18C) C(4)-C(10) 1.472(3) C(19)-C(20) 1.371(3) C(5)-C(6) 1.366(3) C(19)-C(24) 1.389(3) C(5)-C(10) 1.387(3) C(19)-C(25) 1.502(3) C(5)-H(5) C(20)-C(21) 1.380(3) C(6)-C(7) 1.393(3) C(20)-H(20) C(6)-H(6) C(21)-C(22) 1.347(4) C(7)-C(8) 1.376(3) C(21)-H(21) C(7)-H(7) C(22)-C(23) 1.353(4) C(8)-C(9) 1.389(3) C(22)-H(22) C(8)-H(8) C(23)-C(24) 1.397(4) C(9)-C(10) 1.401(2) C(23)-H(23) C(11)-C(16) 1.379(2) C(24)-H(24) C(11)-C(12) 1.388(2) C(25)-H(25A) C(12)-C(13) 1.375(3) C(25)-H(25B) C(12)-H(12) Bond angle / C(9)-N(1)-C(2) (14) N(1)-C(2)-N(3) (13) C(9)-N(1)-H(1) 115.7(14) N(1)-C(2)-C(11) (14) C(2)-N(1)-H(1) 112.7(14) N(3)-C(2)-C(11) (14) C(14)-N(2)-C(18) 119.9(2) N(1)-C(2)-H(2) C(14)-N(2)-C(17) (19) N(3)-C(2)-H(2) C(18)-N(2)-C(17) 117.0(2) C(11)-C(2)-H(2) 108.6

68 C(4)-N(3)-C(25) (14) C(16)-C(15)-C(14) (17) C(4)-N(3)-C(2) (14) C(16)-C(15)-H(15) C(25)-N(3)-C(2) (14) C(14)-C(15)-H(15) O(1)-C(4)-N(3) (18) C(15)-C(16)-C(11) (17) O(1)-C(4)-C(10) (17) C(15)-C(16)-H(16) N(3)-C(4)-C(10) (14) C(11)-C(16)-H(16) C(6)-C(5)-C(10) (18) N(2)-C(17)-H(17A) C(6)-C(5)-H(5) N(2)-C(17)-H(17B) C(10)-C(5)-H(5) H(17A)-C(17)-H(17B) C(5)-C(6)-C(7) 119.7(2) N(2)-C(17)-H(17C) C(5)-C(6)-H(6) H(17A)-C(17)-H(17C) C(7)-C(6)-H(6) H(17B)-C(17)-H(17C) C(8)-C(7)-C(6) 120.5(2) N(2)-C(18)-H(18A) C(8)-C(7)-H(7) N(2)-C(18)-H(18B) C(6)-C(7)-H(7) H(18A)-C(18)-H(18B) C(7)-C(8)-C(9) (18) N(2)-C(18)-H(18C) C(7)-C(8)-H(8) H(18A)-C(18)-H(18C) C(9)-C(8)-H(8) H(18B)-C(18)-H(18C) N(1)-C(9)-C(8) (15) C(20)-C(19)-C(24) 117.1(2) N(1)-C(9)-C(10) (16) C(20)-C(19)-C(25) (17) C(8)-C(9)-C(10) (16) C(24)-C(19)-C(25) (19) C(5)-C(10)-C(9) (18) C(19)-C(20)-C(21) 121.4(2) C(5)-C(10)-C(4) (16) C(19)-C(20)-H(20) C(9)-C(10)-C(4) (16) C(21)-C(20)-H(20) C(16)-C(11)-C(12) (17) C(22)-C(21)-C(20) 120.9(3) C(16)-C(11)-C(2) (16) C(22)-C(21)-H(21) C(12)-C(11)-C(2) (16) C(20)-C(21)-H(21) C(13)-C(12)-C(11) (17) C(21)-C(22)-C(23) 119.6(3) C(13)-C(12)-H(12) C(21)-C(22)-H(22) C(11)-C(12)-H(12) C(23)-C(22)-H(22) C(12)-C(13)-C(14) (18) C(22)-C(23)-C(24) 120.3(3) C(12)-C(13)-H(13) C(22)-C(23)-H(23) C(14)-C(13)-H(13) C(24)-C(23)-H(23) N(2)-C(14)-C(15) (18) C(19)-C(24)-C(23) 120.6(3)

69 N(2)-C(14)-C(13) (18) C(19)-C(24)-H(24) C(15)-C(14)-C(13) (18) C(23)-C(24)-H(24) N(3)-C(25)-C(19) (14) N(3)-C(25)-H(25B) N(3)-C(25)-H(25A) C(19)-C(25)-H(25B) C(19)-C(25)-H(25A) H(25A)-C(25)-H(25B) N(3)-C(25)-C(19) (14) N(3)-C(25)-H(25B) N(3)-C(25)-H(25A) C(19)-C(25)-H(25B) 108.5

70 Table S16. Anisotropic displacement parameters (Å ) for 3f. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 94(1) 26(1) 93(1) 4(1) 22(1) 0(1) N(1) 70(1) 24(1) 72(1) 0(1) 1(1) 3(1) N(2) 70(1) 70(1) 82(1) 7(1) 7(1) 3(1) C(2) 59(1) 29(1) 67(1) 3(1) 12(1) 4(1) N(3) 66(1) 28(1) 65(1) 0(1) 13(1) 5(1) C(4) 66(1) 28(1) 70(1) 6(1) 23(1) 1(1) C(5) 72(1) 39(1) 95(2) 11(1) 9(1) 11(1) C(6) 80(2) 60(1) 102(2) 17(1) 10(1) 16(1) C(7) 82(2) 63(1) 87(2) 2(1) 12(1) 4(1) C(8) 73(1) 40(1) 81(1) 1(1) 1(1) 6(1) C(9) 54(1) 33(1) 64(1) 5(1) 10(1) 2(1) C(10) 57(1) 33(1) 72(1) 7(1) 16(1) 3(1) C(11) 57(1) 30(1) 62(1) 1(1) 8(1) 6(1) C(12) 64(1) 49(1) 57(1) 7(1) 13(1) 1(1) C(13) 58(1) 58(1) 69(1) 2(1) 14(1) 1(1) C(14) 57(1) 43(1) 66(1) 2(1) 2(1) 8(1) C(15) 68(1) 50(1) 53(1) 2(1) 6(1) 11(1) C(16) 63(1) 41(1) 60(1) 2(1) 14(1) 6(1) C(17) 64(1) 76(2) 122(2) 9(1) 2(1) 12(1) C(18) 120(2) 86(2) 79(2) 6(1) 29(2) 8(2) C(19) 79(1) 32(1) 55(1) 5(1) 4(1) 6(1) C(20) 66(1) 71(1) 66(1) 5(1) 1(1) 8(1) C(21) 72(2) 97(2) 110(2) 23(2) 11(2) 6(1) C(22) 78(2) 89(2) 161(3) 37(2) 15(2) 20(2) C(23) 119(3) 78(2) 139(3) 8(2) 53(2) 39(2) C(24) 133(2) 63(1) 75(2) 5(1) 17(2) 22(2) C(25) 97(2) 33(1) 54(1) 3(1) 18(1) 9(1)

71 Table S17. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for 3f x y z U(eq) H(1) 4737(15) 9808(16) 2608(18) 67 H(2) H(5) H(6) H(7) H(8) H(12) H(13) H(15) H(16) H(17A) H(17B) H(17C) H(18A) H(18B) H(18C) H(20) H(21) H(22) H(23) H(24) H(25A) H(25B) Table S18. Hydrogen bonds for 3f D H A d(d H) / Å d(h A) / Å d(d A) / Å < (DHA) / N(1)-H(1)...O(1)#1 0.84(2) 2.16(2) (18) 169.4(18) Symmetry transformations used to generate equivalent atoms: #1: x + 1, y + 1/2, z + 1/2.

