John E. Thomas. Quark-gluon plasma T = K BIG BANG Computer simulation of RHIC collision. Ultracold atomic gas T = 10-7 K

Size: px
Start display at page:

Download "John E. Thomas. Quark-gluon plasma T = K BIG BANG Computer simulation of RHIC collision. Ultracold atomic gas T = 10-7 K"

Transcription

1 Quantum hydrodynamcs n a strongly nteractng Ferm gas John E. Thomas Quark-gluon plasma T 10 1 K BIG BANG Computer smulaton of RHIC collson Ultracold atomc gas T 10-7 K

2 JETLa Group Students: Yngy Zhang Chengln Cao Ethan Ellot Wlle Ong Chnyun Cheng Arun Jaganathan Post Docs: Han Wu Ilya Arakelan James Joseph J. E. Thomas Support: ARO NSF DOE AFOSR Ken O Hara* Mke Gehm* Stephen Granade* Stac Hemmer* Joe Knast* Bason Clancy* Le Luo* Andrey Turlapov* Xu Du* Jesse Petrcka*

3 Outlne Introducton: Optcally trapped Ferm gases: Unversal ehavor Thermodynamcs of strongly-nteractng Ferm gases: Gloal entropy and energy Temperature calraton Quantum vscosty n strongly-nteractng Ferm gases: Shear forces and heatng n collectve modes and expandng gases Comparson to the mnmum vscosty conjecture Vanshng Bulk vscosty Shock Waves n strongly-nteractng Ferm gases Nonlnear hydrodynamcs n quantum matter

4 Optcally Trapped Ferm Gas Fermonc

5 Magc of a Unversal Strongly Interactng Ferm Gas Compressed Balloons Expanded Balloons Densty and temperature of the system set the length scale of the nteractons

6 The Mnmum Vscosty Conjecture Strng Theory Vscosty Hydrodynamcs η s 1 h 4π k B Kovtun et al., PRL 005 Entropy densty Thermodynamcs Mnmum defnes a Perfect normal flud In a 6 L gas we can measure η and s.

7 Thermodynamcs of Strongly Interactng Ferm gases Ground State Energy Fnte temperature: Energy and Entropy Temperature calraton Unversal ndependent of the mcroscopc nteractons

8 Energy E measurement Unversal Gas oeys the Vral Theorem Thomas (005 In a HO potental: E U Castn (004 Werner and Castn (006 Son (007 Energy per partcle E 3 mω For a unversal quantum gas, the energy E s determned y the cloud se

9 Measurng the Energy E versus Entropy S y Adaatc Sweep of Magnetc Feld B Start 834 G B End 100 G Strongly nteractng at 834 G: Energy E S known from cloud se Unversal Ferm gas Energy Measurement: Weakly nteractng at 100 G: Entropy S W known from cloud se Weakly Interactng Ferm gas Adaatc: E S 3mω 834G S S S W

10 Energy per partcle versus Entropy per Partcle Red crcles: Calculated nd Vral coeffcent Green curve: power law ft Blue crcles: Measured Luo, Thomas JLTP 009 S*(100 ncludng nteractons

11 Temperature Calraton c d c S S cs E S E S S as E S E + + > < ; ( 0 ; ( 1 0 Power law ft to gloal E versus S data: S E T Temperature from:

12 Energy versus Temperature

13 Quantum Vscosty Hydrodynamcs

14 Quantum Vscosty Shear forces d v F A η d v Vscosty scale: η p σ p hk σ 4π k η hk 3 Quantum scale requres Planck s constant!

