Resolution for Predicate Logic

Size: px
Start display at page:

Download "Resolution for Predicate Logic"

Transcription

1 Resolution for Predicate Logic The connection between general satisfiability and Herbrand satisfiability provides the basis for a refutational approach to first-order theorem proving. Validity of a first-order sentence φ can be checked as follows. 1. First convert the negated formula φ into a prenex form Q 1 x 1... Q n x n ψ. 2. Next skolemize to obtain a universal formula of the form x 1... x n ψ. 3. Then convert ψ into conjunctive form, ψ... ψ, where each formula ψ is a disjunction of literals. The formula x 1... x n ψ is equivalent to ( x 1... x n ψ 1 )... ( x 1... x n ψ m ). 4. Finally, apply suitable resolution inferences to ψ 1,..., ψ m, interpreting each formula ψ as a clause. If a contradiction is derived, then φ is unsatisfiable, which implies that φ is valid.

2 Renaming A substitution is said to be a renaming if it is a one-toone and onto function on the set of variables. For example, the substitution σ = [x y, y x] is a renaming (in this case of the variables x and y). We also call a substitution ρ a renaming for a formula φ if ρ(x) and ρ(y) are different variables, whenever x and y are different variables in φ. If C is a clause and ρ a renaming for C, then C and Cρ obviously have the same ground instances. Thus the Herbrand semantics of a clause does not change under renaming. We will employ renaming substitutions, as well as (most general) unifiers, in defining inferences on clauses.

3 Binary Resolution The following inference rule provides a strating point for a refutational theorem proving method for clauses. Binary Resolution C A D B Cρσ Dσ where ρ is a renaming substitution, such that the renamed first premise has no variables in common with the second premise, and σ is a most general unifier of Aρ and B. For example, P (fx, x) P (x, fy) P (x, z) P (ffy, z) is a binary resolution inference.

4 Example Resolution Consider the set of the following clauses: P (x, y) P (y, x) (1) P (x, y) P (y, z) P (x, z) (2) P (x, fx) (3) P (a, a) (4) We use resolution to show that this set is unsatisfiable. From clauses (3) and (1) we obtain whereas from (3) and (2) we get P (fx 1, x 1 ) (5) P (fx 2, z) P (x 2, z) (6) Resolving clauses (5) and (6) yields P (x 3, x 3 ) (7) which can be resolved with (4) to yield a contradiction.

5 Factoring Binary resolution by itself is not sufficient to obtain a contradiction from every unsatisfiable set of clauses, but needs to be supplemented by the following rule. Positive Factoring C A B Cσ Aσ if σ is a most general unifier of the positive literals A and B. The following inference rule is not necessary (for refutational completeness), but can also be used. Negative Factoring C A B Cσ Aσ if σ is a most general unifier of A and B.

6 Resolution Factoring can also be integrated into resolution inferences. General Resolution C A 1 A k D B 1 B l Cρσ Dσ where ρ is a renaming substitution for the first premise such that the renamed clause has no variables in common with the second premise, and σ is a most general unifier of {A 1 ρ,..., A k ρ, B 1,..., B l }. For example, R(ffx, x) R(y, z) R(fy, fz) R(fffx, fx) is a resolution inference. In this example, no renaming is necessary (and hence ρ may be the identity function) and the atoms to be unified are R(ffx, x) and R(y, z), which have most general unifier σ = [y ffx, z x].

7 Another Example Recursively define terms f n (x) by: (i) f 1 (x) = f(x) and (ii) f n (x) = f(f n 1 (x)), if n > 1. Let S n denote the set of two clauses, P (x) P (f(x)) P (y) P (f n (y)) For example, S 1 consists of these clauses: P (x) P (f(x)) P (y) P (fy) This set is satisfiable, as there is a Herbrand interpretation in which all ground instances of both clauses are true. (Consider a language with a single constant a. the Herbrand universe consists of the terms Then a, fa, ffa,... Define P I in such a way that P I (t) is true if, and only if, t is a term f n (a), for which n is an odd number. This Herbrand model I satisfies S 1.)

