Homework 2: Temporal logic

Size: px
Start display at page:

Download "Homework 2: Temporal logic"

Transcription

1 ICS-E5010 Computer-Aided Verification and Synthesis, Spring 2016 Stavros Tripakis Homework 2: Temporal logic Assigned: January 20, 2016 Due: February 1, 2016 Total: 235 points. 1. (20 points) Two formulae φ 1 and φ 2 in the same logic are equivalent, written φ 1 φ 2, if and only if they have the same set of models, i.e., φ 1 is satisfied (by some model) if and only if φ 2 is satisfied (by the same model). In particular, two LTL formulae are equivalent iff they are satisfied by exactly the same set of infinite traces. φ 1 is stronger than φ 2 if every model which satisfies φ 1 also satisfies φ 2. In other words, if φ 1 implies (or entails) φ 2. (a) Consider the two LTL formulae and G(a b) Ga Gb Are they equivalent? If yes, prove it. If not, provide a counterexample (i.e., an infinite trace which satisfies one formula but violates the other). A trace that would satisfy only the weaker formula would be one in which a is true only on even steps and b is true only on odd steps. (b) Is one of the above two formulae stronger that the other? Ga Gb G(a b) Consider any trace that satisfies the left side. There are two possibilities: in every state a holds, or in every state b holds. For each of these possibilites, in every state one of the two hold, satisfying the right side. (c) Answer the same questions as in (a), (b), for the two LTL formulae F(a b) and Fa Fb 1

2 F(a b) Fa Fb Consider any trace that satisfies the left side. There must exist a state in the trace at which both a and b hold simultaneously. Both of the conditions on the right hold in this case. An example of a trace that would only satisfy the weaker condition would be one in which a is true only on the first step, and b is only true on the second step. 2. (40 points) (Problem 5.6 from the book by Baier and Katoen, Principles of Model Checking) For each of the following, either prove that the equivalence is correct, or give a counterexample to show that it is not: (a) Gφ Fψ φ U (ψ φ) This equivalence is true. The left hand side can be algebraically transformed by standard temporal logic identities: Gφ Fψ Gφ Fψ F φ Fψ F( φ ψ) true U( φ ψ) For the last formula, any trace satisfying it is unconstrained until either φ or ψ is first true. For the prefix up to this until condition is first met, φ must be true. Likewise, for a trace violating this condition, φ must always be true and ψ must never be true, thus violating the until condition regardless of the what the prefix condition is. Consequently, true U( φ ψ) φu( φ ψ) proving the equivalence. (b) FGφ GFψ G(φ U (ψ φ)) This equivalence is true. To show this, the left and right hand sides can be transformed into an easier comparision. First, the left, using standard identities, can be transformed as follows FGφ GFψ FGφ GFψ GF φ GFψ G(F φ) G(Fψ) 2

3 The right can be transformed using the steps from the previous part G(φ U ( φ ψ)) G(F φ Fψ) As can be seen (with the parenthesis inserted above for clarity), the transformed equations are of the same form as the comparison in the previous question. What can therefore be determined is that at least G(F φ) G(Fψ) G(F φ Fψ) which leaves only the implication in the other direction. To show this, the following lemma is needed: G(Fa Fb) GFa GFb Consider a trace satisfying the left side of the implication. At every state there will eventually be a state in which either a holds or one in which b holds. Fix some arbitrary k, and take the suffix of such a trace. There must exist an n k at which a holds or one at which b holds. One can therefore always construct a function { (n, 0) a holds at n f(k) = (n, 1) b holds at n choosing for each k a step n at which a or b holds. Suppose that neither GFa nor GFb hold for this trace. Then there would be a maximum n in the range of f. But this would contradict the property that n k for all k, of which there are infinite. Thus, by contradiction, at least one of GFa or GFb must hold, proving the lemma. Using this lemma, the orignal equation is fully proven. (c) GG(φ ψ) F( φ ψ) This equivalence is true. This can be shown via a simple derivation. (d) GFφ GFψ G(φ Fψ) This equivalence is false. GG(φ ψ) G(φ ψ) G(φ ψ) F (φ ψ) F( φ ψ) 3

