Practical Applications of Muscle Stimulation

Size: px
Start display at page:

Download "Practical Applications of Muscle Stimulation"

Transcription

1 Practical Applications of Muscle Stimulation William Durfee Department of Mechanical Engineering University of Minnesota Minneapolis, USA 1

2 NON-INVASIVE ASSESSMENT OF MUSCLE FUNCTION External mechanical properties provide window into muscle excitation & contraction mechanisms Electrical stimulation provides controlled input System identification methods reveal muscle parameters Reuires mathematical model of muscle Non-invasive u(t) STIM MUSCULOSKELETAL SYSTEM y(t) FORCE/MOTION 2

3 Most common non-invasive muscle force assessment method Durfee & Iaizzo, Encyclopedia of Medical Devices and Instrumentation, 2006 Encyclopedia of Medical Devices and Instrumentation, 2nd ed. J.G. Webster, ed., Vol 6, pp 62-71, Hoboken, John Wiley & Sons,

4 MATHEMATICAL MODELS OF WHOLE MUSCLE MECHANICS 4

5 Hill models are still the gold standard CE SE PE Proceedings of the Royal Society of London, B. 126(843): , Contractile element force depends on several variables CE Force = f (neural input, length, velocity) F F F Activation Length Velocity 5

6 Multiplicative model for CE force u IRC Activation Dynamics X CE Force-Length X V CE Force-Velocity Fscale Model for isolated muscle u IRC Activation Dynamics (2nd order) Active Element u F X CE Force-Length X x,v V CE Force-Velocity Fscale Force Passive Element X PE Force-Length V PE Force-Velocity 6

7 Model OK for isolated muscle Model Experiment Force (N) Time (s) Durfee & Palmer, IEEE Trans. Biomed. Eng., 41(3):205, 1994 Identification of intact muscle properties more challenging What you want What you have Skeletal geometry 2. Muscle in series with a springy tendon 7

8 Skeletal geometry u(t) STIM MUSCULOSKELETAL SYSTEM y(t) FORCE/MOTION x(t) u(t) MT f(t) GEOM τ(t) LD θ(t) GEOM -1 Some muscles have significant springs Tibialis Anterior 8

9 Tendon spring leads to inaccuracies in estimating muscle force-length curve Zajac, Crit. Rev. Biomed. Eng., 1989, Figure 13 Muscle-tendon model muscle a(t) L M (t) V M (t) CE F M (t)=f T (t)=f(t) tendon SE PE passive 9

10 WHAT'S WRONG WITH THE MUSCLE MODEL Invariant F-A, F-L, F-V (no change with activation) Invariant twitch dynamics (uniform fiber types) Time-invariant (no fatigue) Full model has muscle-tendon acting against limb load K SE CE M m K PE (θ) M J (θ) B PE (θ) 10

11 11 K SE K PE (θ) CE M m B PE (θ) M J (θ) K SE K PE (θ) CE M m B PE (θ) M J (θ) excitation states 5, = = = = = V L CE CE ω θ ) ( 2 ), ( ) ( 1 ) ( ) ( 1 ) ( ) ( 1 ) ( 1 ),, ( t ku a a f M f M f M f M f M PD J PE J T J T m CE m + = = = = + = = & & & & & & Simulation euations CE Force-Length Gordon, J. Physiol., 1966 ( ) shape parameters,, 1 1 exp ) ( = + = ω ρ β ω ρ β L L F FL

12 CE Force-Velocity FORCE F F FV FV ( V ) = ( b a * V ) 1 1 ( V ) = shortening V + b ( b a * V ) V + b 2 lengthening LINEAR FIT VELOCITY LENGTHENING SHORTENING Modeling twitch dynamics Hammerstein model stim Static nonlinearity Linear dynamic system force Identify LDS with impulse response Durfee & Palmer, IEEE TBME, 1994 Identify SL by deconvolution Durfee & MacLean, IEEE TBME,

13 Twitch force varies with stim strength Recruitment Plot Pulse Width Percentage 2 nd -order, critically damped linear system fits well enough Torue BEST FIT k ( s + a) FORCE TWITCH Time (ms) 2 13

14 Using nonlinear force twitch response as a metric 14

15 Torue Time (ms) Single pulse twitch Torue y 2y Time (ms) Double pulse twitch, if ideal linear system 15

16 Torue y Time (ms) Double pulse twitch, real Doublet pulse spacing affects twitch force Force Time (ms) Doublets at 1,2,3,4,5,6,7,8,9,10,20,30,40,50 ms 16

17 Nonlinear summation for TA Normalized Peak Torue Normalized TTI Nonlinear summation depends on which muscle Biceps Quadriceps Tibialis Anterior Mean IPI (ms) 17

18 Normalized twitch parameters same for all recruitment levels L1 L2 L3 L4 L5 L6 L7 L1-L7 L2-L7 Metric F P Fcrit Sig. F P Fcrit Sig. PT TTI ST CT HPW X HDT X WHAT'S NEXT 18

19 Identification strategy 1. Passive length-tension: slowly move 2. Twitch dynamics: isometric 3. Active length-tension: slowly move when active 4. Force-velocity: apply rich velocity perturbations about steady-state Current isometric apparatus 19

