Lecture 7 Fluid Systems I. System Analysis Spring

Size: px
Start display at page:

Download "Lecture 7 Fluid Systems I. System Analysis Spring"

Transcription

1 Lecture 7 Flud Systems I 1

2 Brake systems Font Wheel Brake Pedal Vacuum Booster Master Cylnder Proportonng Valve Vacuum Booster ear Wheel Master Cylnder Proportonng Valve Brake Pedal Fundamental structure of a hydraulc brake

3 Conservaton of Mass, Force and Pressure 3

4 Conservaton of Mass, Force and Pressure m m mo ) Volume A dx A dx dx A 1 1 A ) Force f p A f 1 1 dx ) Pressue p p gh pa A f f ( P P) 1 1 A1 L L A f f f L L A1 4

5 Flud esstance Electrcal systems, resstance s defned as v, v h For flud systems, s defned as D m P, P m L Mass flow rate, pressure dfference 5

6 Flud esstance change n pressure dp changen flowrate d m mr 6

7 Flud Capactance Electrcal systems, dv dt 1 C Flud systems, dp 1 1 dt m m, dp mdt, C dt C C dp C change n stored mass change pressure dm dp 7

8 Flud Capactance C change n stored mass change pressure dm dp For a tank, General flud capactance dh 1 A C A A dp g g dm dt dp C m dt mo dp dh C A m dt dt mo For lud level system, C s defned as C 3 change n lud stored m change n head m use h(pressure head), nstead of p. A 8

9 Flud Systems vs Electrcal Systems Electrcal systems, Flud systems, esstance Capactance Inductance 9

10 Flud Systems vs Electrcal Systems Electrcal systems, Flud systems, Voltage V Pressure P Current I (= dq/dt) Mass flow rate Charge Q Flud mass 10

11 Lud Level Systems Control valve Q Q esstance Capactance H H h Q Q o o change n level dfference m C change n lud stored m changen flow rate m 3 / s changenhead m 3 Steady state Q Q Q : 0 H H consder, Qo, Q Qo C dh dt 11

12 Basc Concepts Lamnar flow : When the vscous forces are domnant (slow flow, low e) they are suffcent enough to keep all the flud partcles n lne, then the flow s lamnar. Turbulent flow : It can be nterpreted that when the nertal forces domnate over the vscous forces (when the flud s flowng faster and e s larger) then the flow s turbulent. eynolds number (e) : The rato of nertal forces to vscous forces. It s used to determne whether a flow wll be lamnar or turbulent. e vd : : D : the dynamc vscousty of the flud densty of the flud dameter e 000 : e 4000 : always lamnar always turbulent 1

13 Lamnar Flow Cylndrcal ppe h P1 P D 18 L P1 P gh, Q h 4 g D : vscosty, L: lengthof ppe D : dameter of ppe L h 18 L Q Kl h s m g D, [ / ] 4 Q : steady state flow rate K l : constant h : steady state head 13

14 Lamnar Flow Lud level dynamcs : dh C Q Q dt o Q ( Q ) o o dh d dh ( H h) dt dt dt H h h Qo Qo, o dh 1 1 h dt C C 14

15 Turbulent Flow Q Q H H h C Q Q 0 0 Q Cd a ( P1P ) : densty, a : area, C : dschargecoeffcent d steady state Q Q Q K H : 0 t 15

16 Turbulent Flow Lud level dynamcs dh C Q Q0 Q K H dt dh 1 1 Q K H f( Q, H) dt C C f 1 f f( Q, H) f( Q, H) ( Q Q) ( Q Q) Q! Q QH, f 1 ( H H) ( H H) H QH,! H K Q K H h hgh order term C C C C H f 16

17 Turbulent Flow dh dh dh dt dt dt dh 1 K dt C C H h h H H,, o Q K H K Q dh 1 1 h dt C C h o for small 17

18 Flud esstance(lamnar flow vs turbulent flow) change n pressure dp changen flowrate d m mr m p For lamnar flow m p l For turbulent flow For lud level system, s defned as change n level dfference m dh changen flow rate m s d 3 / m 18

19 Lnearzaton Q Q H h H K H QQ K H ( ) h y f( x), y f( x), x xx f 1 f y f x x x ( ) x x! x x f y x x x f y y ( xx) K( xx) x x f f y f( x, x ) f( x, x ) ( x x ) ( x x ) x1 x x, x x, x yk ( x x ) K ( x x ) y y K ( x x ) K ( x x )