15 Quantum Vscosty at Low and Hgh Temperature η hk 3 Low Temperature T T F k kf 1/ L k Hgh Temperature T T F k mk T Thermal B / h η hn η T 3/ / h Entropy densty scale: s nk B Low temperature: η / s h / k B Strng theory lmt

16 Unversal Shear Vscosty η ( x, t α( θ hn( x, t Measurng Unversal Shear Vscosty at Low and at Hgh Temperature: Breathng Mode and Ellptc Flow

17 Vscous Hydrodynamcs v(x-dx v(x v(x+dx y x Heat Shear force at each surface v y η x Net shear force on volume element Frcton heatng at each surface v y η x x v y q& η x

18 Pressure Forces wth Heatng P(x P( x + Δx Scalar pressure gradent: Outward force expands after release. Frcton force: Inward slows the flow Frcton Heatng: v y q& η x The vscosty must vansh at the cloud edges Heatng gradent: Outward pressure force that speeds the flow! ΔP q& x

19 Hydrodynamc Forces Net Force wth Frcton: m ( + v t ( ησ + j j ςσ ' j v f + j n U trap Force arsng from scalar pressure: η Shear vscosty: σ j 3 f P n jv + v j δj v Bulk vscosty: ς σ ' j δ j v Intal Condton: f Trap ( m x ( t 0 U x ω

20 Unversal Pressure wth Heatng Frcton Heatng rate per unt volume & 1 q η σ + ς ( v j j Energy conservaton: Unversal Pressure: ( v ε q& t ε v 3 P 3 Ho, PRL 004 ( 5 + v + v P q& t 3 Cao, Ellot,Wu, Joseph, Petrcka, Schaefer, and Thomas Scence 331, 58 (011 3

21 Unversal Vscous Hydrodynamcs ( n q n P f f j j j t & ( v ( v v v Equaton for n P f Scale transformaton: ( ( ( (,,,,, ( t t y t x y y x x n t y x n x & v x m t a f ( ω 0 1 (0 0; (0 1; 0 ( a &

22 Extractng the Shear Vscosty 1 (0 0; (0 1; 0 ( a & + + j j j j j t x m a a a 0 ( 3 3 σ ω hα & & & trap t x m a σ α ω ( 1 ( 0 h && j j & δ v, ( (, ( t n t x x h θ α η (n F T T θ ( ( 1 ( θ α η α t n d N t d N x, x x, x h Trap-averaged Vscosty coeffcent

23 Precson Measurement of Vscosty at Low Temperature: Breathng Mode

24 Dampng of the Breathng Mode For vscous dampng: η α h n Dampng rate: 1 τ 3m hα x 0 Measure trap-averaged vscosty coeffcent α

25 Vscosty Coeffcent: Low Temperature Vscosty n unts of hn How do we measure vscosty at hgh T?

26 Hgh Temperature Quantum Vscosty n Ellptc Flow σ σ x Measure Aspect Rato: σ x σ

27 Expanson Dynamcs: Ellptc Flow E E F Ballstc

28 Hgh and Low Temperature Data Vscosty n unts of hn Frcton wth Heatng: Jons Smoothly!

29 Effect of the Heatng Rate Frcton w/o Heatng: Dscontnuous!

30 Hgh and Low Temperature Data

31 Unversal HghTemperature Scalng α α 3 θ / 3/ 0 α 3 / 3.4(0.04 α 3 /.77 Bruun-Smth (007 T θ0 T ( n 0 F

32 Rato of the Shear Vscosty to the Entropy Densty η s αhn αn h s s η s h k B α S/k B Trap averaged vscosty coeffcent Average entropy per partcle JLTP 150, 567 (008

33 Energy per partcle versus Entropy per Partcle Red data: Calculated nd Vral coeffcent Deep trap Blue data: Measured Luo, Thomas JLTP 009 Shallow trap

34 Rato of the Vscosty to the Entropy Strng Theory Lmt

35 What aout Bulk Vscosty? E 3. 3E F Pure α S Pureα B

36 Vanshng Bulk Vscosty Two parameter ft, optmum shear vscosty for each ulk vscosty Mnmum χ 8.6 for pureα 16.7 B Mnmum χ 1.5 for pureα S 4.4