20 Improved apparatus Force, EMG, temp, laptop/usb A simple clinical tool to measure limb inertia CE M m K SE K PE (θ) M J(θ) B PE(θ) Force vs. Acceleration Force (lb-f) Acceleration (g) 20

21 Build database of properties for several muscles in non-diseased subjects F-L, F-V, contraction dynamics, doublet properties Nash Avery Search for Hope Fund and the Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota. FES-AIDED GAIT: A NEW APPROACH 21

22 Brain Spinal Cord Stimulator Limb F EXTERNAL F EXTERNAL Inputs CONTROL STIMULATOR Measurements Improve health through weight bearing Brief standing: social and functional Limited ambulation in vicinity of wheelchair No balance, no change in neuro function 22

23 Liberson foot-drop system, 1961 Heel switch triggered peroneal n. stimulation Correction of foot-drop following stroke Started field of FES Several commercial and research embodiments Medtronic implanted foot-drop system 23

24 STIMULATION PLUS SMART ORTHOTICS Muscle stimulation provides power Brakes for locking and control Orthosis provides guidance and support 24

25 CBO Increases speed and distance Gait Speed Gait Distance 50 Speed (m/s) Distance (m) Without CBO With CBO 0 Without CBO With CBO IEEE Trans Rehab Eng, 4(1):13, 1996, IEEE Trans Rehab Neural Eng,

26 CBO has better step-to-step repeatability 120 Without CBO 120 With CBO Knee angle (deg) Knee angle (deg) Time (sec) Time (sec) IEEE Trans Rehab Eng, 4(1):13, 1996, IEEE Trans Rehab Neural Eng, 2003 ENERGY STORING BRACE 26

27 Energy Budget ~30 nm over 60 deg of motion 31.4 J per extension Extract 14 J per cycle 27

28 J. Biomechanical Engineering, 127(6): , ADAMS dynamic model 28

29 Gas springs Cylinders Accumulator 29

30 Hip belt Knee brace Ab/adduction hinge Prismatic joint Placeholders for brakes Medial hinge POWERED HUMAN-ASSIST TOOLS 30

31 Engineering Research Center for Compact & Efficient Fluid Power 31

32 Compact power sources Natural interface and control Portable and/or wearable Replacing muscle And a few other projects 32

33 Muscle metrics Short-stroke, linear actuator 5-20% shortening stroke Pull force: 30 lbs/s. in. 90 W/lb 180 lb athlete w/ 72 lb of muscle puts out 370 W sustained 5 W/lb for human muscle for continuous use 25% efficient Compliant, back-drivable Fatigues Clean Quiet! Vogel (2001), "Prime Mover" Power (W/lb) Muscle--peak Muscle-- sustained Electric motor Automobile engine (Aircraft engine, piston: 700; Aircraft engine, turbine: 2500) Vogel (2001), "Prime Mover" 33

34 Miniature free-piston air-compressor FUTURE MICRO FPAC + 1KPSI TANK 34

35 35

Application of Newton/GMRES Method to Nonlinear Model Predictive Control of Functional Electrical Stimulation

Application of Newton/GMRES Method to Nonlinear Model Predictive Control of Functional Electrical Stimulation Proceedings of the 3 rd International Conference on Control, Dynamic Systems, and Robotics (CDSR 16) Ottawa, Canada May 9 10, 2016 Paper No. 121 DOI: 10.11159/cdsr16.121 Application of Newton/GMRES Method

More information

Biomechanical Modelling of Musculoskeletal Systems

Biomechanical Modelling of Musculoskeletal Systems Biomechanical Modelling of Musculoskeletal Systems Lecture 6 Presented by Phillip Tran AMME4981/9981 Semester 1, 2016 The University of Sydney Slide 1 The Musculoskeletal System The University of Sydney

More information

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT Third Edition DAVID Α. WINTER University of Waterloo Waterloo, Ontario, Canada WILEY JOHN WILEY & SONS, INC. CONTENTS Preface to the Third Edition xv 1

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #7 Monday, September 24, 2012 3.2 Muscle biomechanics Organization: skeletal muscle is made up of muscle fibers each fiber is a single

More information

Human Motion Control Course (Wb 2407)

Human Motion Control Course (Wb 2407) Part 1 Human Motion Control Course (Wb 2407) Lecture 4 Muscles physiology, morphology and models Muscle morphology and physiology Morphology: fiber arrangement force-velocity relation force-length relation

More information

P.H. Chappell a,, P.N. Taylor b. Received 25 February 2005; accepted 25 July 2005

P.H. Chappell a,, P.N. Taylor b. Received 25 February 2005; accepted 25 July 2005 Computers in Biology and Medicine 36 (2006) 1316 1326 www.intl.elsevierhealth.com/journals/cobm The functional form of the lognormal distribution as a sum of decaying exponential and sinusoidal terms applied

More information

Modelling of gastrocnemius muscle using Hill s equation in COMSOL Multiphysics 4.0a

