UvA-VU Master Course: Advanced Solid State Physics

Size: px
Start display at page:

Download "UvA-VU Master Course: Advanced Solid State Physics"

Transcription

1 UvA-VU Maste Couse: Advanced Solid State Pysics Contents in 005: Diffaction fom peiodic stuctues (wee 6, AdV Electonic band stuctue of solids (wee 7, AdV Motion of electons and tanspot penomena (wee 8, AdV Supeconductivity (wee 9&0, RW Magnetism (wee &,JB Anne de Visse Rine Wijngaaden Jügen Buscow

2 Liteatue, softwae and omewo Te couse is based on te boo: H. Ibac and H. Lüt: Solid State Pysics 3 d edition (Spinge-Velag, Belin, 003 ISBN X See also: N.W. Ascoft and N.D. Memin: Solid State Pysics (Saundes College Publ. ISBN Compute simulations fom an essential pat of te couse: R.H. Silsbee and J. Däge: Simulations fo Solid State Pysics (Cambidge Univesity Pess, Cambidge 997 ISBN Softwae (feewae: Homewo execises will be distibuted tougout te couse Completing te couse gives 6 ECTS ~ 6 x 8 ous

3 Couse 3: Motions of electons and tanspot penomena ne τ E( σ m m* ij j i j Pictues ae taen fom te Solid State Couse by Ma Jael (Cincinnati Univesity, fom Ibac and Lüt, fom Ascoft and Memin and fom seveal souces on te web.

4 Couse 3: Motions of electons and tanspot penomena Equation of motion of electons Dude and Sommefeld models fo conductivity Cystal momentum is not momentum! Motion of electons in bands and te effective mass tenso Cuents in bands and oles Scatteing of electons in bands Electical conductivity of metals Quantum oscillations and te topology of Femi sufaces Quantum Hall effect Pictues ae taen fom te Solid State Couse by Ma Jael (Cincinnati Univesity, fom te boo of Ibac and Lüt, fom te boo of Ascoft and Memin and fom seveal souces on te web.

5 Equation of motion of electons Classical equation of motion in E and B field: dv F m e( E + v B dt dv v F m + e E + v B dt τ ( witout collisions wit collisions v ~ e t /τ v decays exponentially elaxation time τ steady-state aveage velocity eeτ v vav m cuent density j 0 eeτ nev av ne m v av

6 Dude model fo conductivity Classical model: dilute gas of electons neglect inteactions wit ote electons and ions between collisions independent electon appoximation fee electon appoximation collisions pobability /τ (time between collisions τ temal equilibium toug collisions j nev j av ne σ E ρ E eeτ m ne τ E m ρ esistivity σ conductivity τ ~ s, v T ~ 0 5 m/s mean fee pat l v T τ -0 Å σ ne τ m Paul Dude ( Maxwell-Boltzmann velocity distibution - equipatition of enegy / mv T 3/ B T electon tanspot wit v av v D dift velocity Impotant failue Dude: mean fee pat l can be >> inteatomic distance

7 Sommefeld model fo conductivity Quantum mecanical desciption ψ V e i Femi velocity Femi enegy v E F Femi-Diac velocity distibution Semi classical enegy gain electons Femi spee δe ee vδt v E( displaced δe E( δ v δ m in space d fee electons only! dift ee eτ dt δ stationay state EOM d dv F m e( E + v B mean fee: l v dt dt F τ (use Femi velocity! example coppe: v F.6x0 6 m/s ne τ τ ~ x0-9 at 4K l 4K 3x0-3 m ne τ j nevav E σ τ ~ x0-4 at 300K l 300K 3x0-8 m m m Sommefeld wos also at low T! Lie Dude! F m F F m x E x

8 Intemezzo: Cystal momentum is not momentum! Fee electon wit enegy ε in state ψ Hψ ε ψ ; H m d dx ψ ix e ; ε L m Momentum expectation value fee electons d ix d ix p i ψ ψ e i e dx dx L dx L Bloc electons d H + V ( x m dx ψ ( x u ( x e ix p u * ( x e i eal momentum ix u * * u ( x i du ( x dx dx d dx u ( x e ix dx cystal momentum