4 Consider any trace in which φ is true only finitely many times and ψ is never true after the last state in which φ is. This trace will satisfy the left side of the equation vacuously, since the premis of the implication is false. However, the last state in which φ is true, by definition, has no subsequent state in which ψ is true, violating the implication in the right side. Since there is a state in which the implication is false, it is not always true, thus violating the right side formula. 3. (30 points) (Problem 5.2 from Baier and Katoen) Consider the transition system (Kripke structure) shown below, over the set of atomic propositions {a, b, c}. Determine which of the following LTL formulae hold in this transition system. For those that do hold, explain why. For those that do not, provide a counterexample trace. Note: we use for logical implication, and assume that it binds with lower priority than other operators. So, for example, X c XXc means (X c) (XXc). (a) φ 1 = FGc This is false. A counterexample is a trace (b) φ 2 = GFc This is true. (c) φ 3 = X c XXc This is true. s 1 (s 3 s 4 ) (d) φ 4 = Ga This is false. A counterexample is any trace starting with s 2. (e) φ 5 = a U (G(b c)) This is true. 4

5 (f) φ 6 = (XXb) U (b c) This is false. A counterexample is any trace starting with s 1 s 4 s (20 points) Consider the formula ( p)up. Is this formula stronger, weaker, or equivalent to Fp? Justify your answers (provide proof or counterexample). ( p)up and Fp are equivalent. To see this, observe that ( p)up implies Fp since in general φuψ implies Fψ. It remains to show that Fp implies φuψ. To see this, consider a trace σ satisfying Fp. Consider the first point in σ, say point i, where p holds (such an i must exist, otherwise σ wouldn t satisfy Fp). Then for all j < i, p holds. Thus σ satisfies ( p)up. 5. (40 points) We want to compare LTL and CTL, to see whether properties stated in one logic could also be expressed in the other logic. To do this, we need to compare LTL and CTL formulae. If φ 1 is an LTL formula and φ 2 is a CTL formula, we need to define what it means for the two to be equivalent, since they don t have the same types of models (φ 1 is satisfied by traces, whereas φ 2 is satisfied by states of transition systems). However, we know what it means for a transition system to satisfy an LTL formula as well as a CTL formula. Therefore, we will say that φ 1 and φ 2 are equivalent iff they are satisfied by exactly the same set of transition systems. (a) Consider the LTL formula FGp and the CTL formula AFAGp. Are the two formulas equivalent? They are not equivalent: consider transition system M with three states, s 0, s 1, s 2, s 0 being the initial state, and transitions s 0 s 1, s 1 s 2, s 0 s 0 (self-loop) and s 2 s 2 (self-loop). Let p hold at s 0, s 2 but not at s 1. Then M = FGp because every infinite path in M either always stays at s 0 (where p holds) or eventually moves to s 2 (where again p holds) and stays there forever after. But M does not satisfy AFAGp. To see why, observe that neither s 0 nor s 1 satisfy AGp, because from both there is a reachable state (s 1 ) where p does not hold. Letting ψ := AGp, we then see that s 0 does not satisfy AFψ, because the path that always stays in s 0 does not satisfy Fψ. In fact, there is no equivalent CTL formula for FGp. This is left without proof. (b) Is the CTL formula (AGp) (AGq) equivalent to (Gp) (Gq)? (AGp) (AGq) and (Gp) (Gq) are not equivalent. For instance, consider transition system M with three states, s 0, s 1, s 2, s 0 being the initial state, and transitions s 0 s 1, s 0 s 2, s 1 s 1, and s 2 s 2. At s 0 both p, q hold. At s 1 only p holds. At s 2 only q holds. Then M = (Gp) (Gq). But M does not satisfy AGp, neither AGq. 5

