Analysis Techniques Multivariate Methods

Size: px
Start display at page:

Download "Analysis Techniques Multivariate Methods"

Transcription

1 Analysis Techniques Multivariate Methods Harrison B. Prosper NEPPSR 007

2 Outline hintroduction hsignal/background Discrimination hfisher Discriminant hsupport Vector Machines hnaïve Bayes hbayesian Neural Network hdecision Trees

3 Introduction Most interesting data are intrinsically multivariate: = (,,..., d ). Eample: single top data at the Tevatron is of dimension d = d = 4 pp tb pp tqb 3

4 p p tt l + Eample: DØ 995 Top Discovery jets Aplanarity Data 05 pb - tt - MC 7 fb - Multijet 700 pb - W+4jets MC385 pb H T (GeV) 4

5 hpoints to note: Introduction 3 hintuition based on analysis in one dimension often fails badly for spaces of high dimension. hnon-linear systems are qualitatively different from linear ones. hone should distinguish between the problem to be solved, which generally falls within a broad category of similar problems, from the algorithm to solve it. 5

6 Signal/Background Discrimination Signal density p(, S) = p( S) p(s) density p () Background density p(, B) = p( B) p(b) y = 0 y = 0 Goal: Minimize the misclassification rate 6

7 Signal/Background Discrimination Signal/background discrimination is optimal, that is, the error rate is minimized, when done using the Bayes discriminant r = p ( S) p( S) p ( B) p( B) or a function thereof, such as the probability p(s ) of the signal S given r p( S) p( S) p( S ) = = + r p( S) p( S) + p( B) p( B) 7

8 Signal/Background Discrimination 3 In practice, it is sufficient to use the discriminant D ( ) = p ( S) p ( S) + p ( B) because the relationship between P(S ) and D() is one-to-one P( S ) = p p( S) + ( S) ( D ( ) ) ( ) p B 8

9 hfisher Discriminant h Support Vector Machines h Naïve Bayes hbayesian Neural Networks hdecision Trees 9

10 Fisher Discriminant w + b > 0 r = p ( S) p( S) p ( B) p( B) Take p( *) to be a Gaussian, use y = ln r, and drop the constant g( μ, Σ) = ln + g μ, Σ y w b ( ) w + b < 0 w Eercise 9: Show that y is linear for d-dimensional Gaussians with equal covariance matrices 0

11 Support Vector Machines This is a powerful, and relatively new, generalization of the Fisher discriminant (Boser, Guyon and Vapnik, 99). Basic Idea Data that are non-separable in d-dimensions have a higher probability of being separable if mapped into a space of higher dimension d F : R R Use a hyper-plane to partition the data H f ( ) = w h( ) + b

12 Support Vector Machines Consider separable signal and background data Suppose that: green plane given by w. + b = 0 red plane given by w. + b =+ blue plane given by w. + b =- subtract blue from red w.( - ) = w and normalize the vector w ŵ.( - ) = / w

13 Support Vector Machines The quantity m = ŵ.( - ), the distance between the red and blue planes, is called the margin. The best separation occurs when the margin is as large as possible. The plane that lies midway between the red and blue planes is called the optimal separating hyper-plane plane w Note: because m ~ / w, maimizing the margin is equivalent to minimizing w 3

14 Support Vector Machines It is convenient to label the red dots y = + and the blue dots y = -. For separable data the task is to minimize w subject to the constraint y i.(w. i + b), i = N w That is to minimize N Lwb (,, α) = ( ) w αi yi w i + b i= where the α > 0 are Lagrange multipliers, one for each constraint. 4

15 Support Vector Machines When L(w,b,α) is minimized with respect to w and b, the Lagrangian L(w,b,α) can be transformed to its dual form N N N E( α) = α i αiα j y i= i= j= i y j ( i j ) In general, of course, data are not separable and the constraints have to be weakened y i.(w. i + b) ξ i by introducing so-called slack variables ξ i. 5

16 Support Vector Machines Once the minimum has been found, the only non-zero coefficients α are those corresponding to points on the red and blue planes: that is, to the support vectors. w 6

17 Support Vector Machines We work, however, not in the space {} but in the higher dimensional space {h()} to which {} is mapped. Each vector in {h()} is of the form h() = [h (), h (), h H ()] and we can write N N N E( α) = α αα y y h( ) h( ) i i j i j i j i= i= j= Important: The scalar product structure allows the use of kernels K( i, j ) = h( i ).h( j ) to perform both the mapping and simultaneously the scalar product, efficiently, even if the space is of infinite dimensions! 7