72 Figure S47. ORTEP structure of 3f.

73 Figure S48. Unit cell of the structure 3f.

74 Table S19. Crystal data and structure refinement for 3i Identification code 174XYZ14 (Solved by: Rubén A. Toscano) Project Title E 84 Empirical formula C 23 H 22 N 2 O 3 Formula weight Temperature / K 298(2) Wavelength / Å Crystal system triclinic Space group P -1 Unit cell dimensions a = 9.651(6) Å (12) b = (6) Å (13) c = (12) Å = (12) Volume / Å (19) Z 4 Density (calculated) / (Mg m -3 ) Absorption coefficient / mm F(000) 792 Crystal size / color / shape mm / colorless / block Theta range for data collection / to Index ranges h k l Reflections collected Independent reflections 8566 [R(int) = ] Completeness to theta = % Measurement device Bruker Smart Apex CCD diffractometer Absorption correction semi-empirical from equivalents Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 8566 / 242 / 571 Goodness-of-fit on F

75 Final R indices [I>2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient (13) Largest diff. peak and hole / e.å and Remarks Crystal twinned /0.4222, Main residue disorder 11%

76 Table S20. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for 3i. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor x y z U(eq) O(1) 2950(1) 7948(1) 4035(1) 69(1) O(2) 3034(1) 8103(1) 4988(1) 56(1) O(3) 5566(1) 5111(1) 3567(1) 69(1) N(1) 112(2) 9654(1) 4305(1) 48(1) C(2) 324(2) 8244(2) 4638(1) 41(1) N(3) 953(1) 7861(1) 4610(1) 43(1) C(4) 1979(2) 8396(2) 4072(1) 45(1) C(5) 2854(2) 10145(2) 2972(1) 60(1) C(6) 2870(2) 11297(2) 2518(1) 76(1) C(7) 1937(2) 11886(2) 2651(1) 76(1) C(8) 992(2) 11353(2) 3230(1) 61(1) C(9) 965(2) 10181(2) 3694(1) 44(1) C(10) 1902(2) 9571(2) 3563(1) 44(1) C(11) 1710(2) 7373(1) 4356(1) 38(1) C(12) 3098(2) 7343(1) 4546(1) 40(1) C(13) 4413(2) 6606(2) 4294(1) 46(1) C(14) 4338(2) 5873(2) 3848(1) 49(1) C(15) 2991(2) 5868(2) 3661(1) 55(1) C(16) 1697(2) 6613(2) 3914(1) 48(1) C(17) 1659(2) 7289(2) 5813(1) 42(1) C(18) 2639(2) 8583(2) 5761(1) 51(1) C(19) 3274(2) 8980(2) 6333(1) 63(1) C(20) 2941(2) 8100(2) 6969(1) 67(1) C(21) 1948(2) 6824(2) 7037(1) 70(1) C(22) 1299(2) 6421(2) 6461(1) 59(1) C(23) 1041(2) 6804(2) 5187(1) 49(1) C(24) 4386(2) 7959(2) 5310(1) 62(1) C(25) 7000(2) 5009(2) 3769(1) 77(1) O(4) 9954(1) 7689(2) 878(1) 96(1) O(5) 3585(1) 8004(1) 12(1) 60(1) O(6) 3758(2) 5018(1) 1315(1) 76(1)

77 N(31) 5599(2) 9409(1) 622(1) 54(1) C(32) 6309(2) 8007(2) 270(1) 49(1) N(33) 7920(2) 7628(2) 293(1) 56(1) C(34) 8588(2) 8125(2) 845(1) 61(1) C(35) 8142(2) 9741(2) 1999(1) 68(1) C(36) 7211(3) 10801(2) 2495(1) 79(1) C(37) 5728(3) 11361(2) 2382(1) 79(1) C(38) 5155(2) 10902(2) 1777(1) 66(1) C(39) 6084(2) 9844(2) 1267(1) 49(1) C(40) 7586(2) 9234(2) 1382(1) 52(1) C(41) 5737(2) 7132(2) 551(1) 43(1) C(42) 4298(2) 7180(2) 400(1) 44(1) C(43) 3668(2) 6466(2) 659(1) 51(1) C(44) 4492(2) 5679(2) 1077(1) 53(1) C(45) 5914(2) 5603(2) 1238(1) 57(1) C(46) 6525(2) 6336(2) 966(1) 53(1) C47a 8947(15) 7182(6) 878(2) 52(1) C48a 8650(7) 8524(4) 787(2) 54(1) C49a 8930(6) 9003(4) 1313(2) 62(1) C50a 9477(5) 8149(4) 1947(2) 74(1) C51a 9749(7) 6829(4) 2052(2) 94(1) C52a 9514(7) 6341(4) 1517(2) 83(1) C47Bb 8930(40) 6986(14) 928(4) 64(2) C48Bb 8919(16) 8221(11) 907(4) 67(2) C49Bb 9048(15) 8572(11) 1508(5) 83(2) C50Bb 9131(13) 7677(12) 2125(4) 97(2) C51Bb 9068(12) 6485(10) 2154(4) 98(2) C52Bb 8961(11) 6111(9) 1554(4) 84(2) C(53) 8800(2) 6596(2) 291(1) 65(1) C(54) 2168(2) 8031(2) 253(1) 68(1) C(55) 4502(3) 4253(3) 1777(1) 108(1)

78 Table S21. Bond lengths and angles for 3i Bond length / Å O(1)-C(4) (18) C(17)-C(18) 1.380(2) O(2)-C(12) (19) C(17)-C(23) 1.509(2) O(2)-C(24) 1.422(2) C(18)-C(19) 1.374(2) O(3)-C(14) (19) C(18)-H(18) O(3)-C(25) 1.416(2) C(19)-C(20) 1.366(3) N(1)-C(9) 1.377(2) C(19)-H(19) N(1)-C(2) 1.448(2) C(20)-C(21) 1.364(3) N(1)-H(1) 0.831(13) C(20)-H(20) C(2)-N(3) (19) C(21)-C(22) 1.389(3) C(2)-C(11) 1.515(2) C(21)-H(21) C(2)-H(2) C(22)-H(22) N(3)-C(4) 1.357(2) C(23)-H(23A) N(3)-C(23) 1.452(2) C(23)-H(23B) C(4)-C(10) 1.467(2) C(24)-H(24A) C(5)-C(6) 1.369(3) C(24)-H(24B) C(5)-C(10) 1.396(2) C(24)-H(24C) C(5)-H(5) C(25)-H(25A) C(6)-C(7) 1.369(3) C(25)-H(25B) C(6)-H(6) C(25)-H(25C) C(7)-C(8) 1.373(3) O(4)-C(34) 1.227(2) C(7)-H(7) O(5)-C(42) (19) C(8)-C(9) 1.392(2) O(5)-C(54) 1.421(2) C(8)-H(8) O(6)-C(44) 1.374(2) C(9)-C(10) 1.391(2) O(6)-C(55) 1.412(3) C(11)-C(16) 1.384(2) N(31)-C(39) 1.387(2) C(11)-C(12) 1.396(2) N(31)-C(32) 1.449(2) C(12)-C(13) 1.384(2) N(31)-H(31) 0.844(14) C(13)-C(14) 1.382(2) C(32)-N(33) 1.451(2) C(13)-H(13) C(32)-C(41) 1.518(2) C(14)-C(15) 1.374(2) C(32)-H(32) C(15)-C(16) 1.374(2) N(33)-C(34) 1.356(2) C(15)-H(15) N(33)-C(53) 1.449(2) C(16)-H(16) C(34)-C(40) 1.468(3) C(17)-C(22) 1.379(2) C(35)-C(36) 1.375(3)