8 Next take the set S 2 : Example (cont.) Resolving (1) and (2) yields From (3) and (2) we obtain Resolving (3) and (4) yields From (1) and (5) we obtain P (x) P (f(x)) (1) P (y) P (fy) (2) P (x) P (f(x)) (3) P (x) P (f(x)) (4) P (x) P (x) (5) P (x) (6) Clauses (5) and (6) yield a contradiction, which implies that the set S 2 is unsatisfiable. (Resolvents have been consistently renamed so as to simplify the presentation.)

9 Example (cont.) The set S 6, it turns out, is also unsatisfiable. Here is a refutation by resolution. P (x) P (f(x)) (1) P (x) P (f 6 (x)) (2) P (x) P (f 5 (x)) (1), (2) : (3) P (x) P (f(x)) (2), (3) : (4) P (x) P (x) (1), (4) : (5) P (x) P (f 4 (x)) (3), (4) : (6) P (x) P (f 3 (x)) (1), (6) : (7) P (x) P (f(x)) (3), (6) : (8) P (x) P (f 3 (x)) (2), (7) : (9) P (x) P (f 2 (x)) (4), (7) : (10) P (x) P (f(x)) (6), (7) : (11) P (x) P (f 2 (x)) (1), (9) : (12) P (x) P (f 2 (x)) (3), (9) : (13) P (x) (7), (9) : (14) P (x) (1), (14) : (15) (14), (15) : (16)

10 Soundness of Resolution The inferences we have described above binary and general resolution and factoring are logically sound. Theorem [Soundness] The conclusion of a resolution or factoring inference is true in every Herbrand model that satisfies the premises of the inference.

11 Instances of Inferences An instance of a resolution inference C D C ρσ D σ is any inference Cρστ Dστ C ρστ D στ Similarly, by an instance of a factoring inference we mean any inference C L L Cσ Lσ Cστ Lστ L στ Cστ Lστ If neither premises nor conclusion contain any variables, we speak of a ground instance. Note that instances of a resolution inference need not themselves be resolution inferences (as inferences employ only most general unifiers).

12 Projection The connection between (a) ground instances of inferences from arbitrary clauses and (b) inferences from ground instances of clauses, forms the basis of the refutational completeness of resolution plus factoring. Lifting Lemma Let C and D be two clauses with no variables in common and Cτ and Dτ be corresponding ground instances. (i) If E is the conclusion of a resolution inference with premises Cτ and Dτ, then E is a ground instance of a clause E that is the conclusion of a resolution inference with premises C and D. (ii) If E is the conclusion of a factoring inference with premise Cτ, then E is a ground instance of a clause E that is the conclusion of a factoring inference with premise C.

13 Refutational Completeness A set of clauses N is saturated (with respect to given inference rules) if N contains the conclusion of every inference, the premises of which are elements of N. The following lemma follows from the Lifting Lemma. Lemma If a set of clauses N is saturated with respect to resolution and factoring, then the set of all ground instances of clauses in N is saturated with respect to ground resolution and factoring. Observing that the empty clause is an instance of itself, but of no other clause, we obtain: Corollary [Refutation Completeness] A set of clauses is unsatisfiable if and only if the empty clause can be derived from it by resolution and factoring.

14 Subsumption Some clauses may be redundant in the sense that they are not needed for deriving a contradiction. We say that a clause C subsumes another clause D if D can be written as Cσ or Cσ C, for same substitution σ. For example, the ground clause P Q subsumes P Q R, and P (x) subsumes P (f(y)) Q(y). A clause C is redundant with respect to a set N if N contains a(nother) clause that subsumes C. Redundant clauses may be ignored in derivations.

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Closed Book Examination. Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science

Closed Book Examination. Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science Closed Book Examination COMP60121 Appendix: definition sheet (3 pages) Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Automated Reasoning Tuesday 27 th

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Resolution for Predicate Logic

Resolution for Predicate Logic Logic and Proof Hilary 2016 James Worrell Resolution for Predicate Logic A serious drawback of the ground resolution procedure is that it requires looking ahead to predict which ground instances of clauses

More information

4 Predicate / First Order Logic

4 Predicate / First Order Logic 4 Predicate / First Order Logic 4.1 Syntax 4.2 Substitutions 4.3 Semantics 4.4 Equivalence and Normal Forms 4.5 Unification 4.6 Proof Procedures 4.7 Implementation of Proof Procedures 4.8 Properties First