18 8 Eample Eample Mapping From R Mapping From R R 3 ),, ( ),, ( ), ( : 3 z z z h = z z z 3 ), ( ) ( ),, ( ),, ( ) ( ) ( y k y y y y y y h h = = = Here we are mapping from -D -space to3-d z-space

19 Naïve Bayes Each density p(.) is approimated by pˆ( ) = n i= q( i ) where q( i.) is the projection of the d-dimensional density p(.) onto ais i ; that is, the q(.) are -D histograms, or, better still, -D KDEs q( i ) = ) p( { : } j j i d 9

20 Naïve Bayes The naïve Bayes estimate of D() is then given by D ( ) = p ˆ( S) pˆ( S) + pˆ( B) In spite of its name, this method often works surprisingly well. 0

21 Bayesian Neural Networks We define a Bayesian neural network by the average f( D) = f(, w) p(w D) dw Likelihood Prior which is approimated by f( D) (/K) Σ k f(, w k ) where the points w k are sampled from p(w D)

22 Bayesian Neural Networks u, a H d f(, w) = b + v tanh a + u v, b j j ij i j= i= n(, w) n(,w) = + ep[ f A BNN is just an average over neural network functions n(,w) (, w)]

23 A Simple Eample Signal htqb (muon-channel) Background hwbb (muon-channel) NN Model h(, 5, ) MCMC h500 tqb+ Wbbevents huse last 0 networks in a MC chain of 500. Wbb tqb HT_AllJets_MinusBestJets (scaled) 3

24 A Simple Eample Dots p(s H T ) = H S /(H S +H B ) H S, H B are -D histograms Curves Individual NNs n(h T, w k ) Black curve < y(h T, w) > HT_AllJets_MinusBestJets 4

25 An ellipse, called a node, represents a variable on which a cut is to be applied. A line segment represents a cut. A bo, a leaf, represents the conjunction of a sequence of cuts (an If-Then-Else rule) Decision Trees MiniBoone, Byron Roe 5

26 Decision Trees In a decision tree the feature space is partitioned recursively in accordance with some criterion. Each leaf is a bin associated with a constant value of the function f() being modeled. For classification the values might be - or PMT Hits 0 f() =- f() = B = 0 S = 9 B = 37 S = 4 B = S = 39 f() =- 0 Energy (GeV) 0.4 6

27 Decision Trees At each node one eamines every variable and chooses with which to partition the space. In this eample, it was determined that it was better to partition with PMT Hits first. At the net node, it proved better to partition using Energy PMT Hits 0 D() = 0.47 D() = 0.98 B = 0 S = 9 B = 37 S = 4 B = S = 39 D() = Energy (GeV) 0.4 7

28 Practical Issues Decision Trees htrees tend to be unstable: a small change in the data can result in radically different partitions. htrees are a piece-wise constant approimation to the function f(). This is not too bad for classification, but is a problem where smoothness is needed, for eample, when trying to model a density. However, one can average over many trees (boosting, bagging, forests ). htrees, however, are fast to grow. 8

29 Summary There is, typically, much more information in the multivariate character of data than in their -D marginal densities (~ -D histograms). Therefore, it makes sense to analyze data using a truly multivariate method, of which many practical and powerful ones eist, usually with free software! Moreover, they can be used together with the powerful and general method of inference based on Bayes theorem. So first learn the mathematics then. challenge the conservative old f***s 9

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights

Linear, threshold units. Linear Discriminant Functions and Support Vector Machines. Biometrics CSE 190 Lecture 11. X i : inputs W i : weights Linear Discriminant Functions and Support Vector Machines Linear, threshold units CSE19, Winter 11 Biometrics CSE 19 Lecture 11 1 X i : inputs W i : weights θ : threshold 3 4 5 1 6 7 Courtesy of University

More information

Harrison B. Prosper. Bari Lectures

Harrison B. Prosper. Bari Lectures Harrison B. Prosper Florida State University Bari Lectures 30, 31 May, 1 June 2016 Lectures on Multivariate Methods Harrison B. Prosper Bari, 2016 1 h Lecture 1 h Introduction h Classification h Grid Searches