79 C(35)-C(40) 1.396(2) C50a-C51a 1.359(5) C(35)-H(35) C50a-H50a C(36)-C(37) 1.365(3) C51a-C52a 1.389(4) C(36)-H(36) C51a-H51a C(37)-C(38) 1.368(3) C52a-H52a C(37)-H(37) C47Bb-C48Bb 1.366(6) C(38)-C(39) 1.389(3) C47Bb-C52Bb 1.375(7) C(38)-H(38) C47Bb-C(53) 1.482(6) C(39)-C(40) 1.389(2) C48Bb-C49Bb 1.390(6) C(41)-C(46) 1.373(2) C48Bb-H48Bb C(41)-C(42) 1.390(2) C49Bb-C50Bb 1.363(7) C(42)-C(43) 1.375(2) C49Bb-H49Bb C(43)-C(44) 1.381(2) C50Bb-C51Bb 1.344(7) C(43)-H(43) C50Bb-H50Bb C(44)-C(45) 1.370(3) C51Bb-C52Bb 1.396(6) C(45)-C(46) 1.394(2) C51Bb-H51Bb C(45)-H(45) C52Bb-H52Bb C(46)-H(46) C(53)-H(53A) C47a-C52a 1.377(5) C(53)-H(53B) C47a-C48a 1.382(4) C(54)-H(54A) C47a-C(53) 1.528(4) C(54)-H(54B) C48a-C49a 1.383(4) C(54)-H(54C) C48a-H48a C(55)-H(55A) C49a-C50a 1.370(4) C(55)-H(55B) C49a-H49a C(55)-H(55C) Bond angle / C(12)-O(2)-C(24) (12) C(11)-C(2)-H(2) C(14)-O(3)-C(25) (15) C(4)-N(3)-C(23) (13) C(9)-N(1)-C(2) (13) C(4)-N(3)-C(2) (13) C(9)-N(1)-H(1) 118.2(12) C(23)-N(3)-C(2) (12) C(2)-N(1)-H(1) 111.7(12) O(1)-C(4)-N(3) (15) N(1)-C(2)-N(3) (12) O(1)-C(4)-C(10) (14) N(1)-C(2)-C(11) (12) N(3)-C(4)-C(10) (13) N(3)-C(2)-C(11) (12) C(6)-C(5)-C(10) (18) N(1)-C(2)-H(2) C(6)-C(5)-H(5) 119.6

80 N(3)-C(2)-H(2) C(10)-C(5)-H(5) C(7)-C(6)-C(5) (19) C(19)-C(18)-C(17) (16) C(7)-C(6)-H(6) C(19)-C(18)-H(18) C(5)-C(6)-H(6) C(17)-C(18)-H(18) C(6)-C(7)-C(8) (19) C(20)-C(19)-C(18) (17) C(6)-C(7)-H(7) C(20)-C(19)-H(19) C(8)-C(7)-H(7) C(18)-C(19)-H(19) C(7)-C(8)-C(9) (18) C(21)-C(20)-C(19) (18) C(7)-C(8)-H(8) C(21)-C(20)-H(20) C(9)-C(8)-H(8) C(19)-C(20)-H(20) N(1)-C(9)-C(10) (14) C(20)-C(21)-C(22) (18) N(1)-C(9)-C(8) (16) C(20)-C(21)-H(21) C(10)-C(9)-C(8) (16) C(22)-C(21)-H(21) C(9)-C(10)-C(5) (16) C(17)-C(22)-C(21) (17) C(9)-C(10)-C(4) (14) C(17)-C(22)-H(22) C(5)-C(10)-C(4) (15) C(21)-C(22)-H(22) C(16)-C(11)-C(12) (13) N(3)-C(23)-C(17) (13) C(16)-C(11)-C(2) (13) N(3)-C(23)-H(23A) C(12)-C(11)-C(2) (13) C(17)-C(23)-H(23A) O(2)-C(12)-C(13) (14) N(3)-C(23)-H(23B) O(2)-C(12)-C(11) (13) C(17)-C(23)-H(23B) C(13)-C(12)-C(11) (14) H(23A)-C(23)-H(23B) C(14)-C(13)-C(12) (14) O(2)-C(24)-H(24A) C(14)-C(13)-H(13) O(2)-C(24)-H(24B) C(12)-C(13)-H(13) H(24A)-C(24)-H(24B) O(3)-C(14)-C(15) (15) O(2)-C(24)-H(24C) O(3)-C(14)-C(13) (15) H(24A)-C(24)-H(24C) C(15)-C(14)-C(13) (14) H(24B)-C(24)-H(24C) C(16)-C(15)-C(14) (16) O(3)-C(25)-H(25A) C(16)-C(15)-H(15) O(3)-C(25)-H(25B) C(14)-C(15)-H(15) H(25A)-C(25)-H(25B) C(15)-C(16)-C(11) (15) O(3)-C(25)-H(25C) C(15)-C(16)-H(16) H(25A)-C(25)-H(25C) C(11)-C(16)-H(16) H(25B)-C(25)-H(25C) 109.5

81 C(22)-C(17)-C(18) (15) C(42)-O(5)-C(54) (13) C(22)-C(17)-C(23) (15) C(44)-O(6)-C(55) (17) C(18)-C(17)-C(23) (14) C(39)-N(31)-C(32) (14) C(39)-N(31)-H(31) 114.4(13) O(5)-C(42)-C(41) (13) C(32)-N(31)-H(31) 114.0(12) C(43)-C(42)-C(41) (15) N(31)-C(32)-N(33) (13) C(42)-C(43)-C(44) (16) N(31)-C(32)-C(41) (14) C(42)-C(43)-H(43) N(33)-C(32)-C(41) (13) C(44)-C(43)-H(43) N(31)-C(32)-H(32) C(45)-C(44)-O(6) (16) N(33)-C(32)-H(32) C(45)-C(44)-C(43) (15) C(41)-C(32)-H(32) O(6)-C(44)-C(43) (16) C(34)-N(33)-C(53) (15) C(44)-C(45)-C(46) (16) C(34)-N(33)-C(32) (14) C(44)-C(45)-H(45) C(53)-N(33)-C(32) (14) C(46)-C(45)-H(45) O(4)-C(34)-N(33) (18) C(41)-C(46)-C(45) (16) O(4)-C(34)-C(40) (17) C(41)-C(46)-H(46) N(33)-C(34)-C(40) (15) C(45)-C(46)-H(46) C(36)-C(35)-C(40) (19) C52a-C47a-C48a 117.4(3) C(36)-C(35)-H(35) C52a-C47a-C(53) 119.5(4) C(40)-C(35)-H(35) C48a-C47a-C(53) 122.9(4) C(37)-C(36)-C(35) (19) C47a-C48a-C49a 121.4(3) C(37)-C(36)-H(36) C47a-C48a-H48a C(35)-C(36)-H(36) C49a-C48a-H48a C(36)-C(37)-C(38) 121.1(2) C50a-C49a-C48a 120.1(3) C(36)-C(37)-H(37) C50a-C49a-H49a C(38)-C(37)-H(37) C48a-C49a-H49a C(37)-C(38)-C(39) (19) C51a-C50a-C49a 119.5(3) C(37)-C(38)-H(38) C51a-C50a-H50a C(39)-C(38)-H(38) C49a-C50a-H50a N(31)-C(39)-C(38) (16) C50a-C51a-C52a 120.4(3) N(31)-C(39)-C(40) (16) C50a-C51a-H51a C(38)-C(39)-C(40) (16) C52a-C51a-H51a C(39)-C(40)-C(35) (18) C47a-C52a-C51a 121.1(3) C(39)-C(40)-C(34) (15) C47a-C52a-H52a C(35)-C(40)-C(34) (17) C51a-C52a-H52a 119.4