37 Shock waves n Ferm gases Colldng Ferm gas clouds LHC! Nonlnear hydrodynamcs of strongly nteractng quantum matter.

38 Shock waves n Ferm gases Colldng Ferm gas clouds x Integrate along x

39 One Dmensonal Model Force per atom: + v v - 1D ( 1 μ ( + mω m( v t μ /3 3 D μg U trap ( x n3d n 1 3/ 3 D [ μg mω r ] n 1 5/ 5/ 1 D dxdyn3d ( x, y, [ μg mω ] μ1d μ C n /5 1D 1 1D C /5 1 hω l l h mω t v - ( 1 v + Cn /5 1D + 1 ω

40 Nonlnear hydrodynamcs t ( v 1 /5 1 + Cn + ω v - + ν ( n n v Knetc vscosty: αhn h ν α nm m ν 10 h m Strongly nteractng quantum matter: Nonlnear dynamcs Dsspaton arsng from vscosty Dsperson arsng from quantum pressure 1 n h m n

41 Summary Thermodynamcs of strongly-nteractng Ferm gases: Tests of non-perturatve many-ody theory Temperature calraton from E(S Transport: Mnmum vscosty hydrodynamcs: Shear vscosty versus reduced temperature Mnmum η/s 5 tmes the mnmum vscosty conjecture Bulk vscosty vanshes for hgh temperature expanson Future Dependence of shear vscosty on nteracton strength Precson measurement of the ulk vscosty Nonlnear hydrodynamcs and shock waves

42 MOVING TO NC STATE UNIVERSITY! SUMMER, 011

43 Unversal Behavor at T 0 Interpartcle spacng L s the only length scale: Set y the densty n. Ideal Ferm Gas E a deal E F ( n Unversal Ferm Gas a >> L >> R E gnd (1 + β E deal Bertsch 1998, Baker 1999, Heselerg 001 Theory: Carlson (008 β 0.60(1 Experment: JLTP (009 β 0.6 (

From Strongly-Interacting Fermi Gases to Nuclear Matter

From Strongly-Interacting Fermi Gases to Nuclear Matter From Strongly-Interactng Ferm Gases to uclear Matter John E. Thomas Quark-gluon plasma T = 10 1 K BIG BAG Computer smulaton of RHIC collson Ultracold atomc gas T = 10-7 K JETLa Group Students: Yngy Zhang

More information

Universal Quantum Viscosity in a Unitary Fermi Gas

Universal Quantum Viscosity in a Unitary Fermi Gas Universal Quantum Viscosity in a Unitary Fermi Gas Chenglin Cao Duke University July 5 th, 011 Advisor: Prof. John E Thomas Dr.Ilya Arakelyan Dr.James Joseph Dr.Haibin Wu Yingyi Zhang Ethan Elliott Willie

More information

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University 3D Hydrodynamics and Quasi-D Thermodynamics in Strongly Correlated Fermi Gases John E. Thomas NC State University JETLa Group J. E. Thomas Graduate Students: Ethan Elliot Willie Ong Chingyun Cheng Arun

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

Aerodynamics. Finite Wings Lifting line theory Glauert s method

Aerodynamics. Finite Wings Lifting line theory Glauert s method α ( y) l Γ( y) r ( y) V c( y) β b 4 V Glauert s method b ( y) + r dy dγ y y dy Soluton procedure that transforms the lftng lne ntegro-dfferental equaton nto a system of algebrac equatons - Restrcted to

More information

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid? Nuclear Physics A 830 (2009) 665c 672c www.elsevier.com/locate/nuclphysa Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid? J. E. Thomas Physics Department, Duke University, Durham, NC 27708-0305,

More information

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics,

BULK VISCOUS BIANCHI TYPE IX STRING DUST COSMOLOGICAL MODEL WITH TIME DEPENDENT TERM SWATI PARIKH Department of Mathematics and Statistics, UL VISCOUS INCHI YPE IX SRING DUS COSMOLOGICL MODEL WIH IME DEPENDEN ERM SWI PRIH Department of Mathematcs and Statstcs, Unversty College of Scence, MLSU, Udapur, 3300, Inda UL YGI Department of Mathematcs