More information

Advanced statistical methods for data analysis Lecture 1

Advanced statistical methods for data analysis Lecture 1 Advanced statistical methods for data analysis Lecture 1 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

Evidence for Single Top Quark Production. Reinhard Schwienhorst

Evidence for Single Top Quark Production. Reinhard Schwienhorst Evidence for Single Top Quark Production Reinhard Schwienhorst MSU high energy seminar, 1/9/2007 Outline Motivation Preparation Optimized Event Analysis Sensitivity Cross section measurement Vtb Conclusions/Outlook

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics 8. Multivariate Analysis Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 2017/18 Multi-Variate Classification Consider

More information

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods

Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods Statistical Methods for Particle Physics Lecture 2: statistical tests, multivariate methods www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Announcements Machine Learning Lecture 2 Eceptional number of lecture participants this year Current count: 449 participants This is very nice, but it stretches our resources to their limits Probability

More information

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics Statistical Tools in Collider Experiments Multivariate analysis in high energy physics Pauli Lectures - 06/0/01 Nicolas Chanon - ETH Zürich 1 Main goals of these lessons - Have an understanding of what

More information

Chapter 6: Classification

Chapter 6: Classification Chapter 6: Classification 1) Introduction Classification problem, evaluation of classifiers, prediction 2) Bayesian Classifiers Bayes classifier, naive Bayes classifier, applications 3) Linear discriminant

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data Ilya Narsky, Caltech Motivation Introduction advanced classification tools in a convenient C++ package for HEP researchers

More information

Harrison B. Prosper. Bari Lectures

Harrison B. Prosper. Bari Lectures Harrison B. Prosper Florida State University Bari Lectures 30, 31 May, 1 June 2016 Lectures on Multivariate Methods Harrison B. Prosper Bari, 2016 1 h Lecture 1 h Introduction h Classification h Grid Searches

More information

Statistical Methods for Particle Physics Lecture 2: multivariate methods

Statistical Methods for Particle Physics Lecture 2: multivariate methods Statistical Methods for Particle Physics Lecture 2: multivariate methods http://indico.ihep.ac.cn/event/4902/ istep 2015 Shandong University, Jinan August 11-19, 2015 Glen Cowan ( 谷林 科恩 ) Physics Department

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

Formulation with slack variables

Formulation with slack variables Formulation with slack variables Optimal margin classifier with slack variables and kernel functions described by Support Vector Machine (SVM). min (w,ξ) ½ w 2 + γσξ(i) subject to ξ(i) 0 i, d(i) (w T x(i)

More information

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008)

Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) Multivariate statistical methods and data mining in particle physics Lecture 4 (19 June, 2008) RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement

More information

Polyhedral Computation. Linear Classifiers & the SVM

Polyhedral Computation. Linear Classifiers & the SVM Polyhedral Computation Linear Classifiers & the SVM mcuturi@i.kyoto-u.ac.jp Nov 26 2010 1 Statistical Inference Statistical: useful to study random systems... Mutations, environmental changes etc. life

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

Ernest Aguiló. York University

Ernest Aguiló. York University Single Top Searches at DØ Ernest Aguiló York University University of Virginia, February 11th 2009 Outline The DØ Experiment Introduction to single top Event selection B-tagging Background modeling Systematic

More information

Stat 502X Exam 2 Spring 2014

Stat 502X Exam 2 Spring 2014 Stat 502X Exam 2 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This exam consists of 12 parts. I'll score it at 10 points per problem/part

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Machine Learning Lecture 2

Machine Learning Lecture 2 Machine Perceptual Learning and Sensory Summer Augmented 6 Computing Announcements Machine Learning Lecture 2 Course webpage http://www.vision.rwth-aachen.de/teaching/ Slides will be made available on

More information

Statistical Methods for LHC Physics

Statistical Methods for LHC Physics RHUL Physics www.pp.rhul.ac.uk/~cowan Particle Physics Seminar University of Glasgow 26 February, 2009 1 Outline Quick overview of physics at the Large Hadron Collider (LHC) New multivariate methods for

More information

Linear Discriminant Functions

Linear Discriminant Functions Linear Discriminant Functions Linear discriminant functions and decision surfaces Definition It is a function that is a linear combination of the components of g() = t + 0 () here is the eight vector and