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Automated Reasoning in First-Order Logic

Automated Reasoning in First-Order Logic Automated Reasoning in First-Order Logic Peter Baumgartner http://users.cecs.anu.edu.au/~baumgart/ 7/11/2011 Automated Reasoning in First-Order Logic... First-Order Logic Can express (mathematical) structures,

More information

Logic and Computation

Logic and Computation Logic and Computation CS245 Dr. Borzoo Bonakdarpour University of Waterloo (Fall 2012) Resolution in First-order Predicate Logic Logic and Computation p. 1/38 Agenda Resolution in Propositional Logic Prenex

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

Resolution for mixed Post logic

Resolution for mixed Post logic Resolution for mixed Post logic Vladimir Komendantsky Institute of Philosophy of Russian Academy of Science, Volkhonka 14, 119992 Moscow, Russia vycom@pochtamt.ru Abstract. In this paper we present a resolution

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

INF3170 / INF4171 Notes on Resolution

INF3170 / INF4171 Notes on Resolution INF3170 / INF4171 Notes on Resolution Andreas Nakkerud Autumn 2015 1 Introduction This is a short description of the Resolution calculus for propositional logic, and for first order logic. We will only

More information

Inference in first-order logic

Inference in first-order logic CS 2710 Foundations of AI Lecture 15 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω

The non-logical symbols determine a specific F OL language and consists of the following sets. Σ = {Σ n } n<ω 1 Preliminaries In this chapter we first give a summary of the basic notations, terminology and results which will be used in this thesis. The treatment here is reduced to a list of definitions. For the

More information

Herbrand Theorem, Equality, and Compactness

Herbrand Theorem, Equality, and Compactness CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Herbrand Theorem, Equality, and Compactness The Herbrand Theorem We now consider a complete method for proving the unsatisfiability of sets of first-order

More information

Convert to clause form:

Convert to clause form: Convert to clause form: Convert the following statement to clause form: x[b(x) ( y [ Q(x,y) P(y) ] y [ Q(x,y) Q(y,x) ] y [ B(y) E(x,y)] ) ] 1- Eliminate the implication ( ) E1 E2 = E1 E2 x[ B(x) ( y [

More information

Rewrite-Based Equational Theorem Proving With Selection and Simplification. Leo Bachmair Harald Ganzinger

Rewrite-Based Equational Theorem Proving With Selection and Simplification. Leo Bachmair Harald Ganzinger Rewrite-Based Equational Theorem Proving With Selection and Simplification Leo Bachmair Harald Ganzinger MPI I 91 208 September 1991 Authors Addresses Leo Bachmair, Department of Computer Science, SUNY

More information

Outline. Logic. Definition. Theorem (Gödel s Completeness Theorem) Summary of Previous Week. Undecidability. Unification

Outline. Logic. Definition. Theorem (Gödel s Completeness Theorem) Summary of Previous Week. Undecidability. Unification Logic Aart Middeldorp Vincent van Oostrom Franziska Rapp Christian Sternagel Department of Computer Science University of Innsbruck WS 2017/2018 AM (DCS @ UIBK) week 11 2/38 Definitions elimination x φ

More information

1 Introduction to Predicate Resolution

1 Introduction to Predicate Resolution 1 Introduction to Predicate Resolution The resolution proof system for Predicate Logic operates, as in propositional case on sets of clauses and uses a resolution rule as the only rule of inference. The

More information

Introduction to Logic in Computer Science: Autumn 2007

Introduction to Logic in Computer Science: Autumn 2007 Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Tableaux for First-order Logic The next part of

More information

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2)

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2) Syntax of FOL Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam The syntax of a language defines the way in which

More information

First-Order Logic. Resolution

First-Order Logic. Resolution First-Order Logic Resolution 1 Resolution for predicate logic Gilmore s algorithm is correct and complete, but useless in practice. We upgrade resolution to make it work for predicate logic. 2 Recall:

More information

Hierarchic Superposition: Completeness without Compactness

Hierarchic Superposition: Completeness without Compactness Hierarchic Superposition: Completeness without Compactness Peter Baumgartner 1 and Uwe Waldmann 2 1 NICTA and Australian National University, Canberra, Australia Peter.Baumgartner@nicta.com.au 2 MPI für

