Implementation of the Matrix Method

Size: px
Start display at page:

Download "Implementation of the Matrix Method"

Transcription

1 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and transmsson characterstcs of stratfed meda calculaton of felds nsde layers 1

2 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Optcs n stratfed meda y Bragg mrror mrror wth chrp for compensatng dsperson nterferometer

3 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Optcs n stratfed meda y Plane of ncdence = --plane no y-dependency

4 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena A stratfed (layered) medum refractve nde n

5 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena A stratfed (layered) medum each layer wth nde s charactered by ts thckness d and ts delectrc constant ε (ω) ε an arbtrary contnuous varaton of the refractve nde can be dscreted wth a suffcent large number of layers mportant for so called 'GRIN' graded nde wavegudes

6 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena EM felds n the stratfed meda Requrements: statonarty nfnte etenson of the layers n the -y-plane llumnatng feld ncdent n the --plane ncdent feld feld to be calculated Ansat: Ereal (,, t) Re E( )epk t H t H k t real (,, ) Re ( )ep Separaton nto TE und TM polaraton TE: E 0 H E, H 0 0 H TE y TE TM: H 0 E H, E 0 0 E TM y TM

7 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Boundary condtons Felds: E t and H t contnuous TE: E = E y and H TM: H = H y and E Performng all computatons wth the tangental components, (f necessary the normal components can be derved) transversal wavevector s constant n the stack and s determned by the angle of ncdence: k = ω ε c s sn θ = π ε λ s sn θ 0 substrate ε s k normal component vares n the stack: k depends on the permttvty of each layer dsperson relaton k c k k k k k

8 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computng the felds by contnuous components (TE) Helmholt-equaton: k Ey( ) 0 c k Soluton: E ( ) cos sn y C k C k 1 0 H( ) Ey( ) 0H ( ) Ey( ) k C1 sn k cos C k Determnaton of C 1, C : Ey (0) C 1 E k C y 0

9 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Soluton TE: 1 E ( ) cos k E (0) sn k E k y y y 0 E k sn k E (0) cos k E y y 0 TM: 1 H ( ) cos k H (0) sn k H k y y y 1 k 1 H sn k H (0) cos k H y y y 0 0 TE/TM: 1 F( ) cos k (0) sn F k (0) G k G( ) k sn k F(0) cos k G(0) TE: F Ey, G 0H Ey, 1 TM: F H, G 0E H, 1/ y y

10 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Summary: Matr method Need to know: F(0), G(0), k,, d We want to calculate the felds F(D), G(D) N F F ˆ ( ) ˆ F d G G G D m M mˆ d cos k k sn k d k d k d snk d cos TE: F Ey, G Ey, 1 TM: F H, G H, 1/ y y wth, k k k c

11 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Reflecton and transmsson coeffcents of the felds transmsson coeffcent T reflecton coeffcent R F T F n F R feld at substrate sde (nde s): F(, ) ep( k) Fn ep( k ) F s R ep( k ) s G(, ) sk ep( k ) s Fn ep( k ) F s R ep( k ) s feld at claddng sde (nde c): F(, ) ep( k) FT ep k ( D) c G(, ) ck ep( k ) c FTep k ( D) c c c T 1 s s n R F connecton of felds at = 0 and = D by transfer matr FT M11( D) M1( D) Fn FR k F M ( D) M ( D) k F F n substrate, s F n F R claddng, c F T

12 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Reflecton and transmsson coeffcents of the felds transmsson coeffcent T reflecton coeffcent R R T k M k M M k k M s c 11 1 s c 1 s N k s c s c s N k M k M M k k M N s c 11 1 s c 1 s c s c F T F n F R F n substrate, s F n F R claddng, c F T wth TE: TM: F E y, 1 F H y, 1/ k k s/c s/c 0 0

13 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Energy flu defned va the normal component of the Poyntng vector S Substrat, s s s T n s s R n s n s n s R s R R c s Re Re k k c s T s T Claddng, c s T wth TE: 1 TM: 1/ k k s/c 0 s/c 0

14 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Feld dstrbuton Goal: Computaton of F() nsde the entre structure, (the absolute values can be scaled) Intal pont: Take the known entres of the transmtted ampltude F n F R F T F F 1 F FT FT 1 G k now: D c c c D F n F T F R Approach: 1. Reverse the structure (ncdent vector becomes (1, c k c ). Calculate the feld vector up to the net nterface 3. From there, calculate the feld to the net -pont of nterest 4. Save the frst value of the vector for ths -pont 5. Iterate untl all -values are calculated and reverse the structure and the feld F n F R F T

15 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena The real feld The observable (real) feld Er H TE: E F r (,, t) Re E( )ep k t (,, t) Re H( )ep k t What you have actually calculated s the comple value of a certan component: TM: H F e e y y