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning

LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES. Supervised Learning LINEAR CLASSIFICATION, PERCEPTRON, LOGISTIC REGRESSION, SVC, NAÏVE BAYES Supervised Learning Linear vs non linear classifiers In K-NN we saw an example of a non-linear classifier: the decision boundary

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 2 2 MACHINE LEARNING Overview Definition pdf Definition joint, condition, marginal,

More information

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics

Statistical Tools in Collider Experiments. Multivariate analysis in high energy physics Statistical Tools in Collider Experiments Multivariate analysis in high energy physics Lecture 3 Pauli Lectures - 08/02/2012 Nicolas Chanon - ETH Zürich 1 Outline 1.Introduction 2.Multivariate methods

More information

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs

L20: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs L0: MLPs, RBFs and SPR Bayes discriminants and MLPs The role of MLP hidden units Bayes discriminants and RBFs Comparison between MLPs and RBFs CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna CSE@TAMU

More information

Linear Classification and SVM. Dr. Xin Zhang

Linear Classification and SVM. Dr. Xin Zhang Linear Classification and SVM Dr. Xin Zhang Email: eexinzhang@scut.edu.cn What is linear classification? Classification is intrinsically non-linear It puts non-identical things in the same class, so a

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

CHAPTER 1-2: SHADOW PRICES

CHAPTER 1-2: SHADOW PRICES Essential Microeconomics -- CHAPTER -: SHADOW PRICES An intuitive approach: profit maimizing firm with a fied supply of an input Shadow prices 5 Concave maimization problem 7 Constraint qualifications

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Evidence for s-channel single top production at DØ

Evidence for s-channel single top production at DØ University of Virginia HEP Seminar September 25, 2013 Evidence for s-channel single top production at DØ Electroweak production of top quarks Event selection and background estimation Multivariate methods

More information

Data Mining. Linear & nonlinear classifiers. Hamid Beigy. Sharif University of Technology. Fall 1396

Data Mining. Linear & nonlinear classifiers. Hamid Beigy. Sharif University of Technology. Fall 1396 Data Mining Linear & nonlinear classifiers Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1396 1 / 31 Table of contents 1 Introduction

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan Support'Vector'Machines Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan kasthuri.kannan@nyumc.org Overview Support Vector Machines for Classification Linear Discrimination Nonlinear Discrimination

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Introduction to SVM and RVM

Introduction to SVM and RVM Introduction to SVM and RVM Machine Learning Seminar HUS HVL UIB Yushu Li, UIB Overview Support vector machine SVM First introduced by Vapnik, et al. 1992 Several literature and wide applications Relevance

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

Microarray Data Analysis: Discovery

Microarray Data Analysis: Discovery Microarray Data Analysis: Discovery Lecture 5 Classification Classification vs. Clustering Classification: Goal: Placing objects (e.g. genes) into meaningful classes Supervised Clustering: Goal: Discover

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Support Vector Machines. CAP 5610: Machine Learning Instructor: Guo-Jun QI Support Vector Machines CAP 5610: Machine Learning Instructor: Guo-Jun QI 1 Linear Classifier Naive Bayes Assume each attribute is drawn from Gaussian distribution with the same variance Generative model:

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

CS 195-5: Machine Learning Problem Set 1

CS 195-5: Machine Learning Problem Set 1 CS 95-5: Machine Learning Problem Set Douglas Lanman dlanman@brown.edu 7 September Regression Problem Show that the prediction errors y f(x; ŵ) are necessarily uncorrelated with any linear function of

More information

Lecture 10: A brief introduction to Support Vector Machine

Lecture 10: A brief introduction to Support Vector Machine Lecture 10: A brief introduction to Support Vector Machine Advanced Applied Multivariate Analysis STAT 2221, Fall 2013 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department

More information

10-701/ Machine Learning, Fall

10-701/ Machine Learning, Fall 0-70/5-78 Machine Learning, Fall 2003 Homework 2 Solution If you have questions, please contact Jiayong Zhang .. (Error Function) The sum-of-squares error is the most common training

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples From Last Meeting Studied Fisher Linear Discrimination - Mathematics - Point Cloud view - Likelihood view - Toy eamples - Etensions (e.g. Principal Discriminant Analysis) Polynomial Embedding Aizerman,

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Advanced statistical methods for data analysis Lecture 2