82 C(46)-C(41)-C(42) (14) C48Bb-C47Bb-C52Bb 119.6(5) C(46)-C(41)-C(32) (14) C48Bb-C47Bb-C(53) 121.6(7) C(42)-C(41)-C(32) (14) C52Bb-C47Bb-C(53) 118.7(8) O(5)-C(42)-C(43) (15) C47Bb-C48Bb-C49Bb 121.0(5) C47Bb-C48Bb-H48Bb C47a-C(53)-H(53A) C49Bb-C48Bb-H48Bb N(33)-C(53)-H(53B) C50Bb-C49Bb-C48Bb 118.7(5) C47Bb-C(53)-H(53B) C50Bb-C49Bb-H49Bb C47a-C(53)-H(53B) C48Bb-C49Bb-H49Bb H(53A)-C(53)-H(53B) C51Bb-C50Bb-C49Bb 120.9(5) O(5)-C(54)-H(54A) C51Bb-C50Bb-H50Bb O(5)-C(54)-H(54B) C49Bb-C50Bb-H50Bb H(54A)-C(54)-H(54B) C50Bb-C51Bb-C52Bb 121.0(5) O(5)-C(54)-H(54C) C50Bb-C51Bb-H51Bb H(54A)-C(54)-H(54C) C52Bb-C51Bb-H51Bb H(54B)-C(54)-H(54C) C47Bb-C52Bb-C51Bb 118.7(5) O(6)-C(55)-H(55A) C47Bb-C52Bb-H52Bb O(6)-C(55)-H(55B) C51Bb-C52Bb-H52Bb H(55A)-C(55)-H(55B) N(33)-C(53)-C47Bb 117.9(7) O(6)-C(55)-H(55C) N(33)-C(53)-C47a 111.3(3) H(55A)-C(55)-H(55C) N(33)-C(53)-H(53A) H(55B)-C(55)-H(55C) C47Bb-C(53)-H(53A) 101.6

83 Table S22. Anisotropic displacement parameters (Å ) for 3i. The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 57(1) 87(1) 76(1) 13(1) 6(1) 46(1) O(2) 43(1) 66(1) 67(1) 32(1) 2(1) 22(1) O(3) 48(1) 75(1) 90(1) 40(1) 18(1) 17(1) N(1) 44(1) 49(1) 57(1) 19(1) 1(1) 21(1) C(2) 38(1) 52(1) 39(1) 14(1) 1(1) 21(1) N(3) 38(1) 53(1) 40(1) 10(1) 3(1) 22(1) C(4) 36(1) 58(1) 46(1) 19(1) 4(1) 21(1) C(5) 52(1) 75(1) 51(1) 17(1) 3(1) 21(1) C(6) 70(1) 81(2) 52(1) 1(1) 7(1) 13(1) C(7) 71(1) 61(1) 72(1) 5(1) 7(1) 14(1) C(8) 57(1) 50(1) 73(1) 12(1) 10(1) 19(1) C(9) 38(1) 45(1) 46(1) 16(1) 9(1) 12(1) C(10) 38(1) 55(1) 41(1) 16(1) 5(1) 18(1) C(11) 36(1) 41(1) 39(1) 9(1) 3(1) 17(1) C(12) 42(1) 39(1) 41(1) 7(1) 0(1) 18(1) C(13) 35(1) 45(1) 56(1) 10(1) 1(1) 16(1) C(14) 42(1) 44(1) 57(1) 13(1) 10(1) 15(1) C(15) 54(1) 60(1) 62(1) 31(1) 10(1) 25(1) C(16) 42(1) 58(1) 53(1) 22(1) 4(1) 24(1) C(17) 42(1) 46(1) 43(1) 10(1) 4(1) 23(1) C(18) 50(1) 56(1) 46(1) 13(1) 2(1) 18(1) C(19) 63(1) 64(1) 61(1) 25(1) 9(1) 17(1) C(20) 78(1) 81(1) 52(1) 27(1) 18(1) 38(1) C(21) 93(2) 75(1) 44(1) 6(1) 8(1) 39(1) C(22) 70(1) 50(1) 54(1) 6(1) 6(1) 24(1) C(23) 49(1) 45(1) 51(1) 11(1) 8(1) 19(1) C(24) 54(1) 71(1) 72(1) 24(1) 11(1) 29(1) C(25) 43(1) 78(1) 103(2) 27(1) 15(1) 12(1) O(4) 43(1) 152(2) 86(1) 27(1) 7(1) 34(1) O(5) 52(1) 71(1) 72(1) 37(1) 21(1) 30(1) O(6) 97(1) 74(1) 80(1) 33(1) 3(1) 46(1)

84 Table S22. Anisotropic displacement parameters (Å ) for 3i. The anisotropic displacement factor exponent takes the form: 2 2 [ h 2 a* 2 U h k a* b* U 12 ] N(31) 52(1) 57(1) 61(1) 27(1) 21(1) 25(1) C(32) 49(1) 65(1) 41(1) 19(1) 10(1) 28(1) N(33) 49(1) 78(1) 46(1) 18(1) 0(1) 29(1) C(34) 47(1) 95(1) 56(1) 32(1) 12(1) 36(1) C(35) 69(1) 98(2) 60(1) 34(1) 24(1) 49(1) C(36) 115(2) 80(2) 55(1) 14(1) 20(1) 56(1) C(37) 100(2) 61(1) 73(2) 9(1) 9(1) 34(1) C(38) 69(1) 50(1) 79(1) 17(1) 10(1) 22(1) C(39) 57(1) 56(1) 52(1) 28(1) 14(1) 33(1) C(40) 52(1) 74(1) 46(1) 26(1) 10(1) 35(1) C(41) 46(1) 47(1) 37(1) 11(1) 2(1) 19(1) C(42) 47(1) 42(1) 42(1) 12(1) 3(1) 15(1) C(43) 50(1) 49(1) 54(1) 11(1) 2(1) 22(1) C(44) 68(1) 44(1) 48(1) 8(1) 8(1) 24(1) C(45) 70(1) 51(1) 49(1) 20(1) 6(1) 19(1) C(46) 53(1) 58(1) 50(1) 18(1) 8(1) 21(1) C47a 44(2) 61(2) 43(2) 9(2) 3(2) 14(2) C48a 53(2) 61(2) 44(2) 11(1) 5(1) 19(2) C49a 78(2) 61(2) 47(2) 14(2) 1(2) 24(2) C50a 100(3) 78(2) 39(2) 11(2) 6(2) 29(2) C51a 134(3) 78(2) 52(2) 1(2) 32(2) 28(2) C52a 109(3) 64(2) 65(2) 4(2) 21(2) 26(2) C47Bb 51(4) 73(4) 53(3) 10(3) 5(3) 12(4) C48Bb 64(4) 81(4) 47(3) 13(3) 2(3) 19(3) C49Bb 97(4) 84(4) 48(3) 20(3) 8(3) 11(3) C50Bb 103(4) 103(4) 49(3) 14(3) 7(3) 1(4) C51Bb 89(4) 110(4) 59(3) 9(3) 11(3) 18(4) C52Bb 71(4) 93(4) 63(3) 5(3) 6(3) 18(3) C(53) 65(1) 68(1) 64(1) 19(1) 3(1) 25(1) C(54) 51(1) 78(1) 79(1) 27(1) 19(1) 26(1) C(55) 125(2) 108(2) 123(2) 76(2) 1(2) 47(2)

85 Table S23. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for 3i x y z U(eq) H(1) 560(17) 9927(16) 4349(9) 57 H(2) H(5) H(6) H(7) H(8) H(13) H(15) H(16) H(18) H(19) H(20) H(21) H(22) H(23A) H(23B) H(24A) H(24B) H(24C) H(25A) H(25B) H(25C) H(31) 4661(16) 9723(17) 592(9) 64 H(32) H(35) H(36) H(37) H(38) H(43) H(45) H(46) H48a

86 H49a H50a H51a H52a H48Bb H49Bb H50Bb H51Bb H52Bb H(53A) H(53B) H(54A) H(54B) H(54C) H(55A) H(55B) H(55C) Table S24. Hydrogen bonds for 3i D H A d(d H) / Å d(h A) / Å d(d A) / Å < (DHA) / N(1)-H(1) O(2) 0.831(13) 2.611(16) 3.059(2) 115.2(14) C(13)-H(13) O(1)# (2) C(24)-H(24B) O(1)# (3) C(25)-H(25A) O(1)# (3) N(31)-H(31) O(5) 0.844(14) 2.534(17) 2.980(2) 114.1(14) C(43)-H(43) O(4)# (3) C(54)-H(54B) O(4)# (3) Symmetry transformations used to generate equivalent atoms: #1: x + 1, y, z; #2: x 1, y, z.