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Introduction to the lattice Boltzmann method

Introduction to the lattice Boltzmann method Introducton to LB Introducton to the lattce Boltzmann method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10, D-55128 Manz, Germany duenweg@mpp-manz.mpg.de Introducton Naver-Stokes

More information

Relaxation laws in classical and quantum long-range lattices

Relaxation laws in classical and quantum long-range lattices Relaxaton laws n classcal and quantum long-range lattces R. Bachelard Grupo de Óptca Insttuto de Físca de São Carlos USP Quantum Non-Equlbrum Phenomena Natal RN 13/06/2016 Lattce systems wth long-range

More information

High Energy Nuclear Collisions Hard Probes, Heavy Quarks, Strong Gluon Fields. Rainer J. Fries Texas A&M University CS

High Energy Nuclear Collisions Hard Probes, Heavy Quarks, Strong Gluon Fields. Rainer J. Fries Texas A&M University CS Hgh Energy Nuclear Collsons Hard Probes Heavy Quarks Strong Gluon Felds Raner J. Fres Teas &M Unversty CS Teas &M Commerce September 19 13 The Early Unverse Coolng and epanson successon of phase transtons

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

Physics 452 Quantum Optics and Quantum Gases. Class information:

Physics 452 Quantum Optics and Quantum Gases. Class information: Physcs 45 Quantum Otcs and Quantum Gases Class nformaton: htts://ultracold.uchcago.edu/hys_courses Physcs 45 Quantum Otcs and Quantum Gases Autumn 017 Physcs 4500 Quantum Otcs and Quantum Gases Tme: MWF

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Shock Acceleration at an Interplanetary Shock: A Focused Transport Approach

Shock Acceleration at an Interplanetary Shock: A Focused Transport Approach Shock Acceleraton at an Interplanetary Shock: A Focused Transport Approach J. A. le Roux Insttute of Geophyscs & Planetary Physcs Unversty of Calforna at Rversde . The Gudng center Knetc Equaton for f(x,p,p,t

More information

Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto- Capillary Breakup

Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto- Capillary Breakup Effects of Polymer Concentraton and Molecular Weght on the Dynamcs of Vsco-Elasto- Capllary Breakup Mattheu Veran Advsor: Prof. Gareth McKnley Mechancal Engneerng Department January 3, Capllary Breakup

More information

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver WOR ALGORTH Nkolay Prokofev, Umass, Amherst asha ra Bors Svstunov, Umass, Amherst gor Tuptsyn, PTP, Vancouver assmo Bonnsegn, UAlerta, Edmonton Los Angeles, January 23, 2006 Why other wth algorthms? Effcency

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

ULTRACOLD FERMI ALKALI GASES: BOSE CONDENSATION MEETS COOPER PAIRING

ULTRACOLD FERMI ALKALI GASES: BOSE CONDENSATION MEETS COOPER PAIRING AIP 0 ULTRACOLD FERMI ALKALI GASES: BOSE CODESATIO MEETS COOPER PAIRIG Anthony J. Leggett Department of Physcs Unversty of Illnos at Urbana-Champagn Urbana, IL AIP 1 fracton of condensed partcles ~1 ~

More information

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov.

