Implementation of the Matrix Method

Size: px
Start display at page:

Download "Implementation of the Matrix Method"

Transcription

1 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Computatonal Photoncs Semnar 03, 7 May 01 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and transmsson characterstcs of stratfed meda calculaton of felds nsde layers 1

2 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Optcs n stratfed meda y Bragg mrror mrror wth chrp for compensatng dsperson nterferometer

3 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Optcs n stratfed meda y wavegudes composed of many layers Braggg wavegudes

4 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Optcs n stratfed meda y Plane of ncdence = --plane no y-dependency

5 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch A stratfed (layered) meda n

6 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch A stratfed (layered) meda each layer wth nde s charactered by ts thckness d and t delectrc constant () an arbtrary contnuous varaton of the refractve nde can be dscreted wth a suffcent large number of layers mportant for so called 'GRIN' graded nde wavegudes

7 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch EM felds n the stratfed meda Requrements: Statonarty nfnte etenson of the layers nto the y-plane Illumnatng feld ncdents n the --Ebene ncdent feld feld to be calculated Ansat: Ereal(, t, ) Re E( )epkt (, t, ) Re H( )epk t Hreal Separatton n TE und TM TE: E 0 H E, H 0 0 H TE y TE TM: H 0 E H, E 0 0 E TM y TM

8 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Boundary condtons Felds: E t and H t contnuous TE: E=E y und H TM: H=H y und E Performng all computatons wth the tangental components, (f necessary the normal components can be deduced) transversal wavevector s constant n the stack and s determned by the angle of ncdence: denoted by k normal component vares n the stack: k depends on the permttvty of each layer k c k k k k k k

9 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Computng the felds by contnuous components (TE) k E y( ) 0 c k H( ) Ey( ) 0 Soluton: E ( ) cos sn y C k C k 1 0H( ) Ey( ) k C1sn k cos C k Determnaton of C 1, C Ey (0) C 1 E k C y 0

10 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Soluton TE: 1 E ( ) cos k E (0) sn k E k y y y 0 E k sn k E (0) cos k E y y y 0 TM: 1 H ( ) cos k H (0) sn k H k y y y 1 k 1 H sn k H (0) cosk H y y y 0 0 TE/TM: 1 F( ) cos k (0) sn F k (0) G k G ( ) k sn k F(0) cos k G(0) TE: F Ey, G 0H Ey, 1 TM: F Hy, G E Hy, 1/ 0

11 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Summary: Matr method Need to know: F(0), G(0), k,, d We want to calculate the felds F(D), G(D) N F F ˆ ( ) ˆ F d G G G D m M mˆ cos k k sn kd kd kd snk d cos TE: TM: F Ey, G Ey, 1 F Hy, G Hy, 1/ wth, k k k c

12 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Reflecton and transmsson coeffcents of the felds transmsson coeffcent T reflecton coeffcent R k M k M M k k M R N sks T N N k M k M M k k M s s c c 11 1 s s c c 1 s s c c 11 1 s s c c 1 F T F n F R F n Substrat, s F n F R Claddng, c F T wth TE: TM: F E y, 1 F H y, 1/ k k s/c s/c 0 0

13 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Energy flu defned va the normal component of the Poyntng vector S Substrat, s s s T n s s R n s n s n s R s R R c s Re Re k k c s T s T s T Claddng, c wth TE: 1 TM: 1/ k k s/c s/c 0 0

14 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Feld dstrbuton Goal: Computng of F() nsde the entre structure, (the absolute values can be scaled) Intal pont: Taken the known entres of the transmtted ampltude F F 1 F FT FT 1 G D c ck now: c D F n F n F R F T F T F R Approach: 1. Reversng the structure (ncdent vector gets (1, - c k c ). Calculatng the feld vector tll the net nterface 3. From there calculate the feld to the net -pont of nterest 4. Savng the frst value of the vector for ths -pont 5. Iterate untl all -values are calculated and reverse the structure and the feld F n F R F T