Modelling of gastrocnemius muscle using Hill s equation in COMSOL Multiphysics 4.0a www.ijcsi.org 396 Modelling of gastrocnemius muscle using Hill s equation in COMSOL Multiphysics 4.0a S.Vivekanandan 1, D.S.Emmanuel 2 and Ramandeep Singh Saluja 3 1,3 School of Electrical Engineering,

More information

Physiological Musculoskeletal Model Identification for the Lower Limbs Control of Paraplegic Under Implanted FES

Physiological Musculoskeletal Model Identification for the Lower Limbs Control of Paraplegic Under Implanted FES Physiological Musculoskeletal Model Identification for the Lower Limbs Control of Paraplegic Under Implanted FES Mourad Benoussaad, David Guiraud, Philippe Poignet To cite this version: Mourad Benoussaad,

More information

Modeling and Online-Identification of Electrically Stimulated Antagonistic Muscles for Horizontal Shoulder Abduction and Adduction

Modeling and Online-Identification of Electrically Stimulated Antagonistic Muscles for Horizontal Shoulder Abduction and Adduction 3 European Control Conference (ECC July 7-9, 3, Zürich, Switzerland. Modeling and Online-Identification of Electrically Stimulated Antagonistic Muscles for Horizontal Shoulder Abduction and Adduction P.

More information

EMG-Based Neuromuscular Modeling with Full Physiological Dynamics and Its Comparison with Modified Hill Model

EMG-Based Neuromuscular Modeling with Full Physiological Dynamics and Its Comparison with Modified Hill Model EMG-Based Neuromuscular Modeling with Full Physiological Dynamics and Its Comparison with Modified Hill Model Mitsuhiro Hayashibe, David Guiraud, Philippe Poignet To cite this version: Mitsuhiro Hayashibe,

More information

Control of Leg Movements Driven by Electrically Stimulated Muscles

Control of Leg Movements Driven by Electrically Stimulated Muscles JOURNAL OF AUTOMATIC CONTROL, UNIVERSITY OF BELGRADE; VOL. 13():35-41, 003 Control of Leg Movements Driven by Electrically Stimulated Muscles Milovan Radulović, Dejan Popović, Novak Jauković Abstract -

More information

Tremor Suppression of Elbow Joint via Functional Electrical Stimulation: A Simulation Study

Tremor Suppression of Elbow Joint via Functional Electrical Stimulation: A Simulation Study Proceeding of the 26 IEEE International Conference on Automation Science and Engineering Shanghai, China, October 7-1, 26 Tremor Suppression of Elbow Joint via Functional Electrical Stimulation: A Simulation

More information

Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies

Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies Andrea d Avella and Matthew C. Tresch Department of Brain and Cognitive Sciences Massachusetts

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 132 Department: Biological Sciences Course Title: Anatomy & Physiology 1 Semester: Spring Year: 1997 Objectives/ 1. Recognize

More information

A model of a human standing. by Richard Denker. January 7, 2013

A model of a human standing. by Richard Denker. January 7, 2013 A model of a human standing by Richard Denker January 7, 2013 Analytical Mechanics (FYGC04), HT 2012 Faculty of Technology and Science Department of Physics Contents 1 Introduction 3 2 Theory 3 2.1 The

More information

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque Components of Torque (review from Systems FBD lecture Angular Kinetics Hamill & Knutzen (Ch 11) Hay (Ch. 6), Hay & Ried (Ch. 12), Kreighbaum & Barthels (Module I & J) or Hall (Ch. 13 & 14) axis of rotation

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE

DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE DEVELOPMENT OF JUMP ASSIST SYSTEM USING PNEUMATIC RUBBER MUSCLE Kotaro TADANO*, Hiroshi ARAYA**, Kenji KAWASHIMA*, Chongo YOUN *, Toshiharu KAGAWA* * Precision and Intelligence Laboratory, Tokyo Institute

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

DESIGN OF AN ARTICULATED ROBOTIC LEG WITH NONLINEAR SERIES ELASTIC ACTUATION

DESIGN OF AN ARTICULATED ROBOTIC LEG WITH NONLINEAR SERIES ELASTIC ACTUATION DESIGN OF AN ARTICULATED ROBOTIC LEG WITH NONLINEAR SERIES ELASTIC ACTUATION MARCO HUTTER, C. DAVID REMY, ROLAND SIEGWART Autonomous Systems Lab, ETH Zurich, CLA E11., Tannenstrasse 3, 809 Zurich, Switzerland,

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test)

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2012/2013 XE121. ENGINEERING CONCEPTS (Test) s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER EXAMINATIONS 202/203 XE2 ENGINEERING CONCEPTS (Test) Time allowed: TWO hours Answer: Attempt FOUR questions only, a maximum of TWO questions

More information

Optimization of Active Muscle Force-Length Models Using Least Squares Curve Fitting

Optimization of Active Muscle Force-Length Models Using Least Squares Curve Fitting TBME - 00465-2015.R1 1 Optimization of Active Muscle Force-Length Models Using Least Squares Curve Fitting G. A. Mohammed and M. Hou Abstract The objective of this paper is to propose an asymmetric Gaussian