Turbulence. Lecture 21. Non-linear Dynamics. 30 s & 40 s Taylor s work on homogeneous turbulence Kolmogorov. Turbulence Lecture 1 Non-lnear Dynamcs Strong non-lnearty s a key feature of turbulence. 1. Unstable, chaotc behavor.. Strongly vortcal (vortex stretchng) 3 s & 4 s Taylor s work on homogeneous turbulence

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Effect of loading frequency on the settlement of granular layer

Effect of loading frequency on the settlement of granular layer Effect of loadng frequency on the settlement of granular layer Akko KONO Ralway Techncal Research Insttute, Japan Takash Matsushma Tsukuba Unversty, Japan ABSTRACT: Cyclc loadng tests were performed both

More information

PHY688, Statistical Mechanics

PHY688, Statistical Mechanics Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Intersections of nuclear physics and cold atom physics

Intersections of nuclear physics and cold atom physics Intersections of nuclear physics and cold atom physics Thomas Schaefer North Carolina State University Unitarity limit Consider simple square well potential a < 0 a =, ǫ B = 0 a > 0, ǫ B > 0 Unitarity

More information

Lecture 7 Fluid Systems I. System Analysis Spring

Lecture 7 Fluid Systems I. System Analysis Spring Lecture 7 Flud Systems I 1 Brake systems Font Wheel Brake Pedal Vacuum Booster Master Cylnder Proportonng Valve Vacuum Booster ear Wheel Master Cylnder Proportonng Valve Brake Pedal Fundamental structure

More information

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially

The Tangential Force Distribution on Inner Cylinder of Power Law Fluid Flowing in Eccentric Annuli with the Inner Cylinder Reciprocating Axially Open Journal of Flud Dynamcs, 2015, 5, 183-187 Publshed Onlne June 2015 n ScRes. http://www.scrp.org/journal/ojfd http://dx.do.org/10.4236/ojfd.2015.52020 The Tangental Force Dstrbuton on Inner Cylnder

More information

Towards the shear viscosity of a cold unitary fermi gas

Towards the shear viscosity of a cold unitary fermi gas Towards the shear viscosity of a cold unitary fermi gas Jiunn-Wei Chen National Taiwan U. Shear viscosity y V x (y) x Frictional force T ij iv j ( x) V 2 j i ( x) 1 ij V ( x). 3 Shear viscosity measures

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

CHEMICAL REACTIONS AND DIFFUSION

CHEMICAL REACTIONS AND DIFFUSION CHEMICAL REACTIONS AND DIFFUSION A.K.A. NETWORK THERMODYNAMICS BACKGROUND Classcal thermodynamcs descrbes equlbrum states. Non-equlbrum thermodynamcs descrbes steady states. Network thermodynamcs descrbes

More information

in state i at t i, Initial State E = E i

in state i at t i, Initial State E = E i Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse

More information

Fast ion ignition with ultraintense laser pulses

Fast ion ignition with ultraintense laser pulses ast on gnton wth ultrantense er pulses Theodor Schlegel Helmholtz Insttute Jena and GSI Darmstadt Drect Drve and ast Igntor Workshop Prague 7 30 May 01 V.T. Tkhonchuk J-L eugeas Ph. Ncola Cyrl Regan X.

More information

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer Convecton Heat Transfer Tetbook: Convecton Heat Transfer Adran Bean, John Wley & Sons Reference: Convectve Heat and Mass Transfer Kays, Crawford, and Wegand, McGraw-Hll Convecton Heat Transfer Vedat S.

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

GENERAL EQUATIONS OF PHYSICO-CHEMICAL

GENERAL EQUATIONS OF PHYSICO-CHEMICAL GENERAL EQUATIONS OF PHYSICO-CHEMICAL PROCESSES Causes and conons for the evoluton of a system... 1 Integral formulaton of balance equatons... 2 Dfferental formulaton of balance equatons... 3 Boundary

More information

Physics 212: Statistical mechanics II Lecture I

Physics 212: Statistical mechanics II Lecture I Physcs 212: Statstcal mechancs II Lecture I A theory s the more mpressve the greater the smplcty of ts premses, the more dfferent knds of thngs t relates, and the more extended ts area of applcablty. Therefore

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich

Chapter 02: Numerical methods for microfluidics. Xiangyu Hu Technical University of Munich Chapter 02: Numercal methods for mcrofludcs Xangyu Hu Techncal Unversty of Munch Possble numercal approaches Macroscopc approaches Fnte volume/element method Thn flm method Mcroscopc approaches Molecular