6 (c) Consider the CTL formula AFp, where p is an atomic proposition. Is there an equivalent LTL formula? 6. (30 points) Consider the CTL formula EFp, where p is an atomic proposition. (a) Is there an equivalent LTL formula? Justify your answer. There is not equivalent LTL formula for EFp. LTL formulas are all satisfied by sets of traces when the properties are true over all the traces in the set. This formula is satisfied by sets containing only some satisfying traces due to the E quantifier. (b) Suppose you want to check whether a given transition system M satisfies the CTL formula EFp. You only have a model-checker that can check LTL formulas, but not CTL formulas. Even if the answer to (a) is there is no equivalent LTL formula can you still use your LTL model-checker to check the above CTL formula? How? Although there is no equivalent LTL formula, we can try to check the negation of the CTL formula EFp, i.e., EFp, which is equivalent to AG p. This has an equivalent LTL formula G p and thus can be checked by the LTL model-checker. If it is verified, the original formula EFp is false. If a counterexample is found, the original formula EFp is true, with the witness being the counterexample. 7. (15 points) Express the following two statements in first-order logic: (a) There is someone who loves everyone. x : y : Loves(x, y) (b) There is someone whom no one loves. x : y : Loves(y, x) Are the two statements consistent with each other? (I.e., is their conjunction satisfiable?) The conjunction of the above formulas is not satisfiable. Suppose it is. Let a satisfy y : Loves(a, y) and let b satisfy y : Loves(y, b). Then after setting y := b to the first, we get Loves(a, b). After setting y := a to the second, we get Loves(a, b). Contradiction. 8. (40 points) For each of the logic formulas below: (a) Explain whether they are valid, unsatisfiable, or neither (i.e., satisfiable but not valid). 6

7 (b) If they are propositional logic formulas, put them in CNF (conjunctive normal form). (c) If they are first-order logic formulas, put them in prenex normal form. Here are the formulas: (a) (p q) ( p q) Valid (de Morgan s law). CNF: true (or p p). (b) (a b) ( a c) (b c) Unsatisfiable (resolve first two clauses, obtain new clause b c, which contradicts the third clause). CNF: false (or p p). (c) (p (q r)) ((p q) r) Valid. CNF: true. (d) (p q) (p q) Satisfiable but not valid. E.g., p = q = 1 makes it true but p = q = 0 makes it false. CNF: (p q) p q ( p q) p q p q. (e) ( x : y : P (x, y)) ( y : x : P (x, y)) Satisfiable but not valid. E.g., P (a, a) makes it true when a is the only element, and P (a, a), P (b, b), P (a, b), P (b, a) makes it false. PNX: i. Convert to NNF: ( x : y : P (x, y)) ( y : x : P (x, y)) ( x : y : P (x, y)) ( y : x : P (x, y)) ii. Rename: iii. PNX: (f) ( x : y : P (x, y)) ( y : x : P (x, y)) Valid. PNX: true. ( x : y : P (x, y)) ( z : w : P (w, z)) x : y : z : w : P (x, y) P (w, z) (g) ( x : P (x)) ( x : P (x)) Satisfiable but not valid. When the set of values is empty, it is false. Otherwise it is true. PNX: 7

8 i. Convert to NNF: ( x : P (x)) ( x : P (x)) ( x : P (x)) ( x : P (x)) ii. Rename: iii. PNX: ( x : P (x)) ( y : P (y)) x : y : P (x) P (y) 8

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct.