More information

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed Motion Maximum Hand, Foot, or Equipment Linear Speed Biomechanical Model: Mo3on Maximum Hand, Foot, or Equipment Linear Speed Hand, Foot, or Equipment Linear Speed Sum of Joint Linear Speeds Principle

More information

Simple Biomechanical Models. Introduction to Static Equilibrium F F. Components of Torque. Muscles Create Torques. Torque is a Vector

Simple Biomechanical Models. Introduction to Static Equilibrium F F. Components of Torque. Muscles Create Torques. Torque is a Vector Simple Biomechanical Models Introduction to Static Equilibrium Components of Torque axis of rotation (fulcrum) force (not directed through axis of rotation) force (moment) arm T = F x d force arm Muscles

More information

BIOP2203 Biomechanics S1. BIOPHYSICS 2203: Biomechanics

BIOP2203 Biomechanics S1. BIOPHYSICS 2203: Biomechanics COURSE INTRODUCTION BIOPHYSICS 2203: Biomechanics MECHANICS -The study of motion of bodies. -Movement of all material bodies are subject to the laws of mechanics. Classical (or Newtonian) mechanics: -The

More information

AN ACTIVE DISTURBANCE REJECTION APPROACH TO THE HUMAN POSTURAL SWAY CONTROL PROBLEM

AN ACTIVE DISTURBANCE REJECTION APPROACH TO THE HUMAN POSTURAL SWAY CONTROL PROBLEM AN ACTIVE DISTURBANCE REJECTION APPROACH TO THE HUMAN POSTURAL SWAY CONTROL PROBLEM RADHIKA KOTINA Bachelor of Technology in Electrical and Electronics Engineering Jawaharlal Nehru Technological University

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

Gravity Balancing of a Human Leg using an External Orthosis

Gravity Balancing of a Human Leg using an External Orthosis 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 FrB8.3 Gravity Balancing of a Human Leg using an External Orthosis Abbas Fattah, Ph.D., and Sunil K. Agrawal,

More information

Reading. Realistic Character Animation. Modeling Realistic Motion. Two Approaches

Reading. Realistic Character Animation. Modeling Realistic Motion. Two Approaches Realistic Character Animation Reading Jessica Hodgins,,et.al,Animating Human Athletics,, SIGGRAPH 95 Zoran Popović, Changing Physics for Character Animation,, SIGGRAPH 00 2 Modeling Realistic Motion Model

More information

Modeling of Surface EMG Signals using System Identification Techniques

Modeling of Surface EMG Signals using System Identification Techniques Modeling of Surface EMG Signals using System Identification Techniques Vishnu R S PG Scholar, Dept. of Electrical and Electronics Engg. Mar Baselios College of Engineering and Technology Thiruvananthapuram,

More information

LYAPUNOV-BASED CONTROL METHODS FOR NEUROMUSCULAR ELECTRICAL STIMULATION

LYAPUNOV-BASED CONTROL METHODS FOR NEUROMUSCULAR ELECTRICAL STIMULATION LYAPUNOV-BASED CONTROL METHODS FOR NEUROMUSCULAR ELECTRICAL STIMULATION By NITIN SHARMA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

BIODYNAMICS: A LAGRANGIAN APPROACH

BIODYNAMICS: A LAGRANGIAN APPROACH Source: STANDARD HANDBOOK OF BIOMEDICAL ENGINEERING AND DESIGN CHAPTER 7 BIODYNAMICS: A LAGRANGIAN APPROACH Donald R. Peterson Biodynamics Laboratory at the Ergonomic Technology Center, University of Connecticut

More information

Nonlinear Identification Method Corresponding to Muscle Property Variation in FES - Experiments in Paraplegic Patients

Nonlinear Identification Method Corresponding to Muscle Property Variation in FES - Experiments in Paraplegic Patients Nonlinear Identification Method Corresponding to Muscle Property Variation in FES - Experiments in Paraplegic Patients Mitsuhiro Hayashibe, Mourad Benoussaad, David Guiraud, Philippe Poignet, Charles Fattal

More information

FES-controlled Co-contraction Strategies for Pathological Tremor Compensation

FES-controlled Co-contraction Strategies for Pathological Tremor Compensation FES-controlled Co-contraction Strategies for Pathological Tremor Compensation Antonio Bo, Philippe Poignet, Dingguo Zhang, Wei Tech Ang To cite this version: Antonio Bo, Philippe Poignet, Dingguo Zhang,

More information

On the control of a muscular force model

On the control of a muscular force model On the control of a muscular force model AURORE MAILLARD Le2i CNRS UMR 636 9 av. Alain Savary, 21 Dijon aurore.maillard@u-bourgogne.fr TOUFIK BAKIR Le2i CNRS UMR 636 9 av. Alain Savary, 21 Dijon toufik.bakir@u-bourgogne.fr

More information

activity it displays and the isometric tension it can exert. It has been shown

activity it displays and the isometric tension it can exert. It has been shown 214 J. Physiol. (I954) I23, 2I4-224 THE RELATION BETWEEN FORCE, VELOCITY AND INTEGRATED ELECTRICAL ACTIVITY IN HUMAN MUSCLES By BRENDA BIGLAND AND 0. C. J. LIPPOLD From the Department of Physiology, (Received