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Supplemental Material: Causal Entropic Forces

Supplemental Material: Causal Entropic Forces Supplemental Materal: Causal Entropc Forces A. D. Wssner-Gross 1, 2, and C. E. Freer 3 1 Insttute for Appled Computatonal Scence, Harvard Unversty, Cambrdge, Massachusetts 02138, USA 2 The Meda Laboratory,

More information

Collective Modes. Feb 20, 2008

Collective Modes. Feb 20, 2008 Collectve Modes Feb 20, 2008 Learnng Goals Idea of probng collectve modes phonons, plasmons,... Equatons of moton (collectve coordnate) approach Vral Theorem Sum Rules Lnear Response Very specfc example

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 2 August 2017 Internatonal Journal of Mathematcs Trends and Technoloy (IJMTT) Volume 8 Number Auust 7 Ansotropc Cosmolocal Model of Cosmc Strn wth Bulk Vscosty n Lyra Geometry.N.Patra P.G. Department of Mathematcs,

More information

Viscosity Correlators in Improved Holographic QCD

Viscosity Correlators in Improved Holographic QCD Bielefeld University October 18, 2012 based on K. Kajantie, M.K., M. Vepsäläinen, A. Vuorinen, arxiv:1104.5352[hep-ph]. K. Kajantie, M.K., A. Vuorinen, to be published. 1 Motivation 2 Improved Holographics

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Brownian-Dynamics Simulation of Colloidal Suspensions with Kob-Andersen Type Lennard-Jones Potentials 1

Brownian-Dynamics Simulation of Colloidal Suspensions with Kob-Andersen Type Lennard-Jones Potentials 1 Brownan-Dynamcs Smulaton of Collodal Suspensons wth Kob-Andersen Type Lennard-Jones Potentals 1 Yuto KIMURA 2 and Mcho TOKUYAMA 3 Summary Extensve Brownan-dynamcs smulatons of bnary collodal suspenton

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name and Secton: (Crcle Your Secton) Sectons:

More information

A hybrid kinetic WENO scheme for compressible flow simulations

A hybrid kinetic WENO scheme for compressible flow simulations Tenth Internatonal onference on omputatonal Flud Dynamcs (IFD10), Barcelona, Span, July 9-13, 2018 IFD10-389 A hybrd knetc WENO scheme for compressble flow smulatons Hongwe Lu *, hangpng Yu, Xnlang L *orrespondng

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model

Study of transonic separated flows with zonal-des based on weakly non-linear turbulence model Study of transonc separated flows wth zonal-des based on weakly non-lnear turbulence model Xao Z.X, Fu S., Chen H.X, Zhang Y.F and Huang J.B. Department of Engneerng Mechancs, Tsnghua Unversty, Bejng,

More information

The Governing Equations

The Governing Equations The Governng Equatons L. Goodman General Physcal Oceanography MAR 555 School for Marne Scences and Technology Umass-Dartmouth Dynamcs of Oceanography The Governng Equatons- (IPO-7) Mass Conservaton and

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

arxiv: v1 [physics.flu-dyn] 16 Sep 2013

arxiv: v1 [physics.flu-dyn] 16 Sep 2013 Three-Dmensonal Smoothed Partcle Hydrodynamcs Method for Smulatng Free Surface Flows Rzal Dw Prayogo a,b, Chrstan Fredy Naa a a Faculty of Mathematcs and Natural Scences, Insttut Teknolog Bandung, Jl.