Temporal Logic. Stavros Tripakis University of California, Berkeley. We have designed a system. We want to check that it is correct. EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Temporal logic Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE 244, Fall 2016

More information

Supplementary exercises in propositional logic

Supplementary exercises in propositional logic Supplementary exercises in propositional logic The purpose of these exercises is to train your ability to manipulate and analyze logical formulas. Familiarize yourself with chapter 7.3-7.5 in the course

More information

Finite-State Model Checking

Finite-State Model Checking EECS 219C: Computer-Aided Verification Intro. to Model Checking: Models and Properties Sanjit A. Seshia EECS, UC Berkeley Finite-State Model Checking G(p X q) Temporal logic q p FSM Model Checker Yes,

More information

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford

Probabilistic Model Checking Michaelmas Term Dr. Dave Parker. Department of Computer Science University of Oxford Probabilistic Model Checking Michaelmas Term 2011 Dr. Dave Parker Department of Computer Science University of Oxford Overview Temporal logic Non-probabilistic temporal logic CTL Probabilistic temporal

More information

Lecture 9: The Splitting Method for SAT

Lecture 9: The Splitting Method for SAT Lecture 9: The Splitting Method for SAT 1 Importance of SAT Cook-Levin Theorem: SAT is NP-complete. The reason why SAT is an important problem can be summarized as below: 1. A natural NP-Complete problem.

More information

Model for reactive systems/software

Model for reactive systems/software Temporal Logics CS 5219 Abhik Roychoudhury National University of Singapore The big picture Software/ Sys. to be built (Dream) Properties to Satisfy (caution) Today s lecture System Model (Rough Idea)

More information

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras Introduction to Model Checking Debdeep Mukhopadhyay IIT Madras How good can you fight bugs? Comprising of three parts Formal Verification techniques consist of three parts: 1. A framework for modeling

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis:

More information

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) Chapter 9 Linear Temporal Logic (LTL) This chapter introduces the Linear Temporal Logic (LTL) to reason about state properties of Labelled Transition Systems defined in the previous chapter. We will first

More information

Model Checking Algorithms

Model Checking Algorithms Model Checking Algorithms Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan November 14, 2018 Bow-Yaw Wang (Academia Sinica) Model Checking Algorithms November 14, 2018 1 / 56 Outline

More information

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking

CTL Model checking. 1. finite number of processes, each having a finite number of finite-valued variables. Model-Checking CTL Model checking Assumptions:. finite number of processes, each having a finite number of finite-valued variables.. finite length of CTL formula Problem:Determine whether formula f 0 is true in a finite

More information

Normal Forms of Propositional Logic

Normal Forms of Propositional Logic Normal Forms of Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 12, 2017 Bow-Yaw Wang (Academia Sinica) Normal Forms of Propositional Logic September

More information

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows. Chapter 1 Logic 1.1 Introduction and Definitions Definitions. A sentence (statement, proposition) is an utterance (that is, a string of characters) which is either true (T) or false (F). A predicate is

More information

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna

Verification. Arijit Mondal. Dept. of Computer Science & Engineering Indian Institute of Technology Patna IIT Patna 1 Verification Arijit Mondal Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in Introduction The goal of verification To ensure 100% correct in functionality

More information

Bounded Model Checking

Bounded Model Checking Vol. 58 of Advances in Computers, 2003. Academic Press (pre-print). Bounded Model Checking Armin Biere 1 Alessandro Cimatti 2 Edmund M. Clarke 3 Ofer Strichman 3 Yunshan Zhu 4 1 Institute of Computer Systems,

More information

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia

Guest lecturer: Prof. Mark Reynolds, The University of Western Australia Università degli studi di Udine Corso per il dottorato di ricerca: Temporal Logics: Satisfiability Checking, Model Checking, and Synthesis January 2017 Lecture 01, Part 02: Temporal Logics Guest lecturer:

More information

T Reactive Systems: Temporal Logic LTL

T Reactive Systems: Temporal Logic LTL Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Temporal Logic LTL Spring 2005, Lecture 4 January 31, 2005 Tik-79.186 Reactive Systems 2 Temporal Logics Temporal logics are currently the most

More information

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof Ch. 1.6 Introduction to Proofs The following techniques for methods of proofs are discussed in our text - Vacuous proof - Trivial proof - Direct proof - Indirect proof (our book calls this by contraposition)

More information

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms Assaf Kfoury 5 February 2017 Assaf Kfoury, CS 512, Spring

