Magnetohydrodynamics (MHD) I

Size: px
Start display at page:

Download "Magnetohydrodynamics (MHD) I"

Transcription

1 Magnetohydodynamics (MHD) I Yong-Su Na National Fusion Reseach Cente POSTECH, Koea, 8-10 May, 006

2 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations 4. MHD Equilibium Concept of Beta Equilibium in the z-pinch Equilibium in the Tokamak

3 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations 4. MHD Equilibium Concept of Beta Equilibium in the z-pinch Equilibium in the Tokamak

4 Confinement

5 Oigin of the Sta Enegy

6 Oigin of the Sta Enegy Themonuclea fusion

7 How to Confine the Sun on the Eath? Magnetic field ion

8 How to confine the sun on the eath? Review: Single paticle motion of the plasma Magnetic field fee motion along magnetic field lines gyation aound magnetic field lines ion

9 Magnetically Confined Plasmas Stong magnetic field: Lamo << L Magnetic field lines tace out magnetic sufaces, to paticles stay on these sufaces.

10 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations 4. MHD Equilibium Concept of Beta Equilibium in the z-pinch Equilibium in the Tokamak

11 Plasmas as Fluids The single paticle appoach gets to be complicated. A moe statistical appoach can be used because we cannot follow each paticle sepaately. Now intoduce the concept of an electically chaged cuent-caying fluid. Magnetohydodynamic (magnetic fluid dynamic) equations

12 Fluid Equations Continuity equation n t + ( nu) = S S : a volume souce ate of paticles Momentum balance equation du u mn = mn[ + ( u ) u] = F = nq( E + u B) dt t F : foce density When themal motions ae taken into account, u mn[ + ( u ) u] = nq( E + u B) P P : pessue tenso t

13 Fluid Equations Momentum balance equation u mn[ + ( u ) u] = nq( E + u B) P t ρ[ u + ( u ) u] = p + ρν u t Navie-Stokes equation This momentum density consevation equation fo species esembles in pats the one of conventional hydodynamics, the Navie-Stokes equation. Yet, in a plasma fo each species the Loentz foce appeas in addition, coupling the plasma motion (via cuent and chage densities) to Maxwell s equation and also the vaious components (electons and ions) among themselves. Equation of state p = γ Cn C, γ : constant

14 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations 4. MHD Equilibium Concept of Beta Equilibium in the z-pinch Equilibium in the Tokamak

15 Single-fluid MHD mass density chage density ρ = ni M + n e m σ = ( ni ne ) e cuent density j = e n u n u ) ne( u u ) mass velocity ( i i e e i e u = ( n Mu + n mue) / ρ i i e Mass and chage continuity equation ni, e + ( ni, eui, e) = 0 t The individual continuity equations subtacted fom one anothe σ + t j = 0 ρ t Multiply by the ion and electon mass and add togethe + ( ρu) = 0

16 Single-fluid MHD Momentum balance equation ui Mn i[ + ( ui ) ui ] = + eni ( E + ui B) pi+ Rie t ue mn e[ + ( ue ) ue] = ene ( E + ue B) pe+ R t Rαβ mα nα < ναβ > ( uα uβ ): = Momentum of species α tansfeed by collisions to species β add togethe ei u ρ [ + u u] t = σe + j B p

17 Single-fluid MHD genealised Ohm s law ue mn e[ + ( ue ) ue] = ene ( E + ue B) pe+ R t R = m n < ν > u u ) ei e e ei ( e i Assuming that the electons ae homogeneous and theefoe neglecting the electon pessue and velocity gadients along B E = j = en u u ) 0 en ee + Rei e ei = ue ui ) R ei e( e i m < ν > me < ν ei > ( = j = ηj e nee = η n e ( u u ) = ηn ej e E + ue B = ηj pe/ ne i E + u B = ηj + ( j B pe ) / ne e e ei u e u j / ne