9 Motion of electons in bands and effective mass tenso te eal wold: electon state is wave pacet ψ ( x, t i( x ω( t U ( e d π goup velocity and dispesion ω v ; ω c( velocity of cystal electon depends on dispesion E( v ω( E( fee electons: E /m v /m p/m U ( const. δ ( 0 delocalized ψ ( x, t U ( const. ψ ( x, t δ ( x i e ( 0 x ωt localized

10 Velocity of cystal electon Example: tigt binding dispesion elation ε E at + A + B cos( a velocity v E( v Basin( a velocity is constant at fixed vey diffeent fom classical pictue v 0

11 ate of cange of goup velocity component wit effective mass tenso (invese eq. of motion j E j e & ( j j j i i i E E dt d v & & j j i ij E m ( * ( j j j i i ee E v & ( j ij i ee m v * & Semi classical eq. of motion in electic field

12 Effective mass nd deivative * m d E d flatte band ige m* dv / d > 0 m * > 0 dv / d < 0 m * < 0 Negative effective mass! effective mass appoximation m* constant wen E ( E + ( * x + y + m 0 z

13 Cystal (Bloc electon in electic field Foce due to electic field is equal to time deivative of cystal momentum d ee dt Bloc state evolves, afte time t: ψ ψ + wen state eaces BZ π/a -π/a Bloc oscillations NB Scatteing pevents obsevation Bloc osc.

14 Cuent fo Bloc states in a alf filled band Scatteing poduces steady state ψ ψ + ee τ τ elaxation time netto velocity E 0 cuent I e v occup. states eeτ/ ~5 m - Wit τ ~ 0-4 s and E ~ V/m << BZ ~0 0 m - in eality small cange

15 Cuents in bands and oles paticle cuent density of d at dj n v electical cuent density integate ove fist Billouin zone j full band d 8π 8π ( 3 3 e π 3 E( 8 st B. z. E( d cuent 0 insulato d v( E( E( v( density states in d /(π 3 diffeent occupied states mae diffeent contibutions to te cuent density lattice wit invesion symmety E( E(

16 patially filled band: E field edistibutes states symmety aound 0 lost cuent of positive cage, paticles in unoccupied states (oles + empty empty z B st occupied d v e d v e d v e d v e j ( 8 ( 8 ( 8 ( π π π π

17 nea top of te band ( taen fom top E( E 0 m * oles oles at te top of te band ave positive effective mass! v& d dt E( m * & e m * E insulatos conduct at T 0 n ~ exp(-e g / B T

18 Scatteing of electons in bands Wat did we lean: equation of motion electons/oles acceleate Bloc waves in pefect lattice no esistivity Tis cannot be tue: scatteing! deviations fom peiodicity (defects, lattice vibations electon-electon collisions - q scatteing at a defect o ponon momentum and enegy consevation E + E E3 + E4 ; scatteing esticted to naow -sell nea F 4 τ e e ~ ρ e e BT ~ EF nea 300 K τ e-e ~0-0 s >> τ e-p o τ e-d, scattes into 3, 4

19 Boltzmann eq. descibes non-equilibium steady state diving foce due to E and B field dissipation due to scatteing temal equilibium distibution EB0 cange of f in time (t-dt t + effect of scatteing expanding up to tems linea in dt Boltzmann equation Boltzmann equation and elaxation time appoximation s t f f E e f v t f +,, ( ( / ( ( T E E E B F e t f f dt t f dt t dt ee vdt f t f s + +,, (,, ( ( ( ( 0 f f t f s τ Relaxation time appoximation: ate at wic f etuns to equilibium deviation of f fom f 0

20 Paticle cuent density j n 8π Electical conductivity of metals v( f ( 3 st BZ d - linea effects in electic field (Oms law - isotopic medium, cubic lattice - lineaized Boltzmann eq. e f 0 σ jx / Ex vx ( τ ( d 3 8π E e vx ( σ τ ( df 3 8π E EF v( inset distibution function E only states at Femi suface impotant Femi suface Conductivity expessed as integal ove te Femi suface, depends on v(e F and τ(e F Fo paabolic band tis educes to: σ e τ ( E * m F n

21 Electical conductivity of metals Mattiesen s ule τ τ τ τ τ def e e p mag + τ CEF +... ρ constant 5 5 x dx ρ p a( T / θ ρ ρ0 + ρe e + ρ p + ρmag + ρcef +... x ( e ( e ρ 0 e e AT θ / T 0 x esistance of sodium 3 diff. defect concentations esistivity of coppenicel alloys ponon (Debye esistance