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional Logical Operators Conjunction Disjunction Negation Exclusive Or Implication Biconditional 1 Statement meaning p q p implies q if p, then q if p, q when p, q whenever p, q q if p q when p q whenever p p

More information

Computer-Aided Program Design

Computer-Aided Program Design Computer-Aided Program Design Spring 2015, Rice University Unit 3 Swarat Chaudhuri February 5, 2015 Temporal logic Propositional logic is a good language for describing properties of program states. However,

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

Temporal Logic Model Checking

Temporal Logic Model Checking 18 Feb, 2009 Thomas Wahl, Oxford University Temporal Logic Model Checking 1 Temporal Logic Model Checking Thomas Wahl Computing Laboratory, Oxford University 18 Feb, 2009 Thomas Wahl, Oxford University

More information

The Calculus of Computation: Decision Procedures with Applications to Verification. Part I: FOUNDATIONS. by Aaron Bradley Zohar Manna

The Calculus of Computation: Decision Procedures with Applications to Verification. Part I: FOUNDATIONS. by Aaron Bradley Zohar Manna The Calculus of Computation: Decision Procedures with Applications to Verification Part I: FOUNDATIONS by Aaron Bradley Zohar Manna 1. Propositional Logic(PL) Springer 2007 1-1 1-2 Propositional Logic(PL)

More information

Linear-Time Logic. Hao Zheng

Linear-Time Logic. Hao Zheng Linear-Time Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE, USF)

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false. Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Exploiting resolution proofs to speed up LTL vacuity detection for BMC

Exploiting resolution proofs to speed up LTL vacuity detection for BMC Int J Softw Tools Technol Transfer (20) 12:319 335 DOI.07/s009-009-0134-1 REGULAR PAPER Exploiting resolution proofs to speed up LTL vacuity detection for BMC Jocelyn Simmonds Jessica Davies Arie Gurfinkel

More information

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure

Temporal Logic. M φ. Outline. Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness. Ralf Huuck. Kripke Structure Outline Temporal Logic Ralf Huuck Why not standard logic? What is temporal logic? LTL CTL* CTL Fairness Model Checking Problem model, program? M φ satisfies, Implements, refines property, specification

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

Bounded Model Checking 1

Bounded Model Checking 1 Bounded Model Checking 1 ARMIN BIERE Institute of Computer Systems ETH Zurich, 8092 Zurich Switzerland biere@inf.ethz.ch ALESSANDRO CIMATTI Istituto per la Ricerca Scientifica e Technologica (IRST) via

More information

Model checking (III)

Model checking (III) Theory and Algorithms Model checking (III) Alternatives andextensions Rafael Ramirez rafael@iua.upf.es Trimester1, Oct2003 Slide 9.1 Logics for reactive systems The are many specification languages for

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

State-Space Exploration. Stavros Tripakis University of California, Berkeley

State-Space Exploration. Stavros Tripakis University of California, Berkeley EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2014 State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley) EE

More information

An Introduction to Temporal Logics

An Introduction to Temporal Logics An Introduction to Temporal Logics c 2001,2004 M. Lawford Outline Motivation: Dining Philosophers Safety, Liveness, Fairness & Justice Kripke structures, LTS, SELTS, and Paths Linear Temporal Logic Branching

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Decision Procedures for CTL

Decision Procedures for CTL Decision Procedures for CTL Oliver Friedmann 1 Markus Latte 1 1 Dept. of Computer Science, Ludwig-Maximilians-University, Munich, Germany CLoDeM Edinburgh, 15 July 2010 Introduction to CTL Origin: Emerson

More information

Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Computation Tree Logic (CTL) & Basic Model Checking Algorithms Computation Tree Logic (CTL) & Basic Model Checking Algorithms Martin Fränzle Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany 02917: CTL & Model Checking

More information

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the

Model Checking. Temporal Logic. Fifth International Symposium in Programming, volume. of concurrent systems in CESAR. In Proceedings of the Sérgio Campos, Edmund Why? Advantages: No proofs Fast Counter-examples No problem with partial specifications can easily express many concurrency properties Main Disadvantage: State Explosion Problem Too