18 The set of MHD Equations ρ σ + ( ρu) = 0 + t t j = 0 u ρ [ + u u] t = σe + j B p E + u B = ηj Simple Ohm s law small Lamo adius appoximation B = μ0 j E B = t B = 0

19 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations 4. MHD Equilibium Concept of Beta Equilibium in the z-pinch Equilibium in the Tokamak

20 Equilibium

21 MHD Equilibium As moe and moe chaged paticles ae added to a plasma, the cuents that flow along the magnetic field can become lage enough to modify the extenally ceated magnetic field. The plasma equilibium must then be detemined self-consistently: the pesence of the plasma itself modifies the magnetic field configuation. Fo a steady-state solution of the MHD equations fo the special case with u=0, E=0, η=0 and isotopic pessue.

22 MHD Equilibium ρ + ( ρu) = 0 t σ + t j = 0 u ρ [ + u u] t = σe + j B p E + u B = ηj B = μ0 j E B = t B = 0

23 MHD Equilibium ρ + ( ρu) = 0 t u ρ [ + u u] = σe t + σ + j = 0 t j B p edundant E + u B = ηj B = μ0 j E B = t B = 0

24 MHD Equilibium p = j B B = μ 0 B = 0 j Foce balance Ampee s law Closed magnetic field lines Two Maxwell s equations (well known) One (seemingly) simple foce balance: kinetic pessue balanced by j B foce

25 MHD Equilibium p = j B B = μ 0 B = 0 j Foce balance Ampee s law Closed magnetic field lines Two Maxwell s equations (well known) One (seemingly) simple foce balance: kinetic pessue balanced by j B foce p j B

26 Concept of Beta p = j B B = μ 0 B = 0 j Foce balance Ampee s law Closed magnetic field lines p = ( B) B / μ0 = [( B ) B ( B / )]/ μ ( p + B / μ ) = ( B ) B / μ 0 Assuming the field lines ae staight and paallel p + B / μ0 = const. 0 0 β = μ B 0 p /

27 Concept of Beta β = μ B 0 p / The atio of the plasma pessue to the magnetic field pessue A measue of the degee to which the magnetic field is holding a non-unifom plasma in equilibium Main Objectives of Fusion Devices Stable configuation High β = kinetic pessue 0 = μ magnetic pessue B High enegy confinement time p fusion powe = cost of decive stoed enegy τ E = applied heating powe

28 Simplest Case: The Linea Pinch (z-pinch) Cylindical co-odinates: Specify cuent pofile jz jz, Bθ, dp / d : = j /( 0 = I P πa ) fo < a

29 Magnetic Field Pofile in the z-pinch 1 Ampee: ( B ) j θ = μ 0

30 a I I d j B P 1 ) ( π μ μ π μ θ = = = j B 0 ) ( 1 θ = μ Ampee: Magnetic Field Pofile in the z-pinch

31 a I I d j B P 1 ) ( π μ μ π μ θ = = = a I B P 0 0 π μ = fo a < I B P π μ θ 0 = fo a > Magnetic Field Pofile in the z-pinch j B 0 ) ( 1 θ = μ Ampee:

32 Radial Foce Balance and β in the z-pinch With j z and B θ : compute foce balance: dp d = j IP μ I 0 πa π a B P z θ =

33 Radial Foce Balance and β in the z-pinch With j z and B θ : compute foce balance: dp d = j IP μ I 0 πa π a B P z θ = Bounday condition p(a)=0: μ I ( ) 0 p = P (1 ) 4 π a a

34 Radial Foce Balance and β in the z-pinch With j z and B θ : compute foce balance: dp d = j IP μ I 0 πa π a B P z θ = Bounday condition p(a)=0: μ I ( ) 0 p = P (1 ) 4 π a a

35 Radial Foce Balance and β in the z-pinch With j z and B θ : compute foce balance: dp d = j IP μ I 0 πa π a B P z θ = Bounday condition p(a)=0: μ I ( ) 0 p = P (1 ) 4 π a a Calculate β p μ0 < p > =, we find β p = 1 B ( a) θ geneal esult fo the z-pinch, not dependent on pofiles.