16 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Task I : Transfer matr Goal : calculaton of M functon M = transfermatr(thckness, epslon, polarsaton, lambda, k) % M = transfermatr(thckness, epslon, polarsaton, lambda, k) % Computes the transfer matr for a gven stratfed medum. % All dmensons are n µm. % Arguments: % thckness : Thcknesses of the layers (vector) % epslon : Delectrc permttvty of the layers (vector) % polarsaton : Polarsaton of the feld to be computed (strng: 'TE' or 'TM') % lambda : Wavelength of the lght (scalar) % k : Transverse wavevector [1/µm] (scalar) % Returns: % M : Transfer matr (matr) (potentally) useful functons: eye(n): creates the N-dmensonal unty matr error('message'): prnts 'message' on the screen and nterrupts the program strcmp(varable,'strng'): compares varable aganst 'strng

17 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Task II: Reflecton and transmsson coeffcents Goal: computaton of R, T, ρ, τ as a functon of the wavelength functon [T, R, tau, rho] = spectrum(thckness,epslon,polarsaton,... lambda_vector,angle_nc,n_s,n_c) % [T, R, tau, rho] = spectrum(thckness,epslon,polarsaton,... % lambda_vector,angle_nc,n_s,n_c) % Computes the reflecton and transmsson of a stratfed medum dependng on the % wavelength. All dmensons are n µm. % Arguments: % thckness : Thcknesses of the layers (vector) % epslon : Delectrc permttvty of the layers (vector) % polarsaton : Polarsaton of the feld to be computed (Strng: 'TE' or 'TM') % lambda_vector : Wavelength of the lght (vector) % angle_nc : Angle of ncdendence n degree (scalar) % n_s, n_c : Refractve ndces of the substrate and claddng (scalars) % Returns: % T : Transmtted ampltude (comple vector) % R : Reflected ampltude (comple vector) % tau : Transmtted energy (real vector) % rho : Reflected energy (real vector) Usng the functon transfermatr

18 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Task III*: Feld dstrbuton voluntary task Goal: Computaton of the comple feld f at predefned values of functon [f, nde, ] = feld(thckness,epslon,polarsaton,... lambda,k,n_s,n_c,n,l_s,l_c); % functon [f, nde, ] = feld(thckness,epslon,polarsaton,... % lambda,k,n_s,n_c,n,l_s,l_c) % Computes the feld n a stratfed medum. All dmensons are n µm. % The stratfed medum starts at = 0 on the entrance sde % (stratfed meda for > 0). The transmtted feld has a magntude of unty. % Arguments: % thckness : Thcknesses of the layers (vector) % epslon : Delectrc permttvty of the layers (vector) % polarsaton : Polarsaton of the feld to be computed (Strng: 'TE' or 'TM') % lambda : Wavelength (scalar) % k : Transverse wavevector [1/µm] (scalar) % n_s, n_c : Refractve nde of the substrate/claddng (scalars) % N : Number of ponts where the feld shall be computed (nteger) % l_s, l_c : Addtonal thckness of the substrate and claddng where the % feld should be computed (scalars) % Returns: % f : Feld structure (comple vector) % nde : Refractve nde dstrbuton (comple vector) % : Spatal coordnate (real vector) Usng the functons transfermatr, flplr

19 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Task IV*: Tme anmaton of the feld voluntary task Goal: Vsualaton of the temporal evoluton of the feld functon tmeanmaton(,f,nde,steps,perods) % tmeanmaton(,f,nde,steps,perods) % Anmaton of a quas-statonary feld. % Arguments: % : Spatal coordnates (real vector) % f : Feld (comple vector) % nde : Refractve nde (comple vector, real part plotted wth the feld) % steps : Total number of tme ponts (nteger) % perods : Number of the oscllaton perods (nteger) Usng the functons ma, as, fgure(gcf), pause

20 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena 0 Eample parameters Defne a Bragg mrror at 780nm: >> eps1 =.5; >> eps = 15.1; >> d1 = 0.13; %[µm] >> d = 0.05; %[µm] >> N = 5; >> polarsaton ='TE'; >> angle_nc = 0.0; >> n_s = 1.0; >> n_c = 1.5; Create the arrays >> epslon = eros(1, *N); >> epslon(1::*n) = eps1; >> epslon(::*n) = eps; >> thckness = eros(1, *N); >> thckness(1::*n)= d1; >> thckness(::*n) = d; >> lambda = lnspace(0.5, 1.5, 100); %[µm] substrate n s =1 ncdent (TE) R 1 d 1 d 10 layers Now, e.g. calculate the transmsson/reflecton spectrum: >> [T, R, tau, rho] = spectrum(thckness, epslon, polarsaton,... lambda_vector, angle_nc, n_s, n_c); claddng n c =1.5 T

21 Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Voluntary Homework (due 6 Aprl 018, 3 AM) These tasks are stll voluntary, but t s strongly encouraged to solve at least the frst two (I and II). For each task we requre that each student mplements a program that solves the problem and prepares a short report The source code and the report must be submtted va emal to teachng-nanooptcs@un-jena.de by Thursday (6 Aprl 018), 3 AM (sharp!) The subject lne of the emal should have the followng format: [famly name]; [gven names]; [student d]: soluton to the assgnment of semnar [semnar no.] The report should be a pdf fle All source code fles should be gathered n a sngle p archve (no rar, tar, 7, g or any other compresson format!)