More information

Handout Proof Methods in Computer Science

Handout Proof Methods in Computer Science Handout Proof Methods in Computer Science Sebastiaan A. Terwijn Institute of Logic, Language and Computation University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam the Netherlands terwijn@logic.at

More information

CTL-RP: A Computational Tree Logic Resolution Prover

CTL-RP: A Computational Tree Logic Resolution Prover 1 -RP: A Computational Tree Logic Resolution Prover Lan Zhang a,, Ullrich Hustadt a and Clare Dixon a a Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK E-mail: {Lan.Zhang,

More information

A Tableau Calculus for Minimal Modal Model Generation

A Tableau Calculus for Minimal Modal Model Generation M4M 2011 A Tableau Calculus for Minimal Modal Model Generation Fabio Papacchini 1 and Renate A. Schmidt 2 School of Computer Science, University of Manchester Abstract Model generation and minimal model

More information

Technische Universität München Summer term 2011 Theoretische Informatik Prof. Dr. Dr. h.c J. Esparza / M. Luttenberger / R.

Technische Universität München Summer term 2011 Theoretische Informatik Prof. Dr. Dr. h.c J. Esparza / M. Luttenberger / R. Technische Universität München Summer term 2011 Theoretische Informatik Prof. Dr. Dr. h.c J. Esparza / M. Luttenberger / R. Neumann SOLUTION Logic Endterm 2 Please note : If not stated otherwise, all answers

More information

Superposition for Fixed Domains. Matthias Horbach and Christoph Weidenbach

Superposition for Fixed Domains. Matthias Horbach and Christoph Weidenbach Superposition for Fixed Domains Matthias Horbach and Christoph Weidenbach MPI I 2009 RG1 005 Oct. 2009 Authors Addresses Matthias Horbach and Christoph Weidenbach Max Planck Institute for Informatics Campus

More information

Lecture 12 September 26, 2007

Lecture 12 September 26, 2007 CS 6604: Data Mining Fall 2007 Lecture: Naren Ramakrishnan Lecture 12 September 26, 2007 Scribe: Sheng Guo 1 Overview In the last lecture we began discussion of relational data mining, and described two

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

CogSysI Lecture 8: Automated Theorem Proving

CogSysI Lecture 8: Automated Theorem Proving CogSysI Lecture 8: Automated Theorem Proving Intelligent Agents WS 2004/2005 Part II: Inference and Learning Automated Theorem Proving CogSysI Lecture 8: Automated Theorem Proving p. 200 Remember......

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

2.5.2 Basic CNF/DNF Transformation

2.5.2 Basic CNF/DNF Transformation 2.5. NORMAL FORMS 39 On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is conp-complete. For any propositional formula φ there is an equivalent formula in

More information

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logic Knowledge Representation & Reasoning Mechanisms Logic Logic as KR Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logical inferences Resolution and Theorem-proving Logic

More information

Resolution: Motivation

Resolution: Motivation Resolution: Motivation Steps in inferencing (e.g., forward-chaining) 1. Define a set of inference rules 2. Define a set of axioms 3. Repeatedly choose one inference rule & one or more axioms (or premices)

More information

Logic and Inferences

Logic and Inferences Artificial Intelligence Logic and Inferences Readings: Chapter 7 of Russell & Norvig. Artificial Intelligence p.1/34 Components of Propositional Logic Logic constants: True (1), and False (0) Propositional

More information

SLD-Resolution And Logic Programming (PROLOG)

SLD-Resolution And Logic Programming (PROLOG) Chapter 9 SLD-Resolution And Logic Programming (PROLOG) 9.1 Introduction We have seen in Chapter 8 that the resolution method is a complete procedure for showing unsatisfiability. However, finding refutations

More information

KE/Tableaux. What is it for?

KE/Tableaux. What is it for? CS3UR: utomated Reasoning 2002 The term Tableaux refers to a family of deduction methods for different logics. We start by introducing one of them: non-free-variable KE for classical FOL What is it for?