15 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch The real feld The observable (reel) feld Er H TE: E F TM: r (, t, ) Re E( )ep kt (, t, ) Re H( )ep k t e y What you have actually calculated s the comple value of a certan componnt H F e y

16 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Task I : Transfer matr Am : calculaton of ˆM Input varables:, d, polarsaton, lambda, k functon M=transfermatr(epslon, thckness, polarsaton, lambda, k); % Computes the transfer matr for a gven stratfed meda % All dmensons are n µm % Functon call M=transfermatr(epslon, thckness, polarsaton, lambda, k); % epslon: Delectrc permttvty of the layers (vector) % thckness: Thcknesses of the layers (vector) % polaraton: Polarsaton of the feld to be computed (strng: 'TE' or 'TM') % lambda: Wavelength of the lght (scalar) % k: Component of the wavevector n transvers drecton [1/µm] (scalar) % M: Transfer matr (matr) (potentally) usefull functons: eye(n): creates the N-dmensonal unty matr error('message'): prnts 'Message' on the screen and nterrupts the program strcmp(varable,'strng'): verfes whether Strng and Varable are equal

17 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Task II: Reflecton and transmsson coeffcents Goal: computaton of R, T,, as a functon of the wavelength Input varables:, d, polarsaton, angle_nc=0; n_s=1; n_c=1.5; lambda_vector functon [T,R,tau,rho]=spektrum(epslon,thckness,polarsaton,lambda_vector,angle_nc,n_s,n_c); % Computes the reflecton and transmsson of a stratfed meda dependng on the wavelength % All dmensons are n µm % Call [T,R,tau,rho]=spektrum(epslon,thckness,polarsaton,lambda_vector,angle_nc,n_s,n_c); % epslon: Delectrc permttvty of the layers (cevtor) % thckness: Thcknesses of the layers (Vector) % polarsaton: Polarsaton of the feld to be computed (Strng: 'TE' or 'TM') % lambda_vector: Wavelength for whch the computaton shall be conducted (Vector) % angle_nc: Angle of ncdendence n degree % n_s,n_c: Refractve ndces of the substrate and claddng Substrat/Claddng; % T: Transmtted ampltude (komple vector) % R: Reflected ampltude (komple vector) % tau: Transmtted energy (reel vector) % rho: Reflected energy (reel vector) Usng the functon: transfermatr

18 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Task III: Feld dstrbuton voluntary task Goal: Computaton of the comple feld f at predefned values of Input varables: k=0; n_s=1; n_c=1.5; lambda=0.6; N=500; functon [f,nde,]=feld(epslon,thckness,polarsaton,lambda,k,n_s,n_c,n,l_s,l_c); % Computes the feld n a stratfed meda % All dmensons are n µm % The stratfed meda starts at =0 at the entrance sde % (stratfed meda for >0) % The transmtted feld has a strength of unty % Call [f,nde,]=feld(epslon,thckness,polarsaton,lambda,k,n_s,n_c,n,l_s,l_c); % epslon: Delectrc permttvty of the layers (cevtor) % thckness: Thcknesses of the layers (Vector) % polarsaton: Polarsaton of the feld to be computed (Strng: 'TE' or 'TM') % lambda: wavelength of lght for whch the computaton shall be conducted (scalar) % k: Component of the wavevector n transversal drecton [1/µm] (scalar) % n_s,n_c: Refracve nde of the substrat/claddng; % N: number of ponts where the feld shall be computed % l_s/c: addtonal thckness of the substrat and claddng n where the % feld should be computed % f: feld structure (vector) % nde: nde dstrbuton (vector) % : spatal coordnate (vektor) Usng the functon: transfermatr, flplr

19 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Task IV*: Tme anmaton of the feld voluntary task Goal: Vsualaton of the temporal evaoluton of the feld Input varables: steps=00; perods=10; functon tmeanmaton(,f,nde,steps,perods); % Anmaton of a quasstatonary feld % Call: tmeanmaton(,f,nde,steps,perods); % : spatal coordnates (reel vector) % f: feld (comple vector) % steps: Number of the ponts n the dscrete tme to be represented % perods: Number of the oscllaton perods Usng the functons: ma, as, fgure(gcf), pause