22 Electical conductivity of metals: examples esistivity of eavyfemion compounds esistivity of supeconducting cupates: La -x S x CuO 4

23 Quantum oscillations and te topology of Femi sufaces Motion of electons and oles in magnetic field Loentz foce dv m e( v B dt fo wave pacet mv d e [ E( B] dt Electons move: in plane B tangential to suface of constant E( open obits closed obits

24 Peiod of obit in magnetic field T dt eb [ d E( ] d d de ds de Fee electons Sπ and E /m Subniov-de Haas effect ds π m* T T.3 K eb de eb ω π T c eb m* cycloton fequency wy oscillations?

25 de Haas-van Alpen effect Landau quantization E ( n + ω ; ω n c c eb m* de Haas van Alpen ( ( Landau tubes Enegy splitting : Femi suface aea' s : Peiod of E oscillations : n+ E n ω π eb Sn+ Sn SF, ext B π e c eb m* π T S F,ext (λ+n S Landau tubes coss E F wit peiod (/B

26 Some numbes: peiod T π/ω c 3.6x0 - s in T quantum numbe: (n+/ω c ~ E F fo silve E F 5.5 ev n ~ 4.6x0 4 fo B T absence of temal smeaing: B T/ω c < B T/ω c B m/e(t/b.34(t/b low T & ig B B dhva signal (magnetization in silve B [,,] T.3 K two peiods nec and belly obits S (belly/s (nec 5

27 Quantum Hall effect in D systems D electon gas fomed at inteface of lattice matced eteostuctues o quantum wells GaAs/Al 0.3 Ga 0.7 As In 0.53 Ga 0.47 As/InP

28 Heteostuctues and quantum wells potential well E-gap AlGaAs G GaAs Heteostuctue E-gap Quantum well AlGaAs GaAs AlGaAs

29 Magnetotanspot in Hall ba geomety Classically R xx V I xx ρ xx R xx b L m* ne τ Vxx I neµ b L b L R xy V xy I ρ xy mobility µ v D /E Vxy R xy I B ne Hall esistance linea in field gives caie concentation and type (electons o oles

30 Te quantum Hall effect ρ xx (Ω InGaAs/AlGaAs T 30 mk n.8x0 5 m - µ3.4 m /Vs ρ xy /ie i ρ xy (Ω Klaus von Klitzing Nobel Pize Pysics 985 fo te discovey of te quantum Hall effect B (T QHE: ρ xy quantized (esistance standad allows pecise detemination fine stuctue constant ie ρxy α 5.8 (Ω i e µ c 0 37

31 Enegy levels in band i split into discete Landau levels in magnetic field Ei, n ( n + ω c + gµ BB n intege Landau quantization Zeeman tem ωc eb m* cycloton fequency Lev Landau Nobel Pize Pysics 96 fo is pioneeing teoies fo condensed matte DOS D m* π N L states pe unit aea pe Landau level N L eb Filling facto ν ν n N D L nd eb

32 Simple explanation QHE Landau level Extended states Localised Localized states disode/impuities extended and localised states in Landau levels i+ Slope i+ i R xy B wit inceasing field B Landau levels pused to above E F plateau-plateau tansitions B c Widt B R xx B B conduction wen Landau level in extended states widt extended states 0 wen T 0

33 Typical numbes Enegy distance between levels B T~ 5 mev nea 300 K ω c ~.6 mev/t (m* 0.067m e B T << ω c T< 4 K ω c eb / m* Filling faction typical n D x0 5 m - quantum limit ν B~ 8.5 T ν n N D L nd eb ig B/T needed R xy (Ω R xx (Ω K.07 K K 0.89 K K Field (T 4.50 K.07 K K 0.89 K K InGaAs/GaAs quantum well n x0 5 m - T K

34 Factional quantum Hall effect νe ρxy 5.8 (Ω ν ν /3, /3, /5, /5 etc. factional quantum Hall effect in ig mobility GaAs/AlGaAs eteostuctue T 0.5 K

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment Last Time 3-dimensional quantum states and wave functions Couse evaluations Tuesday, Dec. 9 in class Deceasing paticle size Quantum dots paticle in box) Optional exta class: eview of mateial since Exam