87 Figure S49. ORTEP structures of 3i.

88 Figure S50. Unit cell of the structure 3i.

89 Table S25. Crystal data and structure refinement for 3g Identification code 157XYZ14 (Solved by: R. A. Toscano) Project Title E 82 Empirical formula C 22 H 20 N 2 O 3 Formula weight Temperature / K 298(2) Wavelength / Å Crystal system monoclinic Space group P 21/c Unit cell dimensions a = (3) Å = 90 b = (7) Å = (12) c = (14) Å = 90 Volume / Å (6) Z 8 Density (calculated) / (Mg m -3 ) Absorption coefficient / mm F(000) 1520 Crystal size / color / shape mm / colorless / prism Theta range for data collection / to Index ranges 34 h 39, 10 k 10, 20 l 20 Reflections collected Independent reflections [R(int) = ] Completeness to theta = % Measurement device Bruker Smart Apex CCD diffractometer Absorption correction semi-empirical from equivalents Max. and min. transmission and Refinement method full-matrix least-squares on F 2 Data / restraints / parameters / 2 / 502

90 Goodness-of-fit on F Final R indices [I > 2 (I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole / e.å and Remarks crystal twinned or splitted Este producto no cumple las especificaciones del LRX-IQUI y se libera a solicitud expresa del usuario quien exime al laboratorio de toda responsabilidad de su uso.

91 Table S26. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) for 3g. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor x y z U(eq) O(1) 3673(2) 3695(7) 4291(3) 65(2) O(2) 4018(2) 7285(6) 274(3) 60(2) O(3) 3749(2) 9807(6) 747(3) 69(2) N(1) 4102(2) 2272(7) 1960(4) 47(2) C(2) 3681(2) 3071(9) 2017(4) 42(2) N(3) 3524(2) 3046(7) 2909(3) 41(1) C(4) 3814(3) 3411(8) 3547(4) 44(2) C(5) 4605(3) 3631(10) 3999(5) 57(2) C(6) 5033(3) 3256(11) 3881(5) 66(2) C(7) 5163(3) 2471(11) 3130(7) 74(3) C(8) 4858(3) 2142(10) 2484(5) 56(2) C(9) 4418(2) 2562(8) 2583(4) 40(2) C(10) 4282(2) 3311(8) 3360(4) 41(2) C(11) 3693(2) 4918(8) 1670(4) 39(2) C(12) 3848(2) 5204(9) 841(4) 41(2) C(13) 3864(2) 6827(9) 518(4) 41(2) C(14) 3719(3) 8171(9) 1019(4) 47(2) C(15) 3565(3) 7877(9) 1826(4) 53(2) C(16) 3551(3) 6267(9) 2162(4) 52(2) C(17) 2882(2) 1220(9) 3166(4) 43(2) C(18) 3061(3) 156(10) 3788(5) 54(2) C(19) 2908(3) 1473(11) 3903(6) 66(2) C(20) 2574(3) 2062(13) 3397(6) 82(3) C(21) 2396(3) 1059(15) 2777(7) 102(4) C(22) 2545(3) 589(12) 2682(5) 69(3) C(23) 3050(2) 2982(9) 3045(4) 49(2) C(24) 4253(3) 6062(11) 760(5) 80(3) O(4) 1097(2) 4189(6) 638(3) 43(1) O(5) 1479(2) 3986(5) 3460(3) 42(1) O(6) 1239(2) 1665(6) 4541(3) 54(2) N(25) 1585(2) 581(7) 545(3) 39(1) C(26) 1159(2) 301(8) 935(3) 30(1)

92 N(27) 984(2) 1388(6) 722(3) 29(1) C(28) 1253(2) 2727(8) 694(3) 30(2) C(29) 2035(2) 3722(10) 712(4) 49(2) C(30) 2471(3) 3447(12) 583(5) 64(2) C(31) 2617(3) 1822(14) 382(5) 74(3) C(32) 2325(3) 501(11) 365(5) 57(2) C(33) 1882(2) 754(9) 530(4) 36(2) C(34) 1732(2) 2399(8) 686(4) 36(2) C(35) 1173(2) 608(7) 1911(3) 25(1) C(36) 1310(2) 2185(7) 2215(3) 28(1) C(37) 1331(2) 2504(7) 3093(4) 29(1) C(38) 1209(2) 1262(8) 3677(4) 36(2) C(39) 1068(2) 263(8) 3383(4) 44(2) C(40) 1049(2) 603(8) 2496(4) 37(2) C(41) 329(2) 1789(8) 245(4) 29(1) C(42) 512(2) 881(8) 924(4) 34(2) C(43) 334(2) 1037(9) 1744(4) 45(2) C(44) 18(3) 2086(10) 1894(5) 54(2) C(45) 200(2) 2985(9) 1243(5) 47(2) C(46) 27(2) 2834(8) 410(4) 37(2) C(47) 507(2) 1605(8) 670(4) 34(2) C(48) 1632(3) 5298(8) 2908(4) 56(2)

93 Table S28. Bond lengths and angles for 3g Bond length / Å O(1)-C(4) 1.259(8) C(17)-C(18) 1.391(10) O(2)-C(13) 1.372(7) C(17)-C(23) 1.503(10) O(2)-C(24) 1.430(9) C(18)-C(19) 1.387(11) O(3)-C(14) 1.370(8) C(18)-H(18) O(3)-H(3) 0.90(6) C(19)-C(20) 1.367(12) N(1)-C(9) 1.380(9) C(19)-H(19) N(1)-C(2) 1.438(9) C(20)-C(21) 1.360(13) N(1)-H(1) 0.99(5) C(20)-H(20) C(2)-N(3) 1.472(7) C(21)-C(22) 1.393(13) C(2)-C(11) 1.564(9) C(21)-H(21) C(2)-H(2) C(22)-H(22) N(3)-C(4) 1.355(9) C(23)-H(23A) N(3)-C(23) 1.467(8) C(23)-H(23B) C(4)-C(10) 1.463(10) C(24)-H(24A) C(5)-C(6) 1.356(11) C(24)-H(24B) C(5)-C(10) 1.416(10) C(24)-H(24C) C(5)-H(5) O(4)-C(28) 1.258(7) C(6)-C(7) 1.386(12) O(5)-C(37) 1.382(7) C(6)-H(6) O(5)-C(48) 1.431(7) C(7)-C(8) 1.387(11) O(6)-C(38) 1.383(7) C(7)-H(7) O(6)-H(6A) 0.90(6) C(8)-C(9) 1.396(10) N(25)-C(33) 1.395(8) C(8)-H(8) N(25)-C(26) 1.456(8) C(9)-C(10) 1.414(9) N(25)-H(25) 0.99(5) C(11)-C(16) 1.389(9) C(26)-N(27) 1.481(7) C(11)-C(12) 1.397(9) C(26)-C(35) 1.538(7) C(12)-C(13) 1.385(9) C(26)-H(26) C(12)-H(12) N(27)-C(28) 1.346(7) C(13)-C(14) 1.396(9) N(27)-C(47) 1.467(8) C(14)-C(15) 1.365(9) C(28)-C(34) 1.485(9) C(15)-C(16) 1.382(10) C(29)-C(30) 1.366(10) C(15)-H(15) C(29)-C(34) 1.399(9) C(16)-H(16) C(29)-H(29) C(17)-C(22) 1.366(10) C(30)-C(31) 1.401(12)