More information

Lecture 5. Labs this week: Please review ME3281 Systems materials! Viscosity and pressure drop analysis Fluid Bulk modulus Fluid Inertance

Lecture 5. Labs this week: Please review ME3281 Systems materials! Viscosity and pressure drop analysis Fluid Bulk modulus Fluid Inertance Labs this week: Lab 10: Sequencing circuit Lecture 5 Lab 11/12: Asynchronous/Synchronous and Parallel/Tandem Operations Please review ME3281 Systems materials! 132 Viscosity and pressure drop analysis

More information

Modelling Muscle Contraction a multiscale approach

Modelling Muscle Contraction a multiscale approach Porto Ercole, M&MKT 2016 Multiscale Systems from Particles to Continuum: Modelling and Computation Modelling Muscle Contraction a multiscale approach Giovanni Naldi Dipartimento di Matematica ``F. Enriques

More information

IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 1, JANUARY

IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 1, JANUARY IEEE CONTROL SYSTEMS LETTERS, VOL. 2, NO. 1, JANUARY 2018 73 A Switched Systems Approach Based on Changing Muscle Geometry of the Biceps Brachii During Functional Electrical Stimulation Courtney A. Rouse,

More information

NEUROMUSCULAR ELECTRICAL STIMULATION

NEUROMUSCULAR ELECTRICAL STIMULATION 712 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012 Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking Nitin Sharma, Member, IEEE, Chris M. Gregory, Marcus

More information

USE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS

USE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS USE OF MECHANICAL RESONANCE IN MACHINES DRIVE SYSTEMS Wieslaw Fiebig, Jakub Wrobel Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Lukasiewicza 7/9, 51-370 Wroclaw, Poland

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION Jitendra Yadav 1, Dr. Geeta Agnihotri 1 Assistant professor, Mechanical Engineering Department, University of petroleum and energy studies,

More information

MEASURE, MODELING AND COMPENSATION OF FATIGUE-INDUCED DELAY DURING NEUROMUSCULAR ELECTRICAL STIMULATION

MEASURE, MODELING AND COMPENSATION OF FATIGUE-INDUCED DELAY DURING NEUROMUSCULAR ELECTRICAL STIMULATION MEASURE, MODELING AND COMPENSATION OF FATIGUE-INDUCED DELAY DURING NEUROMUSCULAR ELECTRICAL STIMULATION By FANNY BOUILLON A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Engineering Mechanics Laboratory Manual

Engineering Mechanics Laboratory Manual 2011-2012 Engineering Mechanics Laboratory Manual M.H.SABOO SIDDIK COLLEGE OF ENGG. Prof.Shaikh Ibrahim Ismail Automobile Engg. Dept. M.H.SABOO SIDDIK COLLEGE OF ENGG. Engineering Mechanics 3 CONTENTS

More information

Final: Signal, Systems and Control (BME )

Final: Signal, Systems and Control (BME ) Final: Signal, Systems and Control (BME 580.) Instructor: René Vidal May 0th 007 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 6, JUNE

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 6, JUNE IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 6, JUNE 1998 819 Optimal Control of Ankle Joint Moment: Toward Unsupported Standing in Paraplegia Kenneth J. Hunt, Member, IEEE, Marko Munih, Member,

More information

Three-dimensional ankle moments and nonlinear summation of rat triceps surae muscles

Three-dimensional ankle moments and nonlinear summation of rat triceps surae muscles 2 Three-dimensional ankle moments and nonlinear summation of rat triceps surae muscles Based on: Tijs C, van Dieën JH, Baan GC, Maas H (2014). Three-dimensional ankle moments and nonlinear summation of

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland based on script from: Prof. Dr. Lino Guzzella 1/33 Outline 1

More information

Novel Reaction Force Control Design Based on Biarticular Driving System Using Intrinsic Viscoelasticity of Muscle

Novel Reaction Force Control Design Based on Biarticular Driving System Using Intrinsic Viscoelasticity of Muscle Novel Reaction Force Control Design Based on Biarticular Driving System Using Intrinsic Viscoelasticity of Muscle Yasuto Kimura #, Sehoon Oh 2 and Yoichi Hori #3 # Department of Advanced Energy, The University

More information

Multibody dynamics approaches of the humerus-shoulder complex driven by multimuscle activations and constraints

Multibody dynamics approaches of the humerus-shoulder complex driven by multimuscle activations and constraints Modelling in Medicine and Biology VI 411 Multibody dynamics approaches of the humerus-shoulder comple driven by multimuscle activations and constraints T. Tsuta 1, Y. Takeda 2 & T. Iwamoto 2 1 Hiroshima

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Biomechanics Module Notes

Biomechanics Module Notes Biomechanics Module Notes Biomechanics: the study of mechanics as it relates to the functional and anatomical analysis of biological systems o Study of movements in both qualitative and quantitative Qualitative:

More information

VALIDATION OF AN INSTRUMENTED WALKWAY DESIGNED FOR ESTIMATION OF THE ANKLE IMPEDANCE IN SAGITTAL AND FRONTAL PLANES

VALIDATION OF AN INSTRUMENTED WALKWAY DESIGNED FOR ESTIMATION OF THE ANKLE IMPEDANCE IN SAGITTAL AND FRONTAL PLANES Proceedings of the ASME 2016 Dynamic Systems and Control Conference DSCC2016 October 12-14, 2016, Minneapolis, Minnesota, USA DSCC2016-9660 VALIDATION OF AN INSTRUMENTED WALKWAY DESIGNED FOR ESTIMATION

More information

Multi-Muscle FES Force Control of the Human Arm for Arbitrary Goals

Multi-Muscle FES Force Control of the Human Arm for Arbitrary Goals Cleveland State University EngagedScholarship@CSU Mechanical Engineering Faculty Publications Mechanical Engineering Department 5-2014 Multi-Muscle FES Force Control of the Human Arm for Arbitrary Goals

More information

Robust Model Predictive Control of An Input Delayed Functional Electrical Stimulation. Ziyue Sun. Submitted to the Graduate Faculty of

Robust Model Predictive Control of An Input Delayed Functional Electrical Stimulation. Ziyue Sun. Submitted to the Graduate Faculty of Robust Model Predictive Control of An Input Delayed Functional Electrical Stimulation by Ziyue Sun B.S., Mechanical Engineering, University of Pittsburgh, 2015 Submitted to the Graduate Faculty of Swanson

More information

Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model

Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Fall 214 Effects of Hip and Ankle Moments on Running Stability: Simulation of a Simplified Model Rubin C. Cholera Purdue University

More information

Human Motion Production

Human Motion Production Human Motion Production External Forces & Moments Multi-Joint Dynamics Neural Command α 1 α 2 Musculotendon Dynamics F 1 F 2 Musculoskeletal Geometry T 1 T 2 EOM*.. θ 1.. θ 2. θ 1 1 θ. θ 2 θ 2 Sensory

More information

Energy Consumption during Going Down from a Step

Energy Consumption during Going Down from a Step Bulletin of the Osaka Medical College 48 1, 2 7-13, 2002 7 Original Article Energy Consumption during Going Down from a Step Manabu MIYAMOTO 1, Jun YAMAGUCHI 2 and Masahiko SHINDO 1 1 First Department

More information

Introduction to Biomechanics. DR.AYESHA BASHARAT BSPT(K.E.MU), PPDPT (RIU). M.Phill(progress, SMC)

Introduction to Biomechanics. DR.AYESHA BASHARAT BSPT(K.E.MU), PPDPT (RIU). M.Phill(progress, SMC) ` Introduction to Biomechanics DR.AYESHA BASHARAT BSPT(K.E.MU), PPDPT (RIU). M.Phill(progress, SMC) BIOMECHANICS & ERGONOMICS 100+100=200 Basic biomechanics of musculoskeletal system By: Nordin & Frankel,

More information

ADAPTIVE CLOSED-LOOP CONTROL STRATEGY FOR PARALYZED SKELETAL MUSCLES

ADAPTIVE CLOSED-LOOP CONTROL STRATEGY FOR PARALYZED SKELETAL MUSCLES ADAPTIVE CLOSED-LOOP CONTROL STRATEGY FOR PARALYZED SKELETAL MUSCLES Clara IONESCU and Robin DE KEYSER Ghent University EeSA Department of Electrical energy, Systems and Automation Technologiepark 93,

More information

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below.

NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. Anatomy & Physiology Nervous System Part I 2/26/16 NOTE: LOOK ON MY WEBSITE FOR THE MUSCLE LABELING POWER POINT/PDF Part I. Identify the parts of the neuron that are labeled below. 1. 2. 3. 5. 4. 6. Part

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Lecture 5. Labs this week:

Lecture 5. Labs this week: Labs this week: Lab 10: Bleed-off Circuit Lecture 5 Lab 11/12: Asynchronous/Synchronous and Parallel/Tandem Operations Systems Review Homework (due 10/11) Participation is research lab Hydraulic Hybrid

More information

Research Article In Vivo Identification of Skeletal Muscle Dynamics with Nonlinear Kalman Filter: Comparison between EKF and SPKF

Research Article In Vivo Identification of Skeletal Muscle Dynamics with Nonlinear Kalman Filter: Comparison between EKF and SPKF ISRN Rehabilitation Volume 213, Article ID 6179, 1 pages http://dx.doi.org/1.1155/213/6179 Research Article In Vivo Identification of Skeletal Muscle Dynamics with Nonlinear Kalman Filter: Comparison between

More information

AdaptiveImpact Absorption. Smart Technology Centre

AdaptiveImpact Absorption. Smart Technology Centre AdaptiveImpact Absorption Jan Holnicki-Szulc Institute of Fundamental Technological Research Smart Technology Centre http://smart.ippt.gov.pl Smart Technology Centre: 25 researchers (Smart Technologies

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

ANALYSIS AND SIMULATION OF MECHANICAL LOADS ON THE HUMAN MUSCULOSKELETAL SYSTEM: A METHODOLOGICAL OVERVIEW. Anton J.