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

The Model Evolution Calculus with Equality

The Model Evolution Calculus with Equality The Model Evolution Calculus with Equality Peter Baumgartner Programming Logics Group Max-Planck-Institut für Informatik baumgart@mpi-sb.mpg.de Cesare Tinelli Department of Computer Science The University

More information

Artificial Intelligence

Artificial Intelligence Jörg Hoffmann Artificial Intelligence Chapter 12: Predicate Logic Reasoning, Part II 1/56 Artificial Intelligence 12. Predicate Logic Reasoning, Part II: Reasoning And Now: How to Actually Think in Terms

More information

LOGIC. Mathematics. Computer Science. Stanley N. Burris

LOGIC. Mathematics. Computer Science. Stanley N. Burris LOGIC for Mathematics and Computer Science Stanley N. Burris Department of Pure Mathematics University of Waterloo Prentice Hall Upper Saddle River, New Jersey 07458 Contents Preface The Flow of Topics

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

MODELLING AND VERIFICATION ANALYSIS OF A TWO SPECIES ECOSYSTEM VIA A FIRST ORDER LOGIC APPROACH

MODELLING AND VERIFICATION ANALYSIS OF A TWO SPECIES ECOSYSTEM VIA A FIRST ORDER LOGIC APPROACH International Journal of Pure and Applied Mathematics Volume 114 No. 3 2017, 583-592 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v114i3.13

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

T -resolution: Refinements and Model Elimination

T -resolution: Refinements and Model Elimination T -resolution: Refinements and Model Elimination Andrea Formisano Univ. of Rome La Sapienza, Dept. of Computer Science, Via Salaria 113, 00198 ROMA (I) formisan@dsi.uniroma1.it Alberto Policriti Univ.

More information

Two hours. Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE

Two hours. Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE COMP 60332 Two hours Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Automated Reasoning and Verification Date: Wednesday 30th

More information

Inf2D 13: Resolution-Based Inference

Inf2D 13: Resolution-Based Inference School of Informatics, University of Edinburgh 13/02/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Last lecture: Forward and backward chaining Backward chaining: If Goal is known

More information

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring 109 7 LOGICAL AGENS We now turn to knowledge-based agents that have a knowledge base KB at their disposal With the help of the KB the agent aims at maintaining knowledge of its partially-observable environment

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution

Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution Ullrich Hustadt 1 and Boris Motik 2 and Ulrike Sattler 3 Abstract. In description logics, concrete domains are used

More information

Computational Logic Automated Deduction Fundamentals

Computational Logic Automated Deduction Fundamentals Computational Logic Automated Deduction Fundamentals 1 Elements of First-Order Predicate Logic First Order Language: An alphabet consists of the following classes of symbols: 1. variables denoted by X,

More information

Automated Reasoning in First-Order Logic

Automated Reasoning in First-Order Logic Automated Reasoning in First-Order Logic Peter Baumgartner 2010 Automated Reasoning An application-oriented subfield of logic in computer science and artificial intelligence About algorithms and their

More information

Propositional logic II.

Propositional logic II. Lecture 5 Propositional logic II. Milos Hauskrecht milos@cs.pitt.edu 5329 ennott quare Propositional logic. yntax yntax: ymbols (alphabet) in P: Constants: True, False Propositional symbols Examples: P

More information

The Model Evolution Calculus as a First-Order DPLL Method

The Model Evolution Calculus as a First-Order DPLL Method The Model Evolution Calculus as a First-Order DPLL Method Peter Baumgartner a a NICTA Canberra, ACT, Australia Cesare Tinelli b,1 b Department of Computer Science The University of Iowa Iowa City, IA,

More information

Automated Reasoning (in First Order Logic) Andrei Voronkov. University of Manchester

Automated Reasoning (in First Order Logic) Andrei Voronkov. University of Manchester Automated Reasoning (in First Order Logic) Andrei Voronkov University of Manchester 1 Overview Automated reasoning in first-order logic. Completeness. Theory of Resolution and Redundancy. From Theory to

More information

Qualifying Exam Logic August 2005

Qualifying Exam Logic August 2005 Instructions: Qualifying Exam Logic August 2005 If you signed up for Computability Theory, do two E and two C problems. If you signed up for Model Theory, do two E and two M problems. If you signed up