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

Lecture Notes on Emptiness Checking, LTL Büchi Automata

Lecture Notes on Emptiness Checking, LTL Büchi Automata 15-414: Bug Catching: Automated Program Verification Lecture Notes on Emptiness Checking, LTL Büchi Automata Matt Fredrikson André Platzer Carnegie Mellon University Lecture 18 1 Introduction We ve seen

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

Timo Latvala. February 4, 2004

Timo Latvala. February 4, 2004 Reactive Systems: Temporal Logic LT L Timo Latvala February 4, 2004 Reactive Systems: Temporal Logic LT L 8-1 Temporal Logics Temporal logics are currently the most widely used specification formalism

More information

Tautologies, Contradictions, and Contingencies

Tautologies, Contradictions, and Contingencies Section 1.3 Tautologies, Contradictions, and Contingencies A tautology is a proposition which is always true. Example: p p A contradiction is a proposition which is always false. Example: p p A contingency

More information

Safety and Liveness Properties

Safety and Liveness Properties Safety and Liveness Properties Lecture #6 of Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling and Verification E-mail: katoen@cs.rwth-aachen.de November 5, 2008 c JPK Overview Lecture

More information

Resolution for Predicate Logic

Resolution for Predicate Logic Resolution for Predicate Logic The connection between general satisfiability and Herbrand satisfiability provides the basis for a refutational approach to first-order theorem proving. Validity of a first-order

More information

Foundation of proofs. Jim Hefferon.

Foundation of proofs. Jim Hefferon. Foundation of proofs Jim Hefferon http://joshua.smcvt.edu/proofs The need to prove In Mathematics we prove things To a person with a mathematical turn of mind, the base angles of an isoceles triangle are

More information

Final Exam /614 Bug Catching: Automated Program Verification Matt Fredrikson André Platzer. December 17, 2017

Final Exam /614 Bug Catching: Automated Program Verification Matt Fredrikson André Platzer. December 17, 2017 Final Exam 15-414/614 Bug Catching: Automated Program Verification Matt Fredrikson André Platzer December 17, 2017 Name: Andrew ID: André Platzer aplatzer Instructions This exam is closed-book with one

More information

Normal Forms Note: all ppts about normal forms are skipped.

Normal Forms Note: all ppts about normal forms are skipped. Normal Forms Note: all ppts about normal forms are skipped. Well formed formula (wff) also called formula, is a string consists of propositional variables, connectives, and parenthesis used in the proper

More information

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning COMP219: Artificial Intelligence Lecture 20: Propositional Reasoning 1 Overview Last time Logic for KR in general; Propositional Logic; Natural Deduction Today Entailment, satisfiability and validity Normal

More information

Guest lecturer: Mark Reynolds, The University of Western Australia. May 7, 2014

Guest lecturer: Mark Reynolds, The University of Western Australia. May 7, 2014 Università degli studi di Udine Laurea Magistrale: Informatica Lectures for April/May 2014 La verifica del software: temporal logic Lecture 03 LTL tableau continued Guest lecturer: Mark Reynolds, The University

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL)

FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale (FM First Semester 2007/2008) p. 1/37 FORMAL METHODS LECTURE IV: COMPUTATION TREE LOGIC (CTL) Alessandro Artale Faculty of Computer Science Free University of Bolzano artale@inf.unibz.it

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Logic and Inferences

Logic and Inferences Artificial Intelligence Logic and Inferences Readings: Chapter 7 of Russell & Norvig. Artificial Intelligence p.1/34 Components of Propositional Logic Logic constants: True (1), and False (0) Propositional