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Computatonal Photoncs Semnar 03, 7 May 01 Implementaton of the Matr Method calculaton of the transfer matr

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

CHAPTER II THEORETICAL BACKGROUND

CHAPTER II THEORETICAL BACKGROUND 3 CHAPTER II THEORETICAL BACKGROUND.1. Lght Propagaton nsde the Photonc Crystal The frst person that studes the one dmenson photonc crystal s Lord Raylegh n 1887. He showed that the lght propagaton depend

More information

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Lecture 3. Interaction of radiation with surfaces. Upcoming classes Radaton transfer n envronmental scences Lecture 3. Interacton of radaton wth surfaces Upcomng classes When a ray of lght nteracts wth a surface several nteractons are possble: 1. It s absorbed. 2. It s

More information

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich Homework 4 Contact: frmmerm@ethz.ch Due date: December 04, 015 Nano Optcs, Fall Semester 015 Photoncs Laboratory, ETH Zürch www.photoncs.ethz.ch The goal of ths problem set s to understand how surface

More information

Lecture 8: Reflection and Transmission of Waves. Normal incidence propagating waves. Normal incidence propagating waves

Lecture 8: Reflection and Transmission of Waves. Normal incidence propagating waves. Normal incidence propagating waves /8/5 Lecture 8: Reflecton and Transmsson of Waves Instructor: Dr. Gleb V. Tcheslavsk Contact: gleb@ee.lamar.edu Offce Hours: Room 3 Class web ste: www.ee.lamar.edu/gleb/e m/index.htm So far we have consdered

More information

Computational Photonics

Computational Photonics Computatonal Photoncs, Abbe School of Photoncs, FSU Jena, Prof T Pertsch, 943 Computatonal Photoncs Prof Thomas Pertsch Abbe School of Photoncs Fredrch-Schller-Unverstät Jena Introducton and Motvaton 3

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Effect of Losses in a Layered Structure Containing DPS and DNG Media

Effect of Losses in a Layered Structure Containing DPS and DNG Media PIERS ONLINE, VOL. 4, NO. 5, 8 546 Effect of Losses n a Layered Structure Contanng DPS and DNG Meda J. R. Canto, S. A. Matos, C. R. Pava, and A. M. Barbosa Insttuto de Telecomuncações and Department of

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetsm Set 8: Plane waves Instructor: Prof. Vtaly Lomakn Department of Electrcal and Computer Engneerng Unversty of Calforna, San Dego, CA 92093 1 Wave equaton Source-free lossless Maxwell

More information

Fresnel's Equations for Reflection and Refraction

Fresnel's Equations for Reflection and Refraction Fresnel's Equatons for Reflecton and Refracton Incdent, transmtted, and reflected beams at nterfaces Reflecton and transmsson coeffcents The Fresnel Equatons Brewster's Angle Total nternal reflecton Power

More information

( ) + + REFLECTION FROM A METALLIC SURFACE

( ) + + REFLECTION FROM A METALLIC SURFACE REFLECTION FROM A METALLIC SURFACE For a metallc medum the delectrc functon and the ndex of refracton are complex valued functons. Ths s also the case for semconductors and nsulators n certan frequency

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

A semi-analytic technique to determine the propagation constant of periodically segmented Ti:LiNbO 3 waveguide

A semi-analytic technique to determine the propagation constant of periodically segmented Ti:LiNbO 3 waveguide Avalable onlne at www.pelagaresearchlbrary.com Pelaga Research Lbrary Advances n Appled Scence Research, 011, (1): 16-144 ISSN: 0976-8610 CODEN (USA): AASRFC A sem-analytc technque to determne the propagaton

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm J Comput Electron (213) 12:752 756 DOI 1.17/s1825-13-479-2 A constant recursve convoluton technque for frequency dependent scalar wave equaton bed FDTD algorthm M. Burak Özakın Serkan Aksoy Publshed onlne:

More information

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that PHY 387 K. Solutons for problem set #7. Problem 1: To prove that under the assumptons at hand, the group velocty of an EM wave s less than c, I am gong to show that (a) v group < v phase, and (b) v group

More information

Chapter 4. Velocity analysis

Chapter 4. Velocity analysis 1 Chapter 4 Velocty analyss Introducton The objectve of velocty analyss s to determne the sesmc veloctes of layers n the subsurface. Sesmc veloctes are used n many processng and nterpretaton stages such