20 Computatonal Photoncs, Summer Term 01, Abbe School of Photoncs, FSU Jena, Prof. Thomas Pertsch Homework 1 (7 May 01) Solve tasks I & II. Tasks III & IV are voluntary etra tasks. Prepare a one page report about your soluton wth a fgure of some calculated eample. Submt your matlab m-fles of your program together wth your one page report electroncally to thomas.pertsch@un-jena.de by 17 May 01. (Please put everythng together n one sngle emal whch contans your name (FAMILY NAME, Gven Name) and matrculaton number. Late submssons wll not be accepted! 18 May the solutons of the tasks wll be avalable onlne at the lectures homepage >>> Computatonal Photoncs. You are epected to solve the task yourself and a declaraton of ndependent work must be sgned by every student at the end of the semester.

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

Boundaries, Near-field Optics

Boundaries, Near-field Optics Boundares, Near-feld Optcs Fve boundary condtons at an nterface Fresnel Equatons : Transmsson and Reflecton Coeffcents Transmttance and Reflectance Brewster s condton a consequence of Impedance matchng

More information

16 Reflection and transmission, TE mode

16 Reflection and transmission, TE mode 16 Reflecton transmsson TE mode Last lecture we learned how to represent plane-tem waves propagatng n a drecton ˆ n terms of feld phasors such that η = Ẽ = E o e j r H = ˆ Ẽ η µ ɛ = ˆ = ω µɛ E o =0. Such

More information

CHAPTER II THEORETICAL BACKGROUND

CHAPTER II THEORETICAL BACKGROUND 3 CHAPTER II THEORETICAL BACKGROUND.1. Lght Propagaton nsde the Photonc Crystal The frst person that studes the one dmenson photonc crystal s Lord Raylegh n 1887. He showed that the lght propagaton depend

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mt.edu 6.13/ESD.13J Electromagnetcs and Applcatons, Fall 5 Please use the followng ctaton format: Markus Zahn, Erch Ippen, and Davd Staeln, 6.13/ESD.13J Electromagnetcs and

More information

Computational Photonics

Computational Photonics Computatonal Photoncs, Abbe School of Photoncs, FSU Jena, Prof T Pertsch, 943 Computatonal Photoncs Prof Thomas Pertsch Abbe School of Photoncs Fredrch-Schller-Unverstät Jena Introducton and Motvaton 3

More information

Fresnel's Equations for Reflection and Refraction

Fresnel's Equations for Reflection and Refraction Fresnel's Equatons for Reflecton and Refracton Incdent, transmtted, and reflected beams at nterfaces Reflecton and transmsson coeffcents The Fresnel Equatons Brewster's Angle Total nternal reflecton Power

More information

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Lecture 3. Interaction of radiation with surfaces. Upcoming classes Radaton transfer n envronmental scences Lecture 3. Interacton of radaton wth surfaces Upcomng classes When a ray of lght nteracts wth a surface several nteractons are possble: 1. It s absorbed. 2. It s

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich Homework 4 Contact: frmmerm@ethz.ch Due date: December 04, 015 Nano Optcs, Fall Semester 015 Photoncs Laboratory, ETH Zürch www.photoncs.ethz.ch The goal of ths problem set s to understand how surface

More information

Effect of Losses in a Layered Structure Containing DPS and DNG Media

Effect of Losses in a Layered Structure Containing DPS and DNG Media PIERS ONLINE, VOL. 4, NO. 5, 8 546 Effect of Losses n a Layered Structure Contanng DPS and DNG Meda J. R. Canto, S. A. Matos, C. R. Pava, and A. M. Barbosa Insttuto de Telecomuncações and Department of

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

A semi-analytic technique to determine the propagation constant of periodically segmented Ti:LiNbO 3 waveguide