20 Summary of Lud Level Systems Lamnar flow Turbulent flow dh 1 1 h dt C C H Q KH Q dh 1 1 h dt C C o h 18 L g D 4 o h H H H Q K Ca g d Q K H Cda gh Cda g H 0

21 Lud Level Systems wth Interacton Q Q Steady state : Q QQ Q 1 H 1 H1 h1 C 1 Q 1 H H h C 1 Q 1 Q Q H H H 1 1 Lud level dynamcs : dh dh C Q Q C dt dt h Q Q H h ( H h ) h dh dh C Q Q C dt dt 1 1 H h h Q Q 1

22 Lud Level Systems wth Interacton dh1 1 h1 h 1 dt C C dh 1 h h 1 h dt C C 1 1 Transfer Functon Q ( S) 1 Q( S) C C S C C C S

23 End of Lecture 7 3

Lecture Note 8-1 Hydraulic Systems. System Analysis Spring

Lecture Note 8-1 Hydraulic Systems. System Analysis Spring Lecture Note 8-1 Hydraulic Systems 1 Vehicle Model - Brake Model Brake Model Font Wheel Brake Pedal Vacuum Booster Master Cylinder Proportionnig Valve Vacuum Booster Rear Wheel Master Cylinder Proportioning

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Macroscopic Momentum Balances

Macroscopic Momentum Balances Lecture 13 F. Morrson CM3110 2013 10/22/2013 CM3110 Transport I Part I: Flud Mechancs Macroscopc Momentum Balances Professor Fath Morrson Department of Chemcal Engneerng Mchgan Technologcal Unersty 1 Macroscopc

More information

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer

Convection Heat Transfer. Textbook: Convection Heat Transfer. Reference: Convective Heat and Mass Transfer. Convection Heat Transfer Convecton Heat Transfer Tetbook: Convecton Heat Transfer Adran Bean, John Wley & Sons Reference: Convectve Heat and Mass Transfer Kays, Crawford, and Wegand, McGraw-Hll Convecton Heat Transfer Vedat S.

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 6 REVIEW of Lecture 5 2.29 Numercal Flud Mechancs Fall 2011 Lecture 6 Contnuum Hypothess and conservaton laws Macroscopc Propertes Materal covered n class: Dfferental forms of conservaton laws Materal Dervatve

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

CONDUCTORS AND INSULATORS

CONDUCTORS AND INSULATORS CONDUCTORS AND INSULATORS We defne a conductor as a materal n whch charges are free to move over macroscopc dstances.e., they can leave ther nucle and move around the materal. An nsulator s anythng else.

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

Numerical Analysis and Optimization on Vortex Shedder by the Linearity of Strouhal Number against Reynold Number

Numerical Analysis and Optimization on Vortex Shedder by the Linearity of Strouhal Number against Reynold Number Internatonal Journal of Materals, Mechancs and Manufacturng, Vol. 4, No. 3, August 2016 Numercal Analyss and Optmzaton on Vortex Shedder by the Lnearty of Strouhal Number aganst Reynold Number Su Myat

More information

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015 Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx 1 Learning Objectives After this presentation you will be able to: Define the characteristics

More information

Physics 2102 Spring 2007 Lecture 10 Current and Resistance

Physics 2102 Spring 2007 Lecture 10 Current and Resistance esstance Is Futle! Physcs 0 Sprng 007 Jonathan Dowlng Physcs 0 Sprng 007 Lecture 0 Current and esstance Georg Smon Ohm (789-854) What are we gong to learn? A road map lectrc charge lectrc force on other

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD

NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1955-1962 1955 NUMERICAL MODEL FOR NON-DARCY FLOW THROUGH COARSE POROUS MEDIA USING THE MOVING PARTICLE SIMULATION METHOD Introducton by Tomok IZUMI a* and

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulc Head and Flud Potental What makes water flow? Consder ressure Water Level o A Water Level C o o + B Pressure at A atmosherc (

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

PARAMETRIC STUDY ON AIR CORE PHENOMENA AT LIQUID DRAINING FROM CYLINDRICAL TANK

PARAMETRIC STUDY ON AIR CORE PHENOMENA AT LIQUID DRAINING FROM CYLINDRICAL TANK Blucher Mechancal Engneerng Proceedngs May 2014, vol. 1, num. 1 www.proceedngs.blucher.com.br/evento/10wccm PARAMETRIC STUDY ON AIR CORE PHENOMENA AT LIQUID DRAINING FROM CYLINDRICAL TANK I. S. Park 1,