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

Chapter 9. Spintransport in Semiconductors. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene 1

Chapter 9. Spintransport in Semiconductors. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Chapte 9 Spintanspot in Semiconductos : Gundlagen und Anwendung spinabhängige Tanspotphänomene 1 Winte 05/06 Why ae semiconductos of inteest in spintonics? They povide a contol of the chage as in conventional

More information

Physics Courseware Electromagnetism

Physics Courseware Electromagnetism Pysics Cousewae lectomagnetism lectic field Poblem.- a) Find te electic field at point P poduced by te wie sown in te figue. Conside tat te wie as a unifom linea cage distibution of λ.5µ C / m b) Find

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams Suppoting Infomation Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulato Bi 2 Se 3 Pobed by Electon Beams Nahid Talebi, Cigdem Osoy-Keskinboa, Hadj M. Benia, Klaus Ken, Chistoph T. Koch,

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4 ECE 6340 Intemediate EM Waves Fall 016 Pof. David R. Jackson Dept. of ECE Notes 4 1 Debye Model This model explains molecula effects. y We conside an electic field applied in the x diection. Molecule:

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o Last Time Exam 3 esults Quantum tunneling 3-dimensional wave functions Deceasing paticle size Quantum dots paticle in box) This week s honos lectue: Pof. ad histian, Positon Emission Tomogaphy Tue. Dec.

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Photonic Crystals: Periodic Surprises in Electromagnetism. Steven G. Johnson MIT

Photonic Crystals: Periodic Surprises in Electromagnetism. Steven G. Johnson MIT Photonic Cystals: Peiodic Supises in Electomagnetism Steven G. Johnson MIT To Begin: A Catoon in 2d k scatteing planewave E, H ~ e i( k x -wt ) k = w / c = 2p l To Begin: A Catoon in 2d k a planewave E,

More information

Mobility of atoms and diffusion. Einstein relation.

Mobility of atoms and diffusion. Einstein relation. Mobility of atoms and diffusion. Einstein elation. In M simulation we can descibe the mobility of atoms though the mean squae displacement that can be calculated as N 1 MS ( t ( i ( t i ( 0 N The MS contains

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon Annihilation of Relativistic Positons in Single Cystal with poduction of One Photon Kalashnikov N.P.,Mazu E.A.,Olczak A.S. National Reseach Nuclea Univesity MEPhI (Moscow Engineeing Physics Institute),

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

LC transfer of energy between the driving source and the circuit will be a maximum.

LC transfer of energy between the driving source and the circuit will be a maximum. The Q of oscillatos efeences: L.. Fotney Pinciples of Electonics: Analog and Digital, Hacout Bace Jovanovich 987, Chapte (AC Cicuits) H. J. Pain The Physics of Vibations and Waves, 5 th edition, Wiley

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Adiabatic evolution of the constants of motion in resonance (I)

Adiabatic evolution of the constants of motion in resonance (I) Adiabatic evolution of the constants of motion in esonance (I) BH Gavitational 重 力力波 waves Takahio Tanaka (YITP, Kyoto univesity) R. Fujita, S. Isoyama, H. Nakano, N. Sago PTEP 013 (013) 6, 063E01 e-pint:

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST Magnetic Fluctuation-Induced Paticle Tanspot and Zonal Flow Geneation in MST D.L. Bowe Weixing Ding, B.H. Deng Univesity of Califonia, Los Angeles, USA D. Caig, G. Fiksel, V. Minov, S.C. Page, J. Saff

More information

Modeling Fermi Level Effects in Atomistic Simulations

Modeling Fermi Level Effects in Atomistic Simulations Mat. Res. Soc. Symp. Poc. Vol. 717 Mateials Reseach Society Modeling Femi Level Effects in Atomistic Simulations Zudian Qin and Scott T. Dunham Depatment of Electical Engineeing, Univesity of Washington,

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t. Diffusion and Tanspot 10. Fiction and the Langevin Equation Now let s elate the phenomena of ownian motion and diffusion to the concept of fiction, i.e., the esistance to movement that the paticle in the

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet.