More information

7.5.2 Proof by Resolution

7.5.2 Proof by Resolution 137 7.5.2 Proof by Resolution The inference rules covered so far are sound Combined with any complete search algorithm they also constitute a complete inference algorithm However, removing any one inference

More information

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them:

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them: Completeness in the Monadic Predicate Calculus We have a system of eight rules of proof. Let's list them: PI At any stage of a derivation, you may write down a sentence φ with {φ} as its premiss set. TC

More information

Inference in first-order logic

Inference in first-order logic CS 57 Introduction to AI Lecture 5 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB (a

More information

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel

Propositional Logic. Testing, Quality Assurance, and Maintenance Winter Prof. Arie Gurfinkel Propositional Logic Testing, Quality Assurance, and Maintenance Winter 2018 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602. Reasoning. Reasoning cont. Inference in propositional logic.

Lecture overview. Knowledge-based systems in Bioinformatics, 1MB602. Reasoning. Reasoning cont. Inference in propositional logic. Lecture overview Knowledge-based systems in Bioinformatics, 1MB602 Logical reasoning Inference rules Example proofs Natural deduction SLD Resolution Lecture 7: Logical inference Reasoning The property

More information

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form.

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Valentin Stockholm University October 2016 Revision: CNF and DNF of propositional

More information

Reducing SHIQ Description Logic to Disjunctive Datalog Programs

Reducing SHIQ Description Logic to Disjunctive Datalog Programs Reducing SHIQ Description Logic to Disjunctive Datalog Programs Ullrich Hustadt Department of Computer Science University of Liverpool Liverpool, UK U.Hustadt@csc.liv.ac.uk Boris Motik FZI Research Center

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Propositional Logic: Review

Propositional Logic: Review Propositional Logic: Review Propositional logic Logical constants: true, false Propositional symbols: P, Q, S,... (atomic sentences) Wrapping parentheses: ( ) Sentences are combined by connectives:...and...or

More information

COMP4418: Knowledge Representation and Reasoning First-Order Logic

COMP4418: Knowledge Representation and Reasoning First-Order Logic COMP4418: Knowledge Representation and Reasoning First-Order Logic Maurice Pagnucco School of Computer Science and Engineering University of New South Wales NSW 2052, AUSTRALIA morri@cse.unsw.edu.au COMP4418

More information

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cesare Tinelli tinelli@cs.uiowa.edu Department of Computer Science The University of Iowa Report No. 02-03 May 2002 i Cooperation

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

arxiv: v1 [cs.lo] 1 Sep 2017

arxiv: v1 [cs.lo] 1 Sep 2017 A DECISION PROCEDURE FOR HERBRAND FORMULAE WITHOUT SKOLEMIZATION arxiv:1709.00191v1 [cs.lo] 1 Sep 2017 TIMM LAMPERT Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin e-mail address: lampertt@staff.hu-berlin.de

More information

Some Rewriting Systems as a Background of Proving Methods

Some Rewriting Systems as a Background of Proving Methods Some Rewriting Systems as a Background of Proving Methods Katalin Pásztor Varga Department of General Computer Science Eötvös Loránd University e-mail: pkata@ludens.elte.hu Magda Várterész Institute of

More information

Propositional and Predicate Logic - II

Propositional and Predicate Logic - II Propositional and Predicate Logic - II Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - II WS 2016/2017 1 / 16 Basic syntax Language Propositional logic

More information

Mathematical Logic Propositional Logic - Tableaux*

Mathematical Logic Propositional Logic - Tableaux* Mathematical Logic Propositional Logic - Tableaux* Fausto Giunchiglia and Mattia Fumagalli University of Trento *Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia

More information

First-Order Theorem Proving and Vampire

First-Order Theorem Proving and Vampire First-Order Theorem Proving and Vampire Laura Kovács 1,2 and Martin Suda 2 1 TU Wien 2 Chalmers Outline Introduction First-Order Logic and TPTP Inference Systems Saturation Algorithms Redundancy Elimination

More information

Language of Propositional Logic

Language of Propositional Logic Logic A logic has: 1. An alphabet that contains all the symbols of the language of the logic. 2. A syntax giving the rules that define the well formed expressions of the language of the logic (often called