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

Simulation of Flow Pattern in Open Channels with Sudden Expansions

Simulation of Flow Pattern in Open Channels with Sudden Expansions Research Journal of Appled Scences, Engneerng and Technology 4(19): 3852-3857, 2012 ISSN: 2040-7467 Maxwell Scentfc Organzaton, 2012 Submtted: May 11, 2012 Accepted: June 01, 2012 Publshed: October 01,

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write

2) For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean velocity components (U,V), write 058:68 Turbulent Flows 004 G. Constantnescu HOMEWORKS: Assgnment I - 01/6/04, Due 0/04/04 1) A cubcal box of volume L 3 s flled wth flud n turbulent moton. No source of energy s present, so that the turbulence

More information

Four Parameter Heat Transfer Turbulence Models for Heavy Liquid Metals

Four Parameter Heat Transfer Turbulence Models for Heavy Liquid Metals J. Energy Power Sources Vol., No., 015, pp. 63-74 Receved: January 9, 015, Publshed: February 8, 015 Journal of Energy and Power Sources www.ethanpublshng.com Four Parameter Heat Transfer Turbulence Models

More information

Chapter 1. Theory of Gravitation

Chapter 1. Theory of Gravitation Chapter 1 Theory of Gravtaton In ths chapter a theory of gravtaton n flat space-te s studed whch was consdered n several artcles by the author. Let us assue a flat space-te etrc. Denote by x the co-ordnates

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Lecture 12. Transport in Membranes (2)

Lecture 12. Transport in Membranes (2) Lecture 12. Transport n embranes (2) odule Flow Patterns - Perfect mxng - Countercurrent flow - Cocurrent flow - Crossflow embrane Cascades External ass-transfer Resstances Concentraton Polarzaton and

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

Airflow and Contaminant Simulation with CONTAM

Airflow and Contaminant Simulation with CONTAM Arflow and Contamnant Smulaton wth CONTAM George Walton, NIST CHAMPS Developers Workshop Syracuse Unversty June 19, 2006 Network Analogy Electrc Ppe, Duct & Ar Wre Ppe, Duct, or Openng Juncton Juncton

More information

Lecture Fluid system elements

Lecture Fluid system elements Lecture 8.1 Fluid system elements volumetric flowrate pressure drop Detailed distributed models of fluids, such as the Navier-Stokes equations, are necessary for understanding many aspects of fluid systems

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability:

1. Why turbulence occur? Hydrodynamic Instability. Hydrodynamic Instability. Centrifugal Instability: Rayleigh-Benard Instability: . Why turbulence occur? Hydrodynamc Instablty Hydrodynamc Instablty T Centrfugal Instablty: Ω Raylegh-Benard Instablty: Drvng force: centrfugal force Drvng force: buoyancy flud Dampng force: vscous dsspaton

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

A NUMERICAL STUDY OF HEAT TRANSFER AND FLUID FLOW IN A BANK OF TUBES WITH INTEGRAL WAKE SPLITTER

A NUMERICAL STUDY OF HEAT TRANSFER AND FLUID FLOW IN A BANK OF TUBES WITH INTEGRAL WAKE SPLITTER INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Prnt) ISSN 0976 6359 (Onlne) Volume 5, Issue 12, December (2014), pp. 36-46 IAEME: www.aeme.com/ijmet.asp Journal

More information

Experiment 1 Mass, volume and density

Experiment 1 Mass, volume and density Experment 1 Mass, volume and densty Purpose 1. Famlarze wth basc measurement tools such as verner calper, mcrometer, and laboratory balance. 2. Learn how to use the concepts of sgnfcant fgures, expermental

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

V. Electrostatics. Lecture 25: Diffuse double layer structure

V. Electrostatics. Lecture 25: Diffuse double layer structure V. Electrostatcs Lecture 5: Dffuse double layer structure MIT Student Last tme we showed that whenever λ D L the electrolyte has a quas-neutral bulk (or outer ) regon at the geometrcal scale L, where there

More information

COMPUTATIONAL FLUID DYNAMICS ME G515

COMPUTATIONAL FLUID DYNAMICS ME G515 BITS Plan Duba Campus COMPUTATIONAL FLUID DYNAMICS ME G515 BASICS OF COMPUTATIONAL FLUID DYNAMICS ANALYSIS BITS Plan, Duba Campus Overvew Introducton Hstory of CFD Basc concepts CFD Process Dervaton of

More information

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract

SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME. Abstract SIMULATION OF SOUND WAVE PROPAGATION IN TURBULENT FLOWS USING A LATTICE-BOLTZMANN SCHEME PACS REFERENCE: 43.20.Mv Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Zeunerstr.