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet. Today A new foce Magnetic foce Announcements HW#6 and HW#7 ae both due Wednesday Mach 18th. Thanks to my being WAY behind schedule, you 2nd exam will be a take-home exam! Stay tuned fo details Even if

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850) emal-fluids I Capte 7 Steady eat conduction D. Pimal Fenando pimal@eng.fsu.edu P: (850 40-633 Steady eat conduction Hee we conside one dimensional steady eat conduction. We conside eat tansfe in a plane

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

V7: Diffusional association of proteins and Brownian dynamics simulations

V7: Diffusional association of proteins and Brownian dynamics simulations V7: Diffusional association of poteins and Bownian dynamics simulations Bownian motion The paticle movement was discoveed by Robet Bown in 1827 and was intepeted coectly fist by W. Ramsay in 1876. Exact

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D.

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. High pecision compute simulation of cyclotons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. Abstact Effective and accuate compute simulations ae highly impotant in acceleatos design and poduction.

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Naga, Kattankulathu 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8253 - PHYSICS FOR ELECTRONICS ENGINEERING (Common to ECE, EEE, E&I) Regulation 2017 Academic

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential Bose-instein condensates in fast otation Jean Dalibad Laboatoie Kastle Bossel cole nomale supéieue, Pais xp: Baptiste Battelie, Vincent Betin, Zoan Hadibabic, Sabine Stock Th: Amandine Aftalion, Xavie

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Water Tunnel Experiment MAE 171A/175A. Objective:

Water Tunnel Experiment MAE 171A/175A. Objective: Wate Tunnel Expeiment MAE 7A/75A Objective: Measuement of te Dag Coefficient of a Cylinde Measuement Tecniques Pessue Distibution on Cylinde Dag fom Momentum Loss Measued in Wake it lase Dopple Velocimety

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Partition Functions. Chris Clark July 18, 2006

Partition Functions. Chris Clark July 18, 2006 Patition Functions Chis Clak July 18, 2006 1 Intoduction Patition functions ae useful because it is easy to deive expectation values of paametes of the system fom them. Below is a list of the mao examples.

More information

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic,

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Forging Analysis - 2. ver. 1. Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton

Forging Analysis - 2. ver. 1. Prof. Ramesh Singh, Notes by Dr. Singh/ Dr. Colton Foging Analysis - ve. 1 Pof. ames Sing, Notes by D. Sing/ D. Colton 1 Slab analysis fictionless wit fiction ectangula Cylindical Oveview Stain adening and ate effects Flas edundant wo Pof. ames Sing, Notes

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

II. MRI Technology. B. Localized Information. Lorenz Mitschang Physikalisch-Technische Bundesanstalt, 29 th June 2009

II. MRI Technology. B. Localized Information. Lorenz Mitschang Physikalisch-Technische Bundesanstalt,   29 th June 2009 Magnetic Resonance Imaging II. MRI Technology A. Limitations to patial Infomation B. Localized Infomation Loenz Mitschang Physikalisch-Technische Bundesanstalt, www.ptb.de 9 th June 009 A. Limitations

More information

Chapter 2 Classical propagation

Chapter 2 Classical propagation Chapte Classical popagation Model: Light: electomagnetic wave Atom and molecule: classical dipole oscillato n. / / t c nz i z t z k i e e c i n k e t z Two popagation paametes: n. Popagation of light in

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Topic 7: Electrodynamics of spinning particles Revised Draft

Topic 7: Electrodynamics of spinning particles Revised Draft Lectue Seies: The Spin of the Matte, Physics 4250, Fall 2010 1 Topic 7: Electodynamics of spinning paticles Revised Daft D. Bill Pezzaglia CSUEB Physics Updated Nov 28, 2010 Index: Rough Daft 2 A. Classical

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Repetition: Structure Zone Models

Repetition: Structure Zone Models Repetition: Stuctue Zone Models Repetition: Film Gowth Mechanisms Zone Mechanism Cha. eatue : T/T M

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

Paramagnetic spin pumping with microwave magnetic fields

Paramagnetic spin pumping with microwave magnetic fields Paamagnetic spin pumping with micowave magnetic fields Steven M. Watts Physics of Nanodevices Mateials Science Cente Univesity of Goningen the Nethelands http://nanodevices.fmns.ug.nl/ s.watts@ug.nl Mesoscopic

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

Magnetohydrodynamics (MHD) I

Magnetohydrodynamics (MHD) I Magnetohydodynamics (MHD) I Yong-Su Na National Fusion Reseach Cente POSTECH, Koea, 8-10 May, 006 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations

More information

1.1 THE ELECTRIC CHARGE

1.1 THE ELECTRIC CHARGE 1.1 THE ELECTRIC CHARGE - In a dy day, one obseves "light spaks" when a wool pull is taken out o when the finges touch a metallic object. Aound the yea 1600, one classified these effects as electic phenomena.