More information

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Research & Reviews: Journal of Engineering and Technology

Research & Reviews: Journal of Engineering and Technology Research & Revews: Journal of Engneerng and Technology Case Study to Smulate Convectve Flows and Heat Transfer n Arcondtoned Spaces Hussen JA 1 *, Mazlan AW 1 and Hasanen MH 2 1 Department of Mechancal

More information

A New SPH Equations Including Variable Smoothing Lengths Aspects and Its Implementation

A New SPH Equations Including Variable Smoothing Lengths Aspects and Its Implementation COMPUTATIOAL MECHAICS ISCM007, July 30-August 1, 007, Beng,Chna 007 Tsnghua Unversty Press & Sprnger A ew SPH Equatons Includng Varable Smoothng Lengths Aspects and Its Implementaton Hongfu Qang*, Weran

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March 2004 http://tsaad.uts.edu - tsaad@uts.edu CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem

More information

Equilibrium and stability of toroidal plasmas with flow in high-beta reduced MHD

Equilibrium and stability of toroidal plasmas with flow in high-beta reduced MHD Equlbrum and stablty of torodal plasmas wth flow n hgh-beta reduced MHD Atsush Ito and Noryosh Nakajma Natonal Insttute for Fuson Scence Equlbrum wth flow n extended MHD models of fuson plasmas Equlbrum

More information

Acta Materiae Compositae Sinica Vol1 23 No1 5 October 2006

Acta Materiae Compositae Sinica Vol1 23 No1 5 October 2006 Acta Materae Compostae Snca Vol1 23 No1 5 October 2006 : 1000 3851 (2006) 05 0143 06 23 5 10 2006 C/ C, 3,, (, 150001) :,,,, ;,, : C/ C ; ; ; : TB3301 1 : A Numercal smulaton of C/ C compostes coupled

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

Useful Conservation Sums in Molecular Dynamics and Atomistics

Useful Conservation Sums in Molecular Dynamics and Atomistics Useful Conservaton Sums n Molecular Dynamcs and Atomstcs SAEJA O. KIM Department of Mathematcs, Unversty of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA YOON Y. EARMME Department of Mechancal

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Supplementary Information: A violation of universality in anomalous Fourier s law

Supplementary Information: A violation of universality in anomalous Fourier s law Supplementary Informaton: A volaton of unversalty n anomalous Fourer s law Pablo I. Hurtado and Pedro. Garrdo Insttute Carlos I for Theoretcal and Computatonal Physcs and Departamento de Electromagnetsmo

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

New states of quantum matter created in the past decade

New states of quantum matter created in the past decade New states of quantum matter created in the past decade From: Trapped cold atomic systems: Bose-condensed and BCS fermion superfluid states T ~ nanokelvin (traps are the coldest places in the universe!)

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution Effcent Optmal Control for a Untary Operaton under Dsspatve Evoluton Mchael Goerz, Danel Rech, Chrstane P. Koch Unverstät Kassel March 20, 2014 DPG Frühjahrstagung 2014, Berln Sesson Q 43 Mchael Goerz

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

Search for Permanent Electric Dipole Moments of Francium Atom

Search for Permanent Electric Dipole Moments of Francium Atom Search for Permanent Electrc Dpole Moments of Francum Atom Yasuhro SAKEMI Research Center for Nuclear Physcs (RCNP) Osaka Unversty ECR Ion source + Beam lne to transport the heavy ons from AVF + Trap/Coolng

More information

A One-Dimensional Hydrodynamic Simulation of Colliding Quasi-Neutral Plasma Systems

A One-Dimensional Hydrodynamic Simulation of Colliding Quasi-Neutral Plasma Systems A One-Dmensonal Hydrodynamc Smulaton of Colldng Quas-Neutral Plasma Systems A Thess for the Degree of Master of Scence By: Bran Doohan, B.Sc. Natonal Centre for Plasma Scence and Technology School of Physcal

More information

Turbulent Nonpremixed Flames

Turbulent Nonpremixed Flames School of Aerospace Engneerng Turbulent Nonpremxed Flames Jerry Setzman. 5 Mole Fracton.15.1.5 CH4 HO HCO x 1 Temperature Methane Flame.1..3 Dstance (cm) 15 1 5 Temperature (K) TurbulentNonpremxed -1 School

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information