More information

Confirmation of Gauss s law

Confirmation of Gauss s law Gauss s law Consder charge n a generc surface urround charge wth sphercal surface 1 concentrc to charge Consder cone of sold angle dω from charge to surface through the lttle sphere Electrc flu through

More information

Systems Physics Library

Systems Physics Library Werner aurer Elsabeth Dumont Insttut für Angewandte athematk und Physk Zürcher Hochschule für Angewandte Wssenschaften Technkumstrasse 9, Wnterthur, 8401 Swtzerland maur@zhaw.ch dumo@zhaw.ch Abstract In

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

Key component in Operational Amplifiers

Key component in Operational Amplifiers Key component n Operatonal Amplfers Objectve of Lecture Descrbe how dependent voltage and current sources functon. Chapter.6 Electrcal Engneerng: Prncples and Applcatons Chapter.6 Fundamentals of Electrc

More information

Chapter 2: Electric Energy and Capacitance

Chapter 2: Electric Energy and Capacitance Chapter : Electrc Energy and Capactance Potental One goal of physcs s to dentfy basc forces n our world, such as the electrc force as studed n the prevous lectures. Expermentally, we dscovered that the

More information

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March

TURBULENT FLOW A BEGINNER S APPROACH. Tony Saad March TURBULENT FLOW A BEGINNER S APPROACH Tony Saad March 2004 http://tsaad.uts.edu - tsaad@uts.edu CONTENTS Introducton Random processes The energy cascade mechansm The Kolmogorov hypotheses The closure problem

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto- Capillary Breakup

Effects of Polymer Concentration and Molecular Weight on the Dynamics of Visco-Elasto- Capillary Breakup Effects of Polymer Concentraton and Molecular Weght on the Dynamcs of Vsco-Elasto- Capllary Breakup Mattheu Veran Advsor: Prof. Gareth McKnley Mechancal Engneerng Department January 3, Capllary Breakup

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE

GeoSteamNet: 2. STEAM FLOW SIMULATION IN A PIPELINE PROCEEDINGS, Thrty-Ffth Workshop on Geothermal Reservor Engneerng Stanford Unversty, Stanford, Calforna, February 1-3, 010 SGP-TR-188 GeoSteamNet:. STEAM FLOW SIMULATION IN A PIPELINE Mahendra P. Verma

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Formulation of Circuit Equations

Formulation of Circuit Equations ECE 570 Sesson 2 IC 752E Computer Aded Engneerng for Integrated Crcuts Formulaton of Crcut Equatons Bascs of crcut modelng 1. Notaton 2. Crcut elements 3. Krchoff laws 4. ableau formulaton 5. Modfed nodal

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week. Announcements Sectons begn ths week Cancelled Sectons: Th 122. Labs begn ths week. Attend your only second lab slot ths week. Cancelled labs: ThF 25. Please check your Lab secton. Homework #1 onlne Due

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

8.022 (E&M) Lecture 8

8.022 (E&M) Lecture 8 8.0 (E&M) Lecture 8 Topcs: Electromotve force Crcuts and Krchhoff s rules 1 Average: 59, MS: 16 Quz 1: thoughts Last year average: 64 test slghtly harder than average Problem 1 had some subtletes math

More information

SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES*

SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES* SCALING OF MICRODISCHARGE DEVICES: PYRAMIDAL STRUCTURES* Mark J. Kushner Dept. Electrcal and Computer Engneerng Urbana, IL 61801 USA mjk@uuc.edu http://ugelz.ece.uuc.edu October 2003 * Work supported by

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model Process Modelng Improvng or understandng chemcal process operaton s a major objectve for developng a dynamc process model Balance equatons Steady-state balance equatons mass or energy mass or energy enterng

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

The Governing Equations

The Governing Equations The Governng Equatons L. Goodman General Physcal Oceanography MAR 555 School for Marne Scences and Technology Umass-Dartmouth Dynamcs of Oceanography The Governng Equatons- (IPO-7) Mass Conservaton and

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE

NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE NUMERICAL INVESTIGATION OF THE TURBULENT FLOW PARAMETERS DISTRIBUTION IN A PARTLY PERFORATED HORIZONTAL WELLBORE Mohammed Abdulwahhab Abdulwahd Research Scholar, Department of Marne Engneerng, Andhra Unversty,

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson

Publication 2006/01. Transport Equations in Incompressible. Lars Davidson Publcaton 2006/01 Transport Equatons n Incompressble URANS and LES Lars Davdson Dvson of Flud Dynamcs Department of Appled Mechancs Chalmers Unversty of Technology Göteborg, Sweden, May 2006 Transport

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information