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet

Advanced Subsidiary GCE (H157) Advanced GCE (H557) Physics B (Advancing Physics) Data, Formulae and Relationships Booklet Advanced Subsidiay GCE (H57) Advanced GCE (H557) Physics B (Advancing Physics) Data, Fomulae and Relationships Booklet The infomation in this booklet is fo the use of candidates following the Advanced

More information

X-ray Diffraction beyond the Kinematical Approximation

X-ray Diffraction beyond the Kinematical Approximation X-ay Diffaction beyond the Kinematical Appoximation Dynamical theoy of diffaction Inteaction of wave fields X-ays neutons electons with a egula lattice atomic cystal stuctues nanomete scaled multi-layes

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

Wind Tunnel Experiment MAE 171A/175A. Objective:

Wind Tunnel Experiment MAE 171A/175A. Objective: Wind Tunnel Exeiment MAE 7A/75A Objective: Measue te Aeodynamic Foces and Moments of a Clak Y-4 Aifoil Unde Subsonic Flo Conditions Measuement Tecniques Pessue Distibution on Aifoil Dag fom Momentum Loss

More information

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db

cos kd kd 2 cosθ = π 2 ± nπ d λ cosθ = 1 2 ± n N db . (Balanis 6.43) You can confim tat AF = e j kd cosθ + e j kd cosθ N = cos kd cosθ gives te same esult as (6-59) and (6-6), fo a binomial aay wit te coefficients cosen as in section 6.8.. Tis single expession

More information

Supporting information

Supporting information Electonic Supplementay Mateial (ESI) fo Physical Chemisty Chemical Physics. This jounal is the Owne Societies 18 Suppoting infomation Nonstoichiometic oxides as a continuous homologous seies: linea fee-enegy

More information

From Atoms to Materials: Predictive Theory and Simulations. Materials are everywhere

From Atoms to Materials: Predictive Theory and Simulations. Materials are everywhere Fom Atoms to Mateials: Pedictive Theoy and Simulations Intoduction Ale Stachan stachan@pudue.edu School of Mateials Engineeing & Bick Nanotechnology Cente Pudue Univesity West Lafayette, Indiana USA Mateials

More information

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012 Stanfod Univesity CS59Q: Quantum Computing Handout 8 Luca Tevisan Octobe 8, 0 Lectue 8 In which we use the quantum Fouie tansfom to solve the peiod-finding poblem. The Peiod Finding Poblem Let f : {0,...,

More information

Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid, Spain

Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid, Spain Gemán Siea Instituto de Física Teóica CSIC-UAM, Madid, Spain Wo in pogess done in collaboation with J. Lins and S. Y. Zhao (Univ. Queensland, Austalia) and M. Ibañez (IFT, Madid) Taled pesented at the

More information

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER

FI 3221 ELECTROMAGNETIC INTERACTIONS IN MATTER FI 3 ELECTROMAGNETIC INTERACTIONS IN MATTER Alexande A. Iskanda Physics of Magnetism and Photonics CLASSICAL MODEL OF PERMITTIVITY Loentz Model Dude Model Alexande A. Iskanda Electomagnetic Inteactions

More information

Addition of Angular Momentum

Addition of Angular Momentum Addition of Angula Moentu We ve leaned tat angula oentu i ipotant in quantu ecanic Obital angula oentu L Spin angula oentu S Fo ultielecton ato, we need to lean to add angula oentu Multiple electon, eac

More information

Basic properties of X- rays and neutrons

Basic properties of X- rays and neutrons Basic popeties of X- ays and neutons Based on lectue notes of Sunil K. Sinha, UC San Diego, LANL J. Teixiea LLB Saclay G. Knelle, CBM Oléans/SOLEIL The photon also has wave and paticle popeties E=h! =hc/l=

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information