94 C(30)-H(30) C(41)-C(42) 1.401(8) C(31)-C(32) 1.375(12) C(41)-C(47) 1.526(8) C(31)-H(31) C(42)-C(43) 1.387(9) C(32)-C(33) 1.396(9) C(42)-H(42) C(32)-H(32) C(43)-C(44) 1.379(10) C(33)-C(34) 1.406(9) C(43)-H(43) C(35)-C(40) 1.381(8) C(44)-C(45) 1.363(10) C(35)-C(36) 1.400(8) C(44)-H(44) C(36)-C(37) 1.391(8) C(45)-C(46) 1.400(9) C(36)-H(36) C(45)-H(45) C(37)-C(38) 1.394(8) C(46)-H(46) C(38)-C(39) 1.363(8) C(47)-H(47A) C(39)-C(40) 1.407(8) C(47)-H(47B) C(39)-H(39) C(48)-H(48A) C(40)-H(40) C(48)-H(48B) C(41)-C(46) 1.389(9) C(48)-H(48C) Bond angle / C(13)-O(2)-C(24) 118.3(6) C(10)-C(5)-H(5) C(14)-O(3)-H(3) 118(6) C(5)-C(6)-C(7) 119.8(8) C(9)-N(1)-C(2) 120.1(6) C(5)-C(6)-H(6) C(9)-N(1)-H(1) 128(4) C(7)-C(6)-H(6) C(2)-N(1)-H(1) 111(4) C(6)-C(7)-C(8) 120.1(8) N(1)-C(2)-N(3) 110.6(5) C(6)-C(7)-H(7) N(1)-C(2)-C(11) 111.6(6) C(8)-C(7)-H(7) N(3)-C(2)-C(11) 110.4(5) C(7)-C(8)-C(9) 121.0(8) N(1)-C(2)-H(2) C(7)-C(8)-H(8) N(3)-C(2)-H(2) C(9)-C(8)-H(8) C(11)-C(2)-H(2) N(1)-C(9)-C(8) 123.4(6) C(4)-N(3)-C(23) 122.7(6) N(1)-C(9)-C(10) 117.6(7) C(4)-N(3)-C(2) 118.2(6) C(8)-C(9)-C(10) 119.1(7) C(23)-N(3)-C(2) 117.8(5) C(9)-C(10)-C(5) 117.9(7) O(1)-C(4)-N(3) 119.0(7) C(9)-C(10)-C(4) 119.2(6) O(1)-C(4)-C(10) 122.4(7) C(5)-C(10)-C(4) 121.7(6) N(3)-C(4)-C(10) 118.3(6) C(16)-C(11)-C(12) 119.6(6) C(6)-C(5)-C(10) 122.1(8) C(16)-C(11)-C(2) 121.6(6) C(6)-C(5)-H(5) C(12)-C(11)-C(2) 118.8(5)

95 C(13)-C(12)-C(11) 120.0(6) N(3)-C(23)-H(23B) C(13)-C(12)-H(12) C(17)-C(23)-H(23B) C(11)-C(12)-H(12) H(23A)-C(23)-H(23B) O(2)-C(13)-C(12) 125.9(6) O(2)-C(24)-H(24A) O(2)-C(13)-C(14) 114.3(6) O(2)-C(24)-H(24B) C(12)-C(13)-C(14) 119.8(6) H(24A)-C(24)-H(24B) C(15)-C(14)-O(3) 118.1(6) O(2)-C(24)-H(24C) C(15)-C(14)-C(13) 119.8(7) H(24A)-C(24)-H(24C) O(3)-C(14)-C(13) 122.0(6) H(24B)-C(24)-H(24C) C(14)-C(15)-C(16) 121.2(6) C(37)-O(5)-C(48) 118.6(5) C(14)-C(15)-H(15) C(38)-O(6)-H(6A) 113(5) C(16)-C(15)-H(15) C(33)-N(25)-C(26) 118.3(5) C(15)-C(16)-C(11) 119.6(6) C(33)-N(25)-H(25) 117(4) C(15)-C(16)-H(16) C(26)-N(25)-H(25) 118(4) C(11)-C(16)-H(16) N(25)-C(26)-N(27) 111.5(5) C(22)-C(17)-C(18) 116.7(7) N(25)-C(26)-C(35) 111.8(5) C(22)-C(17)-C(23) 121.9(7) N(27)-C(26)-C(35) 111.8(5) C(18)-C(17)-C(23) 121.4(7) N(25)-C(26)-H(26) C(19)-C(18)-C(17) 121.8(8) N(27)-C(26)-H(26) C(19)-C(18)-H(18) C(35)-C(26)-H(26) C(17)-C(18)-H(18) C(28)-N(27)-C(47) 120.8(5) C(20)-C(19)-C(18) 119.6(9) C(28)-N(27)-C(26) 120.2(5) C(20)-C(19)-H(19) C(47)-N(27)-C(26) 118.4(5) C(18)-C(19)-H(19) O(4)-C(28)-N(27) 119.9(6) C(21)-C(20)-C(19) 120.0(9) O(4)-C(28)-C(34) 122.3(6) C(21)-C(20)-H(20) N(27)-C(28)-C(34) 117.6(6) C(19)-C(20)-H(20) C(30)-C(29)-C(34) 121.3(8) C(20)-C(21)-C(22) 119.8(9) C(30)-C(29)-H(29) C(20)-C(21)-H(21) C(34)-C(29)-H(29) C(22)-C(21)-H(21) C(29)-C(30)-C(31) 119.5(8) C(17)-C(22)-C(21) 122.1(9) C(29)-C(30)-H(30) C(17)-C(22)-H(22) C(31)-C(30)-H(30) C(21)-C(22)-H(22) C(32)-C(31)-C(30) 120.0(8) N(3)-C(23)-C(17) 112.9(6) C(32)-C(31)-H(31) N(3)-C(23)-H(23A) C(30)-C(31)-H(31) C(17)-C(23)-H(23A) C(31)-C(32)-C(33) 121.0(8)