A semi-analytic technique to determine the propagation constant of periodically segmented Ti:LiNbO 3 waveguide Avalable onlne at www.pelagaresearchlbrary.com Pelaga Research Lbrary Advances n Appled Scence Research, 011, (1): 16-144 ISSN: 0976-8610 CODEN (USA): AASRFC A sem-analytc technque to determne the propagaton

More information

Lecture 8: Reflection and Transmission of Waves. Normal incidence propagating waves. Normal incidence propagating waves

Lecture 8: Reflection and Transmission of Waves. Normal incidence propagating waves. Normal incidence propagating waves /8/5 Lecture 8: Reflecton and Transmsson of Waves Instructor: Dr. Gleb V. Tcheslavsk Contact: gleb@ee.lamar.edu Offce Hours: Room 3 Class web ste: www.ee.lamar.edu/gleb/e m/index.htm So far we have consdered

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm

A constant recursive convolution technique for frequency dependent scalar wave equation based FDTD algorithm J Comput Electron (213) 12:752 756 DOI 1.17/s1825-13-479-2 A constant recursve convoluton technque for frequency dependent scalar wave equaton bed FDTD algorthm M. Burak Özakın Serkan Aksoy Publshed onlne:

More information

( ) + + REFLECTION FROM A METALLIC SURFACE

( ) + + REFLECTION FROM A METALLIC SURFACE REFLECTION FROM A METALLIC SURFACE For a metallc medum the delectrc functon and the ndex of refracton are complex valued functons. Ths s also the case for semconductors and nsulators n certan frequency

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Comparative Study Between Dispersive and Non-Dispersive Dielectric Permittivity in Spectral Remittances of Chiral Sculptured Zirconia Thin Films

Comparative Study Between Dispersive and Non-Dispersive Dielectric Permittivity in Spectral Remittances of Chiral Sculptured Zirconia Thin Films Comparatve Study Between Dspersve and Non-Dspersve Delectrc Permttvty n Spectral emttances of Chral Sculptured Zrcona Thn Flms Ferydon Babae * and Had Savalon 2 Department of Physcs Unversty of Qom Qom

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetsm Set 8: Plane waves Instructor: Prof. Vtaly Lomakn Department of Electrcal and Computer Engneerng Unversty of Calforna, San Dego, CA 92093 1 Wave equaton Source-free lossless Maxwell

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

The Fourier Transform

The Fourier Transform e Processng ourer Transform D The ourer Transform Effcent Data epresentaton Dscrete ourer Transform - D Contnuous ourer Transform - D Eamples + + + Jean Baptste Joseph ourer Effcent Data epresentaton Data

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that PHY 387 K. Solutons for problem set #7. Problem 1: To prove that under the assumptons at hand, the group velocty of an EM wave s less than c, I am gong to show that (a) v group < v phase, and (b) v group

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures IMS 2 Workshop Analytcal Gradent Evaluaton of Cost Functons n General Feld Solvers: A Novel Approach for Optmzaton of Mcrowave Structures P. Harscher, S. Amar* and R. Vahldeck and J. Bornemann* Swss Federal

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 8, 014 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Transverse angular shift in the reflection of light beams

Transverse angular shift in the reflection of light beams 1 August 000 Optcs Communcatons 18 000 1 10 www.elsever.comrlocateroptcom Transverse angular shft n the reflecton of lght beams Javer Alda ) Optcs Department. UnÕersty Complutense of Madrd, School of Optcs,

More information

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n!

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n! 8333: Statstcal Mechancs I Problem Set # 3 Solutons Fall 3 Characterstc Functons: Probablty Theory The characterstc functon s defned by fk ep k = ep kpd The nth coeffcent of the Taylor seres of fk epanded

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Open string operator quantization

Open string operator quantization Open strng operator quantzaton Requred readng: Zwebach -4 Suggested readng: Polchnsk 3 Green, Schwarz, & Wtten 3 upto eq 33 The lght-cone strng as a feld theory: Today we wll dscuss the quantzaton of an