More information

Comparative Study Between Dispersive and Non-Dispersive Dielectric Permittivity in Spectral Remittances of Chiral Sculptured Zirconia Thin Films

Comparative Study Between Dispersive and Non-Dispersive Dielectric Permittivity in Spectral Remittances of Chiral Sculptured Zirconia Thin Films Comparatve Study Between Dspersve and Non-Dspersve Delectrc Permttvty n Spectral emttances of Chral Sculptured Zrcona Thn Flms Ferydon Babae * and Had Savalon 2 Department of Physcs Unversty of Qom Qom

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Scattering Matrices for Semi Analytical Methods

Scattering Matrices for Semi Analytical Methods Instructor Dr. Raymond Rumpf (95) 747 6958 rcrumpf@utep.edu EE 5337 Computatonal Electromagnetcs Lecture #5a catterng Matrces for em Analytcal Methods Lecture 5a These notes may contan copyrghted materal

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 8, 014 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Open string operator quantization

Open string operator quantization Open strng operator quantzaton Requred readng: Zwebach -4 Suggested readng: Polchnsk 3 Green, Schwarz, & Wtten 3 upto eq 33 The lght-cone strng as a feld theory: Today we wll dscuss the quantzaton of an

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Supporting Information

Supporting Information Supportng Informaton Water structure at the ar-aqueous nterface of dvalent caton and ntrate solutons Man Xu, Rck Spnney, Heather C. Allen* allen@chemstry.oho-state.edu Fresnel factors and spectra normalzaton

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1 Dstrbutons 8/03/06 /06 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - outlne densty, dstrbuton, moments unform dstrbuton Posson process, eponental dstrbuton Pareto functon densty and dstrbuton

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Solutions to Exercises in Astrophysical Gas Dynamics

Solutions to Exercises in Astrophysical Gas Dynamics 1 Solutons to Exercses n Astrophyscal Gas Dynamcs 1. (a). Snce u 1, v are vectors then, under an orthogonal transformaton, u = a j u j v = a k u k Therefore, u v = a j a k u j v k = δ jk u j v k = u j

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

Binomial Distribution: Tossing a coin m times. p = probability of having head from a trial. y = # of having heads from n trials (y = 0, 1,..., m).

Binomial Distribution: Tossing a coin m times. p = probability of having head from a trial. y = # of having heads from n trials (y = 0, 1,..., m). [7] Count Data Models () Some Dscrete Probablty Densty Functons Bnomal Dstrbuton: ossng a con m tmes p probablty of havng head from a tral y # of havng heads from n trals (y 0,,, m) m m! fb( y n) p ( p)

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

8.022 (E&M) Lecture 8

8.022 (E&M) Lecture 8 8.0 (E&M) Lecture 8 Topcs: Electromotve force Crcuts and Krchhoff s rules 1 Average: 59, MS: 16 Quz 1: thoughts Last year average: 64 test slghtly harder than average Problem 1 had some subtletes math

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

Numerical Simulation of Wave Propagation Using the Shallow Water Equations

Numerical Simulation of Wave Propagation Using the Shallow Water Equations umercal Smulaton of Wave Propagaton Usng the Shallow Water Equatons Junbo Par Harve udd College 6th Aprl 007 Abstract The shallow water equatons SWE were used to model water wave propagaton n one dmenson

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25 ECE 6345 Sprng 2015 Prof. Davd R. Jackson ECE Dept. Notes 25 1 Overvew In ths set of notes we use the spectral-doman method to fnd the nput mpedance of a rectangular patch antenna. Ths method uses the

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials

Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials SULEMETARY IFORMATIO DOI:.38/AO.3.76 Enhancng spontaneous emsson rates of molecules usng nanopatterned multlayer hyperbolc metamaterals Dylan Lu, Jmmy J. Kan, Erc E. Fullerton and Zhaowe Lu* * Correspondence

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 26, 2016 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

Transverse angular shift in the reflection of light beams

Transverse angular shift in the reflection of light beams 1 August 000 Optcs Communcatons 18 000 1 10 www.elsever.comrlocateroptcom Transverse angular shft n the reflecton of lght beams Javer Alda ) Optcs Department. UnÕersty Complutense of Madrd, School of Optcs,

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Caractérisation dans le plan de matériaux isolants par thermographie infrarouge et méthode convolutive

Caractérisation dans le plan de matériaux isolants par thermographie infrarouge et méthode convolutive Journée SFT du Jeud 3 Jun 3 Caractérsaton Température / Température Caractérsaton dans le plan de matérau solants par termogrape nfrarouge et métode convolutve B. REMY, A. DEGIOVAI & D. MAIET B.Rémy, A.Degovann

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information