ANALYSIS AND SIMULATION OF MECHANICAL LOADS ON THE HUMAN MUSCULOSKELETAL SYSTEM: A METHODOLOGICAL OVERVIEW. Anton J. ANALYSIS AND SIMULATION OF MECHANICAL LOADS ON THE HUMAN MUSCULOSKELETAL SYSTEM: A METHODOLOGICAL OVERVIEW Anton J. van den Bogert Human Performance Laboratory University of Calgary, Canada Exercise and

More information

Effects of Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

Effects of Structural Forces on the Dynamic Performance of High Speed Rotating Impellers. Effects of Structural Forces on the Dynamic Performance of High Speed Rotating Impellers. G Shenoy 1, B S Shenoy 1 and Raj C Thiagarajan 2 * 1 Dept. of Mechanical & Mfg. Engineering, Manipal Institute

More information

Identification of Joint Impedance

Identification of Joint Impedance Identification of Joint Impedance tools for understanding the human motion system, treatment selection and evaluation Lecture 12 SIPE 2010 Case Studies Erwin de Vlugt, PhD -Leiden Research Connection Laboratory

More information

A systems for functional neuromuscular stimulation.

A systems for functional neuromuscular stimulation. IEEE TRANSACTIONS ON BIOMEDICAL bngineb,ring, VOL 35, NO I, JANUARY 1988 69 Simulation of Intrafascicular and Extraneural Nerve Stimulation AND HERMAN B. K. BOOM Abstruct-A model of nerve stimulation for

More information

Fundamental problems in the analysis of skilled action (Saltzman 1995) Degrees of freedom Spatiotemporal form Invariance

Fundamental problems in the analysis of skilled action (Saltzman 1995) Degrees of freedom Spatiotemporal form Invariance Fundamental problems in the analysis of skilled action (Saltzman 1995) Degrees of freedom Spatiotemporal form Invariance 1 Degrees of Freedom Actions require the the coordination of a large number of (potentially)

More information

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Ashok Joshi Department of Aerospace Engineering Indian Institute of Technology, Bombay Powai, Mumbai, 4 76, India

More information

Multi-body power analysis of kicking motion based on a double pendulum

Multi-body power analysis of kicking motion based on a double pendulum Available online at wwwsciencedirectcom Procedia Engineering 34 (22 ) 28 223 9 th Conference of the International Sports Engineering Association (ISEA) Multi-body power analysis of kicking motion based

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Some Properties of Linear Relaxation in Unfused Tetanus of Human Muscle

Some Properties of Linear Relaxation in Unfused Tetanus of Human Muscle Physiol. Res. 41:437-443, 1992 Some Properties of Linear Relaxation in Unfused Tetanus of Human Muscle V.S. GURFINKEL, Yu.P. IVANENKO, Yu.S. LEVIK Institute o f Information Transmission Problems, Russian

More information

Biomechanics. Soft Tissue Biomechanics

Biomechanics. Soft Tissue Biomechanics Biomechanics cross-bridges 3-D myocardium ventricles circulation Image Research Machines plc R* off k n k b Ca 2+ 0 R off Ca 2+ * k on R* on g f Ca 2+ R0 on Ca 2+ g Ca 2+ A* 1 A0 1 Ca 2+ Myofilament kinetic

More information

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011

EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 EMA 545 Final Exam - Prof. M. S. Allen Spring 2011 Honor Pledge: On my honor, I pledge that this exam represents my own work, and that I have neither given nor received inappropriate aid in the preparation

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Modeling nonlinear systems using multiple piecewise linear equations

Modeling nonlinear systems using multiple piecewise linear equations Nonlinear Analysis: Modelling and Control, 2010, Vol. 15, No. 4, 451 458 Modeling nonlinear systems using multiple piecewise linear equations G.K. Lowe, M.A. Zohdy Department of Electrical and Computer

More information

Slow-Time Changes in Human EMG Muscle Fatigue States Are Fully Represented in Movement Kinematics

Slow-Time Changes in Human EMG Muscle Fatigue States Are Fully Represented in Movement Kinematics Slow-Time Changes in Human EMG Muscle Fatigue States Are Fully Represented in Movement Kinematics Miao Song 1, David B. Segala 1, Jonathan B. Dingwell 2, and David Chelidze 1, 1 Nonlinear Dynamics Laboratory,

More information

Passive Component. L m. B m. F pe. L w L t. Contractile. Active. M m. Component. L tm

Passive Component. L m. B m. F pe. L w L t. Contractile. Active. M m. Component. L tm Journal of Mathematical Systems, Estimation, and Control Vol. 8, No. 2, 1998, pp. 1{15 c 1998 Birkhauser-Boston Muscle Mechanics and Dynamics of Ocular Motion Clyde F. Martin y Lawrence Schovanec y Abstract