96 C(31)-C(32)-H(32) C(42)-C(41)-C(47) 120.9(6) C(33)-C(32)-H(32) C(43)-C(42)-C(41) 119.5(6) N(25)-C(33)-C(32) 121.7(7) C(43)-C(42)-H(42) N(25)-C(33)-C(34) 119.4(6) C(41)-C(42)-H(42) C(32)-C(33)-C(34) 118.9(7) C(44)-C(43)-C(42) 120.5(7) C(29)-C(34)-C(33) 119.2(6) C(44)-C(43)-H(43) C(29)-C(34)-C(28) 121.2(6) C(42)-C(43)-H(43) C(33)-C(34)-C(28) 119.1(6) C(45)-C(44)-C(43) 120.9(7) C(40)-C(35)-C(36) 118.9(5) C(45)-C(44)-H(44) C(40)-C(35)-C(26) 122.4(5) C(43)-C(44)-H(44) C(36)-C(35)-C(26) 118.7(5) C(44)-C(45)-C(46) 119.3(7) C(37)-C(36)-C(35) 120.3(5) C(44)-C(45)-H(45) C(37)-C(36)-H(36) C(46)-C(45)-H(45) C(35)-C(36)-H(36) C(41)-C(46)-C(45) 120.7(6) O(5)-C(37)-C(36) 124.9(5) C(41)-C(46)-H(46) O(5)-C(37)-C(38) 114.9(5) C(45)-C(46)-H(46) C(36)-C(37)-C(38) 120.1(5) N(27)-C(47)-C(41) 114.0(5) C(39)-C(38)-O(6) 123.3(5) N(27)-C(47)-H(47A) C(39)-C(38)-C(37) 119.7(5) C(41)-C(47)-H(47A) O(6)-C(38)-C(37) 117.0(5) N(27)-C(47)-H(47B) C(38)-C(39)-C(40) 120.6(5) C(41)-C(47)-H(47B) C(38)-C(39)-H(39) H(47A)-C(47)-H(47B) C(40)-C(39)-H(39) O(5)-C(48)-H(48A) C(35)-C(40)-C(39) 120.3(6) O(5)-C(48)-H(48B) C(35)-C(40)-H(40) H(48A)-C(48)-H(48B) C(39)-C(40)-H(40) O(5)-C(48)-H(48C) C(46)-C(41)-C(42) 119.0(6) H(48A)-C(48)-H(48C) C(46)-C(41)-C(47) 120.1(5) H(48B)-C(48)-H(48C) 109.5

97 Table S29. Anisotropic displacement parameters (Å ) for 3g. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 75(4) 67(4) 51(3) 16(3) 12(3) 25(3) O(2) 95(4) 46(3) 38(3) 1(2) 14(3) 4(3) O(3) 137(6) 32(3) 38(3) 1(2) 0(3) 11(3) N(1) 61(4) 36(4) 44(3) 11(3) 3(3) 2(3) C(2) 52(5) 40(4) 33(4) 6(3) 1(3) 1(4) N(3) 47(4) 36(3) 39(3) 3(2) 3(3) 7(3) C(4) 65(6) 27(4) 42(4) 2(3) 3(4) 14(4) C(5) 62(6) 45(5) 64(5) 2(4) 2(4) 14(4) C(6) 72(7) 59(6) 67(6) 1(4) 16(5) 6(5) C(7) 50(6) 56(6) 115(8) 4(5) 12(5) 6(5) C(8) 67(6) 43(5) 60(5) 4(4) 4(4) 3(4) C(9) 56(5) 21(4) 45(4) 0(3) 1(3) 3(3) C(10) 52(5) 28(4) 43(4) 2(3) 2(3) 11(3) C(11) 43(4) 29(4) 45(4) 8(3) 5(3) 2(3) C(12) 46(5) 34(4) 43(4) 12(3) 2(3) 6(3) C(13) 52(5) 40(4) 31(3) 2(3) 3(3) 0(4) C(14) 61(5) 32(4) 48(4) 1(3) 0(4) 4(4) C(15) 78(6) 37(4) 44(4) 13(3) 11(4) 10(4) C(16) 78(6) 39(5) 39(4) 2(3) 18(4) 7(4) C(17) 24(4) 56(5) 49(4) 0(3) 12(3) 4(4) C(18) 55(5) 53(5) 54(5) 1(4) 5(4) 9(4) C(19) 59(6) 54(6) 85(6) 11(5) 6(5) 9(5) C(20) 69(7) 84(8) 94(7) 25(6) 1(5) 44(6) C(21) 72(7) 114(10) 118(9) 16(7) 28(6) 52(7) C(22) 40(5) 93(8) 74(6) 25(5) 11(4) 25(5) C(23) 51(5) 49(5) 46(4) 1(3) 7(3) 3(4) C(24) 116(8) 68(6) 57(5) 16(4) 36(5) 4(6) O(4) 57(3) 30(3) 42(3) 9(2) 7(2) 0(2) O(5) 71(4) 23(3) 34(2) 3(2) 4(2) 13(2) O(6) 111(5) 26(3) 25(2) 1(2) 4(2) 18(3) N(25) 55(4) 34(3) 29(3) 3(2) 7(3) 4(3) C(26) 37(4) 25(4) 28(3) 7(2) 2(3) 7(3)

98 N(27) 32(3) 22(3) 34(3) 4(2) 1(2) 5(2) C(28) 44(4) 32(4) 15(3) 1(2) 3(2) 5(3) C(29) 47(5) 56(5) 43(4) 6(3) 5(3) 18(4) C(30) 50(6) 80(7) 63(5) 5(5) 13(4) 32(5) C(31) 30(5) 122(9) 68(6) 1(6) 19(4) 10(6) C(32) 49(5) 72(6) 50(5) 6(4) 17(4) 5(5) C(33) 38(4) 46(5) 24(3) 3(3) 3(3) 4(3) C(34) 38(4) 41(4) 28(3) 0(3) 6(3) 12(3) C(35) 27(3) 25(3) 24(3) 1(2) 1(2) 2(3) C(36) 30(4) 21(3) 32(3) 6(2) 3(2) 4(3) C(37) 37(4) 16(3) 33(3) 3(2) 1(3) 2(3) C(38) 57(5) 23(4) 29(3) 3(3) 6(3) 3(3) C(39) 84(6) 25(4) 22(3) 7(3) 8(3) 13(4) C(40) 58(5) 18(3) 36(4) 2(3) 1(3) 8(3) C(41) 29(4) 27(4) 31(3) 2(2) 0(2) 5(3) C(42) 37(4) 34(4) 33(3) 3(3) 1(3) 3(3) C(43) 57(5) 46(5) 31(4) 5(3) 1(3) 14(4) C(44) 61(6) 55(5) 44(4) 17(4) 14(4) 22(4) C(45) 46(5) 42(5) 54(5) 15(4) 11(4) 4(4) C(46) 36(4) 31(4) 46(4) 5(3) 1(3) 2(3) C(47) 35(4) 35(4) 31(3) 9(3) 2(3) 4(3) C(48) 94(7) 25(4) 48(4) 3(3) 6(4) 15(4)

99 Table S30. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å ) for 3g x y z U(eq) H(3) 3730(30) 10010(120) 180(40) 103 H(1) 4110(20) 1440(80) 1490(40) 56 H(2) H(5) H(6) H(7) H(8) H(12) H(15) H(16) H(18) H(19) H(20) H(21) H(22) H(23A) H(23B) H(24A) H(24B) H(24C) H(6A) 1230(30) 750(90) 4880(50) 81 H(25) 1610(20) 1440(70) 80(40) 47 H(26) H(29) H(30) H(31) H(32) H(36) H(39) H(40) H(42) H(43)

100 H(44) H(45) H(46) H(47A) H(47B) H(48A) H(48B) H(48C) H(42) Table S31. Hydrogen bonds for 3g D H A d(d H) / Å d(h A) / Å d(d A) / Å < (DHA) / O(3)-H(3) O(1)#1 0.90(6) 1.73(7) 2.568(7) 153(9) N(1)-H(1) O(3)#2 0.99(5) 2.04(6) 2.917(8) 146(6) O(6)-H(6A) O(4)#3 0.90(6) 1.76(6) 2.642(6) 166(8) N(25)-H(25) O(5)#4 0.99(5) 2.57(6) 3.275(6) 128(5) N(25)-H(25) O(6)#4 0.99(5) 2.05(6) 2.882(7) 139(5) Symmetry transformations used to generate equivalent atoms: #1: x, y + 3/2, z 1/2; #2: x, y 1, z; #3: x, y + 1/2, z + 1/2; #4: x, y 1/2, z 1/2.