More information

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cesare Tinelli (tinelli@cs.uiowa.edu) Department of Computer Science The University of Iowa Iowa City, IA, USA Abstract. We propose

More information

arxiv: v2 [cs.lo] 22 Nov 2017

arxiv: v2 [cs.lo] 22 Nov 2017 A DECISION PROCEDURE FOR HERBRAND FORMULAE WITHOUT SKOLEMIZATION arxiv:1709.00191v2 [cs.lo] 22 Nov 2017 TIMM LAMPERT Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin e-mail address: lampertt@staff.hu-berlin.de

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Today s class will be an introduction

More information

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P.

Syntax. Notation Throughout, and when not otherwise said, we assume a vocabulary V = C F P. First-Order Logic Syntax The alphabet of a first-order language is organised into the following categories. Logical connectives:,,,,, and. Auxiliary symbols:.,,, ( and ). Variables: we assume a countable

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

07 Equational Logic and Algebraic Reasoning

07 Equational Logic and Algebraic Reasoning CAS 701 Fall 2004 07 Equational Logic and Algebraic Reasoning Instructor: W. M. Farmer Revised: 17 November 2004 1 What is Equational Logic? Equational logic is first-order logic restricted to languages

More information

Combining Instance Generation and Resolution

Combining Instance Generation and Resolution Combining Instance Generation and Resolution Christopher Lynch and Ralph Eric McGregor Clarkson University www.clarkson.edu/projects/carl Abstract. We present a new inference system for first-order logic,

More information

Lecture 9: The Splitting Method for SAT

Lecture 9: The Splitting Method for SAT Lecture 9: The Splitting Method for SAT 1 Importance of SAT Cook-Levin Theorem: SAT is NP-complete. The reason why SAT is an important problem can be summarized as below: 1. A natural NP-Complete problem.

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

On the complexity of equational problems in CNF

On the complexity of equational problems in CNF Journal of Symbolic Computation 36 (003) 35 69 www.elsevier.com/locate/jsc On the complexity of equational problems in CNF Reinhard Pichler Technische Universität Wien, Institut für Computersprachen, Abteilung

More information

Propositional Resolution

Propositional Resolution Artificial Intelligence Propositional Resolution Marco Piastra Propositional Resolution 1] Deductive systems and automation Is problem decidible? A deductive system a la Hilbert (i.e. derivation using

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Bernhard Nebel and Martin Riedmiller Albert-Ludwigs-Universität

More information

Lifted Inference: Exact Search Based Algorithms

Lifted Inference: Exact Search Based Algorithms Lifted Inference: Exact Search Based Algorithms Vibhav Gogate The University of Texas at Dallas Overview Background and Notation Probabilistic Knowledge Bases Exact Inference in Propositional Models First-order

More information

A simple proof that super-consistency implies cut elimination

A simple proof that super-consistency implies cut elimination A simple proof that super-consistency implies cut elimination Gilles Dowek 1 and Olivier Hermant 2 1 École polytechnique and INRIA, LIX, École polytechnique, 91128 Palaiseau Cedex, France gilles.dowek@polytechnique.edu

More information

Artificial Intelligence Chapter 9: Inference in First-Order Logic

Artificial Intelligence Chapter 9: Inference in First-Order Logic Artificial Intelligence Chapter 9: Inference in First-Order Logic Andreas Zell After the Textbook: Artificial Intelligence, A Modern Approach by Stuart Russell and Peter Norvig (3 rd Edition) 9 Inference

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: RTIFICIL INTELLIGENCE PREDICTE LOGICS 11/8/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary of last day: Logical gents: The can

More information

CSC242: Intro to AI. Lecture 11. Tuesday, February 26, 13

CSC242: Intro to AI. Lecture 11. Tuesday, February 26, 13 CSC242: Intro to AI Lecture 11 Propositional Inference Propositional Inference Factored Representation Splits a state into variables (factors, attributes, features, things you know ) that can have values

More information

Normal Forms of Propositional Logic

Normal Forms of Propositional Logic Normal Forms of Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 12, 2017 Bow-Yaw Wang (Academia Sinica) Normal Forms of Propositional Logic September

More information