More information

SHAPE MEMORY ALLOY ACTUATOR PROTECTED BY ROLLED FILM TUBE FOR ARTIFICIAL MUSCLE

SHAPE MEMORY ALLOY ACTUATOR PROTECTED BY ROLLED FILM TUBE FOR ARTIFICIAL MUSCLE P2-47 Proceedings of the 7th JFPS International Symposium on Fluid Power, TOYAMA 28 September 1-18, 28 SHAPE MEMORY ALLOY ACTUATOR PROTECTED BY ROLLED FILM TUBE FOR ARTIFICIAL MUSCLE Toshiya ISHIKAWA*

More information

RATE OF ANTAGONISM OF TUBOCURARINE BY POTASSIUM IONS

RATE OF ANTAGONISM OF TUBOCURARINE BY POTASSIUM IONS Brit J Pharmacol (1961), 17, 11-16 RATE OF ANTAGONISM OF TUBOCURARINE BY POTASSIUM IONS BY R CREESE, D B TAYLOR AND B TILTON From the Department of Pharmacology, University of California Medical Center,

More information

Abstract. Final Degree Project - Olga Pätkau

Abstract. Final Degree Project - Olga Pätkau Abstract I Abstract In this thesis, two different control strategies are applied to the forward dynamic simulation of multibody systems in order to track a given reference motion. For this purpose, two

More information

A Model of Nerve-Bundle Fibre-Stimulation using Implantable Cuff Electrodes

A Model of Nerve-Bundle Fibre-Stimulation using Implantable Cuff Electrodes UNSW GSBME 1 A Model of Nerve-Bundle Fibre-Stimulation using Implantable Cuff Electrodes Joseph Radford Abstract The aim of this study is to demonstrate radial selectivity when stimulating axons that innervate

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

EMG Based Approach for Wearer-centered Control of a Knee Joint Actuated Orthosis

EMG Based Approach for Wearer-centered Control of a Knee Joint Actuated Orthosis 213 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 213. Tokyo, Japan EMG Based Approach for Wearer-centered Control of a Knee Joint Actuated Orthosis Walid Hassani,

More information

Analysis of Some Dynamic Tests II

Analysis of Some Dynamic Tests II Analysis of Some Dynamic Tests II Introduction This study is based on test data provided by KuLTu. The data were obtained from dynamic and isometric tests with HUR Leg Extension/Curl Research Line machine

More information

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2 Rotational Motion 1) The diameter of a flywheel increases by 1%. What will be percentage increase in moment of inertia about axis of symmetry a) 2% b) 4% c) 1% d) 0.5% 2) Two rings of the same radius and

More information

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP):

Membrane Potential. 1. Resting membrane potential (RMP): 2. Action Potential (AP): Membrane Potential 1. Resting membrane potential (RMP): 2. Action Potential (AP): Resting Membrane Potential (RMP) It is the potential difference across the cell membrane. If an electrode of a voltmeter

More information

Surface Electromyographic [EMG] Control of a Humanoid Robot Arm. by Edward E. Brown, Jr.

Surface Electromyographic [EMG] Control of a Humanoid Robot Arm. by Edward E. Brown, Jr. Surface Electromyographic [EMG] Control of a Humanoid Robot Arm by Edward E. Brown, Jr. Goal is to extract position and velocity information from semg signals obtained from the biceps and triceps antagonistic

More information

The main force acting on the body is the gravitational force!

The main force acting on the body is the gravitational force! The main force acting on the body is the gravitational force! (W= weight!) W = m g Stability of the body against the gravitational force is maintained by the bone structure of the skeleton! Gravitational

More information

Modeling and Control Overview

Modeling and Control Overview Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I

More information

Our patient for the day...

Our patient for the day... Muscles Ch.12 Our patient for the day... Name: Eddy Age: Newborn Whole-body muscle contractions No relaxation Severe difficulty breathing due to inadequate relaxation of breathing muscles Diagnosed with

More information

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics Design and Control of Compliant Humanoids Alin Albu-Schäffer DLR German Aerospace Center Institute of Robotics and Mechatronics Torque Controlled Light-weight Robots Torque sensing in each joint Mature

More information

Acoustics-An An Overview. Lecture 1. Vibro-Acoustics. What? Why? How? Lecture 1

Acoustics-An An Overview. Lecture 1. Vibro-Acoustics. What? Why? How? Lecture 1 Vibro-Acoustics Acoustics-An An Overview 1 Vibro-Acoustics What? Why? How? 2 Linear Non-Linear Force Motion Arbitrary motion Harmonic Motion Mechanical Vibrations Sound (Acoustics) 3 Our heart beat, our

More information

STRAIN ENERGY EXPRESSION AS COST FUNCTION FOR MUSCLE FORCE DISTRIBUTION PROBLEM IN BIOMECHANICS

STRAIN ENERGY EXPRESSION AS COST FUNCTION FOR MUSCLE FORCE DISTRIBUTION PROBLEM IN BIOMECHANICS International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 5, May 2017, pp. 466 479, Article ID: IJCIET_08_05_054 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=5

More information

warwick.ac.uk/lib-publications

warwick.ac.uk/lib-publications Original citation: Chatzistefani, N., Chappell, M. J. (Michael J.), Hutchinson, C., Kletzenbauer, S. and Evans, N. D.. (06) A mathematical model characterising Achilles tendon dynamics in flexion. Mathematical

More information