Advanced statistical methods for data analysis Lecture 2 Advanced statistical methods for data analysis Lecture 2 RHUL Physics www.pp.rhul.ac.uk/~cowan Universität Mainz Klausurtagung des GK Eichtheorien exp. Tests... Bullay/Mosel 15 17 September, 2008 1 Outline

More information

Review: Support vector machines. Machine learning techniques and image analysis

Review: Support vector machines. Machine learning techniques and image analysis Review: Support vector machines Review: Support vector machines Margin optimization min (w,w 0 ) 1 2 w 2 subject to y i (w 0 + w T x i ) 1 0, i = 1,..., n. Review: Support vector machines Margin optimization

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Statistical Methods for Particle Physics (I)

Statistical Methods for Particle Physics (I) Statistical Methods for Particle Physics (I) https://agenda.infn.it/conferencedisplay.py?confid=14407 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Notes on Discriminant Functions and Optimal Classification

Notes on Discriminant Functions and Optimal Classification Notes on Discriminant Functions and Optimal Classification Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Discriminant Functions Consider a classification problem

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Classification and Support Vector Machine

Classification and Support Vector Machine Classification and Support Vector Machine Yiyong Feng and Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) ELEC 5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Bayesian Support Vector Machines for Feature Ranking and Selection

Bayesian Support Vector Machines for Feature Ranking and Selection Bayesian Support Vector Machines for Feature Ranking and Selection written by Chu, Keerthi, Ong, Ghahramani Patrick Pletscher pat@student.ethz.ch ETH Zurich, Switzerland 12th January 2006 Overview 1 Introduction

More information

Measurement of t-channel single top quark production in pp collisions

Measurement of t-channel single top quark production in pp collisions Measurement of t-channel single top quark production in pp collisions (on behalf of the CMS collaboration) INFN-Napoli & Università della Basilicata E-mail: Francesco.Fabozzi@cern.ch Measurements of t-channel

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington

Bayesian Classifiers and Probability Estimation. Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington Bayesian Classifiers and Probability Estimation Vassilis Athitsos CSE 4308/5360: Artificial Intelligence I University of Texas at Arlington 1 Data Space Suppose that we have a classification problem The

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

Machine Learning Concepts in Chemoinformatics

Machine Learning Concepts in Chemoinformatics Machine Learning Concepts in Chemoinformatics Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn BigChem Winter School 2017 25. October Data Mining in Chemoinformatics

More information

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Lecture 9: Large Margin Classifiers. Linear Support Vector Machines Perceptrons Definition Perceptron learning rule Convergence Margin & max margin classifiers (Linear) support vector machines Formulation

More information

Linear Classification

Linear Classification Linear Classification Lili MOU moull12@sei.pku.edu.cn http://sei.pku.edu.cn/ moull12 23 April 2015 Outline Introduction Discriminant Functions Probabilistic Generative Models Probabilistic Discriminative

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

Applied Statistics. Multivariate Analysis - part II. Troels C. Petersen (NBI) Statistics is merely a quantization of common sense 1

Applied Statistics. Multivariate Analysis - part II. Troels C. Petersen (NBI) Statistics is merely a quantization of common sense 1 Applied Statistics Multivariate Analysis - part II Troels C. Petersen (NBI) Statistics is merely a quantization of common sense 1 Fisher Discriminant You want to separate two types/classes (A and B) of

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Where now? Machine Learning and Bayesian Inference

Where now? Machine Learning and Bayesian Inference Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone etension 67 Email: sbh@clcamacuk wwwclcamacuk/ sbh/ Where now? There are some simple take-home messages from

More information

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014

Learning with Noisy Labels. Kate Niehaus Reading group 11-Feb-2014 Learning with Noisy Labels Kate Niehaus Reading group 11-Feb-2014 Outline Motivations Generative model approach: Lawrence, N. & Scho lkopf, B. Estimating a Kernel Fisher Discriminant in the Presence of

More information

ML (cont.): SUPPORT VECTOR MACHINES

ML (cont.): SUPPORT VECTOR MACHINES ML (cont.): SUPPORT VECTOR MACHINES CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 40 Support Vector Machines (SVMs) The No-Math Version

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machine learning Mid-term eam October 8, 6 ( points) Your name and MIT ID: .5.5 y.5 y.5 a).5.5 b).5.5.5.5 y.5 y.5 c).5.5 d).5.5 Figure : Plots of linear regression results with different types of

More information