101 Figure S51. ORTEP structure of 3g.

102 Figure S52. Unit cell of the structure 3g. References 1. Shaabani, A.; Afshari, R.; Hooshmand, S. E.; New J. Chem. 2017, 4, Wang, S.; Yin, S.; Xia, S.; Shi, Y.; Tu, S. Rong, L.; Green Chem. Lett. Rev. 2012, 5, Jiang, Ch.; Yang, L.; Wu, W. T.; Guo, Q. L.; You, Q. D.; Bioorg. Med. Chem. 2011, 19, Chernobrovin, N. I.; Kozhevnikov, Y. V.; Zalesov, V. S.; Dolbilkin, K. V.; Razepina, T. G.; USSR SU Shanton, K. J.; Azizian, F.; Eur. Pat. Appl. EP A Andrew, J. S.; Meegan, M. J.; Sobolev, V.; Frost, D.; Zisterer, D. M.; Williams, D. C.; Lloyd, D. G.; J. Med. Chem. 2007, 50, 5301.

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Krista L. Vikse, a Matthew A. Henderson, a Allen G. Oliver b and

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information

Supporting Information

Supporting Information Supporting Information Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism Benjamin Gutschank, Stephan Schulz,* Dieter Bläser and Christoph Wölper Crystallographic

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Crystal growth and characterization of solvated organic charge-transfer complexes built on

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 A rare case of a dye co-crystal showing better dyeing performance Hui-Fen Qian, Yin-Ge Wang,

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Template-directed synthesis

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

Supplementary Information. Single Crystal X-Ray Diffraction

Supplementary Information. Single Crystal X-Ray Diffraction Supplementary Information Single Crystal X-Ray Diffraction Single crystal diffraction data were collected on an Oxford Diffraction Gemini R Ultra diffractometer equipped with a Ruby CCD-detector with Mo-K

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Supporting Information

Supporting Information Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b,

More information

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J. Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically Crowded (C 5 Me 5 ) 3 M Complexes Thomas J. Mueller, Joseph W. Ziller, and William J. Evans * Department of Chemistry, University

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson,

More information

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property Supporting Information for: Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property Wen-Bin Jia, Hao-Wei Wang, Long-Mei Yang, Hong-Bo Lu, Lin Kong, Yu-Peng

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3h)-one catalyzed by Graphene Oxide

More information

Supporting Information

Supporting Information Supporting Information A Trinitrosyl Iron Complex (a {Fe(NO) 3 } 10 TNIC) Stabilized by an N- Heterocyclic Carbene and the Cationic and Neutral {Fe(NO) 2 } 9/10 Products of Its NO Release Chung-Hung Hsieh

More information

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling Supplementary File Modification of Boc-protected CA508 via acylation and Suzuki-Miyaura Coupling Martin Pisár, Eva Schütznerová 2, Filip Hančík, Igor Popa 3, Zdeněk Trávníček 3 and Petr Cankař, * Department

More information

,

, 2013. 54, 6. 1115 1120 UDC 548.737:547.12 CHARACTERIZATION AND CRYSTAL STRUCTURES OF SOLVATED N -(4-HYDROXY-3-NITROBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE AND N -(4-DIMETHYLAMINOBENZYLIDENE)-3-METHYLBENZOHYDRAZIDE

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Regiodivergent Heterocyclization: A Strategy for the Synthesis of Substituted Pyrroles and Furans Using α-formyl Ketene Dithioacetals as Common Precursors Ting Wu,

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Proton grease: an acid catalyzed acceleration of a molecular rotor

Proton grease: an acid catalyzed acceleration of a molecular rotor Journal of American Chemical Society Supplementary Information for Proton grease: an acid catalyzed acceleration of a molecular rotor Authors: Brent E. Dial, a Perry J. Pellechia, a Mark D. Smith a and

More information

Supplementary Information

Supplementary Information Supplementary Information Tuning the Luminescence of Metal-Organic Frameworks for Detection of Energetic Heterocyclic Compounds Yuexin Guo, Xiao Feng,*, Tianyu Han, Shan Wang, Zhengguo Lin, Yuping Dong,

More information

Backbonding and non-covalent interactions in JohnPhos and polyfluorothiolate complexes of gold(i)

Backbonding and non-covalent interactions in JohnPhos and polyfluorothiolate complexes of gold(i) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 SUPPORTING INFORMATION Backbonding and non-covalent interactions in JohnPhos and polyfluorothiolate

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction. Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 ew Journal of Chemistry Synthesis

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information DBU-Mediated Metal-Free Oxidative Cyanation of α-amino

More information

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) Supporting Information Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) complexes: application to the kinetic resolution of allylic alcohols. Mariano A. Fernández-Zúmel, Beatriz

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Ailing Zhang, Sakthi Raje, Jianguo Liu, Xiaoyan Li, Raja Angamuthu, Chen-Ho Tung, and Wenguang Wang* School of Chemistry and Chemical

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) A Large Spin, Magnetically Anisotropic, Octanuclear

More information

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding

Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Supporting Information for: Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogenbonding Catalysts Kayla M. Diemoz, Jason E. Hein, Sean O. Wilson, James C. Fettinger, Annaliese K. Franz*

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Armand Jansen van Rensburg, a Marilé Landman, a * Petrus H. van Rooyen, a Marrigje M. Conradie b and Jeanet

More information

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain. a Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain. b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Regioselective 6-endo-dig Iodocyclization: An accessible

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units.

Supporting Information for. Organogold oligomers: exploiting iclick and aurophilic cluster formation to prepare solution stable Au4 repeating units. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information for Organogold oligomers: exploiting iclick and aurophilic cluster

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4 Piperidine derivatives 4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4.1.1 Synthesis To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperi dine-4-one

More information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information for Catalysis Science & Technology Catalytic

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13 AEXE 1 : SPECTRES DE RÉSACE MAGÉTIQUE UCLÉAIRE DES PRTS ET DES CARBES-13 122 3,4-Bis(méthoxycarbonyl)-2-méthyl-5-(pent-4 -ényl)-1-phényl-1h-pyrrole (82). Ph 2 C C 2 123 Acide 2-(-benzoyl--méthylamino)oct-7-énoïque

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden,

More information

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+!

David Samuel, Kirsten Norrell, David G. Hilmey* Department of Chemistry, St. Bonaventure University, St. Bonaventure, NY #$ %& $&% '$&% ($) *+! Novel ring chemistry of Vitamin B 6 with singlet oxygen and an activated ene: Isolated products and identified intermediates suggesting an operable [3+2] cycloaddition David Samuel, Kirsten Norrell, David

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct

More information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 Supplementary Material (ESI)

More information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information 1,4-Dihydropyridyl Complexes of Magnesium: Synthesis

More information

Synthesis of Cyclopentadienyl Alkyl Ethers via Pd-Catalyzed. Cyclotrimerization of Diarylacetylenes

Synthesis of Cyclopentadienyl Alkyl Ethers via Pd-Catalyzed. Cyclotrimerization of Diarylacetylenes Synthesis of Cyclopentadienyl Alkyl Ethers via Pd-Catalyzed Cyclotrimerization of Diarylacetylenes Ranran Cai, a Mengmeng Huang, *a Xiuling Cui, a Jianye Zhang, a Chenxia Du, a Yusheng Wu, b and Yangjie

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Supporting Information Synthesis and Structures of N-Arylcyano-β-diketiminate Zinc Complexes

More information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information Cyanide-bridged tetradecanuclear Ru II 3M II 11 clusters (M II = Zn II and Cu II ) based on the high connectivity building block [Ru 3 (HAT)(CN) 12 ] 6+ : structural and photophysical properties Juan Manuel

More information

Chemically tailorable micro- and nanoparticles from infinite coordination polymers

Chemically tailorable micro- and nanoparticles from infinite coordination polymers Supplementary Information (MS # 2005-06-06618A): Chemically tailorable micro- and nanoparticles from infinite coordination polymers Moonhyun Oh & Chad A. Mirkin* Department of Chemistry and Institute for

More information