More information

CS156: The Calculus of Computation Zohar Manna Autumn 2008

CS156: The Calculus of Computation Zohar Manna Autumn 2008 Page 3 of 52 Page 4 of 52 CS156: The Calculus of Computation Zohar Manna Autumn 2008 Lecturer: Zohar Manna (manna@cs.stanford.edu) Office Hours: MW 12:30-1:00 at Gates 481 TAs: Boyu Wang (wangboyu@stanford.edu)

More information

Truth-Functional Logic

Truth-Functional Logic Truth-Functional Logic Syntax Every atomic sentence (A, B, C, ) is a sentence and are sentences With ϕ a sentence, the negation ϕ is a sentence With ϕ and ψ sentences, the conjunction ϕ ψ is a sentence

More information

ASSIGNMENT 1 SOLUTIONS

ASSIGNMENT 1 SOLUTIONS MATH 271 ASSIGNMENT 1 SOLUTIONS 1. (a) Let S be the statement For all integers n, if n is even then 3n 11 is odd. Is S true? Give a proof or counterexample. (b) Write out the contrapositive of statement

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Critical Reading of Optimization Methods for Logical Inference [1]

Critical Reading of Optimization Methods for Logical Inference [1] Critical Reading of Optimization Methods for Logical Inference [1] Undergraduate Research Internship Department of Management Sciences Fall 2007 Supervisor: Dr. Miguel Anjos UNIVERSITY OF WATERLOO Rajesh

More information

ECE473 Lecture 15: Propositional Logic

ECE473 Lecture 15: Propositional Logic ECE473 Lecture 15: Propositional Logic Jeffrey Mark Siskind School of Electrical and Computer Engineering Spring 2018 Siskind (Purdue ECE) ECE473 Lecture 15: Propositional Logic Spring 2018 1 / 23 What

More information

Proofs. Joe Patten August 10, 2018

Proofs. Joe Patten August 10, 2018 Proofs Joe Patten August 10, 2018 1 Statements and Open Sentences 1.1 Statements A statement is a declarative sentence or assertion that is either true or false. They are often labelled with a capital

More information

Model Checking: An Introduction

Model Checking: An Introduction Model Checking: An Introduction Meeting 3, CSCI 5535, Spring 2013 Announcements Homework 0 ( Preliminaries ) out, due Friday Saturday This Week Dive into research motivating CSCI 5535 Next Week Begin foundations

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Part A 1. (a) Some dog does not have his day. (b) Some action has no equal and opposite reaction. (c) Some golfer will never be eated

More information

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.7, 5.5) TOPICS Sets and Functions Propositional and Predicate Logic Logical Operators and Truth Tables Logical Equivalences and Inference

More information

Lecture Notes on Software Model Checking

Lecture Notes on Software Model Checking 15-414: Bug Catching: Automated Program Verification Lecture Notes on Software Model Checking Matt Fredrikson André Platzer Carnegie Mellon University Lecture 19 1 Introduction So far we ve focused on

More information

Propositional Resolution

Propositional Resolution Artificial Intelligence Propositional Resolution Marco Piastra Propositional Resolution 1] Deductive systems and automation Is problem decidible? A deductive system a la Hilbert (i.e. derivation using

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

INF3170 / INF4171 Notes on Resolution

INF3170 / INF4171 Notes on Resolution INF3170 / INF4171 Notes on Resolution Andreas Nakkerud Autumn 2015 1 Introduction This is a short description of the Resolution calculus for propositional logic, and for first order logic. We will only

More information

Propositional Logic Part 1

Propositional Logic Part 1 Propositional Logic Part 1 Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Louis Oliphant, Andrew Moore, Jerry Zhu] slide 1 5 is even

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

Math.3336: Discrete Mathematics. Nested Quantifiers

Math.3336: Discrete Mathematics. Nested Quantifiers Math.3336: Discrete Mathematics Nested Quantifiers Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either

Introduction to Temporal Logic. The purpose of temporal logics is to specify properties of dynamic systems. These can be either Introduction to Temporal Logic The purpose of temporal logics is to specify properties of dynamic systems. These can be either Desired properites. Often liveness properties like In every infinite run action