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25 ECE 6345 Sprng 2015 Prof. Davd R. Jackson ECE Dept. Notes 25 1 Overvew In ths set of notes we use the spectral-doman method to fnd the nput mpedance of a rectangular patch antenna. Ths method uses the

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Supporting Information

Supporting Information Supportng Informaton Water structure at the ar-aqueous nterface of dvalent caton and ntrate solutons Man Xu, Rck Spnney, Heather C. Allen* allen@chemstry.oho-state.edu Fresnel factors and spectra normalzaton

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features Analyss of the Magnetomotve Force of a Three-Phase Wndng wth Concentrated Cols and Dfferent Symmetry Features Deter Gerlng Unversty of Federal Defense Munch, Neubberg, 85579, Germany Emal: Deter.Gerlng@unbw.de

More information

Waveguides and resonant cavities

Waveguides and resonant cavities Wavegudes and resonant cavtes February 26, 2016 Essentally, a wavegude s a conductng tube of unform cross-secton and a cavty s a wavegude wth end caps. The dmensons of the gude or cavty are chosen to transmt,

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Three-dimensional eddy current analysis by the boundary element method using vector potential

Three-dimensional eddy current analysis by the boundary element method using vector potential Physcs Electrcty & Magnetsm felds Okayama Unversty Year 1990 Three-dmensonal eddy current analyss by the boundary element method usng vector potental H. Tsubo M. Tanaka Okayama Unversty Okayama Unversty

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Mean Field / Variational Approximations

Mean Field / Variational Approximations Mean Feld / Varatonal Appromatons resented by Jose Nuñez 0/24/05 Outlne Introducton Mean Feld Appromaton Structured Mean Feld Weghted Mean Feld Varatonal Methods Introducton roblem: We have dstrbuton but

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82 VEKTORANAY Kursvecka 3 GAU THEOREM and TOKE THEOREM Kaptel 6 7 dor 51 82 TARGET PROBEM Do magnetc monopoles est? EECTRIC FIED MAGNETIC FIED N +? 1 TARGET PROBEM et s consder some EECTRIC CHARGE 2 - + +

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model

Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model Planar delectrc wavegudes n rotaton are optcal fbers: comparson wth the classcal model Antono Peña García 1, Francsco Pérez-Ocón and José Ramón Jménez 1 Departamento de Ingenería Cvl. ETSICCP. Unversdad

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

Chapter 4. Velocity analysis

Chapter 4. Velocity analysis 1 Chapter 4 Velocty analyss Introducton The objectve of velocty analyss s to determne the sesmc veloctes of layers n the subsurface. Sesmc veloctes are used n many processng and nterpretaton stages such

More information

Night Vision and Electronic Sensors Directorate

Night Vision and Electronic Sensors Directorate Nght Vson and Electronc Sensors Drectorate RDER-NV-TR-67 A Note on the rewster Angle n Lossy Delectrc Meda Approved for Publc Release: Dstrbuton Unlmted Fo elvor, Vrgna 060-5806 Nght Vson and Electronc

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials

Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials SULEMETARY IFORMATIO DOI:.38/AO.3.76 Enhancng spontaneous emsson rates of molecules usng nanopatterned multlayer hyperbolc metamaterals Dylan Lu, Jmmy J. Kan, Erc E. Fullerton and Zhaowe Lu* * Correspondence

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

A REVIEW OF ERROR ANALYSIS

A REVIEW OF ERROR ANALYSIS A REVIEW OF ERROR AALYI EEP Laborator EVE-4860 / MAE-4370 Updated 006 Error Analss In the laborator we measure phscal uanttes. All measurements are subject to some uncertantes. Error analss s the stud

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

A Mechanics-Based Approach for Determining Deflections of Stacked Multi-Storey Wood-Based Shear Walls

A Mechanics-Based Approach for Determining Deflections of Stacked Multi-Storey Wood-Based Shear Walls A Mechancs-Based Approach for Determnng Deflectons of Stacked Mult-Storey Wood-Based Shear Walls FPINNOVATIONS Acknowledgements Ths publcaton was developed by FPInnovatons and the Canadan Wood Councl based

More information