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel

LECTURE NOTES DISCRETE MATHEMATICS. Eusebius Doedel LECTURE NOTES on DISCRETE MATHEMATICS Eusebius Doedel 1 LOGIC Introduction. First we introduce some basic concepts needed in our discussion of logic. These will be covered in more detail later. A set is

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 301 Fall 2017 (Practice) Midterm Exam 1 10/3/2017 Time Limit: 1 hour and 15 minutes Name: One side of each sheet is blank and may be used as scratch paper. Show your work clearly. Grade Table (for

More information

CS 173: Induction. Madhusudan Parthasarathy University of Illinois at Urbana-Champaign. February 7, 2016

CS 173: Induction. Madhusudan Parthasarathy University of Illinois at Urbana-Champaign. February 7, 2016 CS 173: Induction Madhusudan Parthasarathy University of Illinois at Urbana-Champaign 1 Induction February 7, 016 This chapter covers mathematical induction, and is an alternative resource to the one in

More information

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55 Understanding IC3 Aaron R. Bradley ECEE, CU Boulder & Summit Middle School Understanding IC3 1/55 Further Reading This presentation is based on Bradley, A. R. Understanding IC3. In SAT, June 2012. http://theory.stanford.edu/~arbrad

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction

Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Deterministic ω-automata for LTL: A safraless, compositional, and mechanically verified construction Javier Esparza 1 Jan Křetínský 2 Salomon Sickert 1 1 Fakultät für Informatik, Technische Universität

More information

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66

Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Helsinki University of Technology Laboratory for Theoretical Computer Science Research Reports 66 Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 66 Espoo 2000 HUT-TCS-A66

More information

Reasoning with Quantified Boolean Formulas

Reasoning with Quantified Boolean Formulas Reasoning with Quantified Boolean Formulas Martina Seidl Institute for Formal Models and Verification Johannes Kepler University Linz 1 What are QBF? Quantified Boolean formulas (QBF) are formulas of propositional

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Model Checking of Safety Properties

Model Checking of Safety Properties Model Checking of Safety Properties Orna Kupferman Hebrew University Moshe Y. Vardi Rice University October 15, 2010 Abstract Of special interest in formal verification are safety properties, which assert

More information

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete Mathematics

More information

Logic. Stephen G. Ware CSCI 4525 / 5525

Logic. Stephen G. Ware CSCI 4525 / 5525 Logic Stephen G. Ware CSCI 4525 / 5525 Logic How can we represent knowledge about the world in a general, reusable way? How can we use existing knowledge to gain new knowledge? Problem Solving Approaches

More information

Disjunction/Conjunction Normal Form

Disjunction/Conjunction Normal Form Normal Forms Well formed formula (wff) also called formula, is a string consists of propositional variables, connectives, and parenthesis used in the proper manner. E.g. ((p q) ( p r)) pq r is a disjunction

More information

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path " starting at s KM," =! COMPUTATION TREE LOGIC (CTL)

Summary. Computation Tree logic Vs. LTL. CTL at a glance. KM,s =! iff for every path  starting at s KM, =! COMPUTATION TREE LOGIC (CTL) Summary COMPUTATION TREE LOGIC (CTL) Slides by Alessandro Artale http://www.inf.unibz.it/ artale/ Some material (text, figures) displayed in these slides is courtesy of: M. Benerecetti, A. Cimatti, M.

More information

Logic: First Order Logic

Logic: First Order Logic Logic: First Order Logic Raffaella Bernardi bernardi@inf.unibz.it P.zza Domenicani 3, Room 2.28 Faculty of Computer Science, Free University of Bolzano-Bozen http://www.inf.unibz.it/~bernardi/courses/logic06

More information

Temporal Logics for Specification and Verification

Temporal Logics for Specification and Verification Temporal Logics for Specification and Verification Valentin Goranko DTU Informatics FIRST Autumn School on Modal Logic November 11, 2009 Transition systems (Labelled) transition system (TS): T = S, {R

More information