36 Equilibium in the Tokamak p = j B p j = p B = 0 : j and B lie in the sufaces p=const.

37 Equilibium in the Tokamak p = j B p j = p B = 0 : j and B lie in the sufaces p=const. Flux though any cuve on p=const. suface has same value: flux sufaces

38 Equilibium in the Tokamak p = j B p j = p B = 0 : j and B lie in the sufaces p=const. Flux though any cuve on p=const. suface has same value: flux sufaces Pessue is flux suface quantity. Tokamak consists of nested flux sufaces set up by B field lines

39 Equilibium in the Tokamak Two sots of cuves on the tous: winding aound poloidally: tooidal fluxes winding aound tooidally: poloidal fluxes

40 Equilibium in the Tokamak Two sots of cuves on the tous: - winding aound poloidally: tooidal fluxes - winding aound tooidally: poloidal fluxes Chose the poloidal fluxes ψ (magnetic flux) and I pol (cuent): B o/ B R B Z μ0i pol = πr 1 Ψ = πr Z 1 Ψ = π R R

41 Gad-Shafanov Equation e-wite foce balance in tems of fluxes (' denotes d/dψ): R 1 ψ ψ + R = p Δ* ψ = μ0(π ) + μ0 I pol I pol R R R Z Gad-Shafanov equation (GS-eqn) GS-eqn is nonlinea in ψ. To solve it, one may specify p(ψ) and I pol (ψ).

42 Equilibium in the Tokamak Poloidal field coils allow flexible shaping of coss-section

43 Equilibium in the Tokamak Plasma equilibium in ASDEX Upgade

44 Summay I 1. What is confinement? Why is single paticle motion appoach equied?. Fluid desciption of plasma Fluid equations 3. Single fluid equation 7 MHD equations 4. MHD equilibium Concept of beta Equilibium in the z-pinch Equilibium in the tokamak GS equation

45 The long fom of the name MHD means ``magnetic fluid dynamics''. MHD is a simplified model of a magnetised plasma in which the plasma is teated as a single fluid which can cay an electic cuent. By single fluid, we mean that thee is only one density (the mass density) and tempeatue, and thee is also only one velocity -- you don't have to teat the electons and ions sepaately. The basic fluid velocity is the ExB dift, and the diffeence in the velocities of the electons and ions appeas as the electic cuent. (Go back to fluid dift motion if any of these tems ae unfamilia.) The basic physics in the MHD model is the same as fo an odinay fluid, with the addition that the magnetic field can exet a foce. The fact that the Loenz foce is opposite fo ions and electons gives ise to a bulk ``magnetic foce'' wheneve the cuent flows acoss magnetic field lines. But since the velocity is the ExB velocity, the magnetic field is advected by the fluid plasma. This couples field and plasma togethe, giving the MHD system its ich chaacte. You can think of a tube of magnetic field lines confining a plasma, with the pessue pushing outwads and the magnetic field pushing inwads. This happens because a localised magnetic field always implies the existence of a cuent, and in this case the cuent flowing along the tube causes pat of the magnetic field to twist aound the tube. The sense of it is the ``ight-hand ule'' again: with the thumb pointing up and finges culed back towad the palm, the cuent flows along the thumb and the magnetic field culs in the diection of the finges. Now, the foce is given by the thid diection: J-coss-B, and this points inwad towads the axis of the cuent column, acting to confine the plasma. This is the vey basics of how MHD woks. The full ange of MHD phenomena extends as well to instabilities and tubulence, but this pictue of foce balance is what is behind the idea of a magnetically confined plasma, one example of which is the ``tokamak''.

46 Poloidal field coils maintain plasma shape and position: Vetical field compensates expansion(pessue, cuent) - 'Shafanov-shift' due to lage field on outside Note: A stellaato poduces all fields by extenal coils (no net tooidal cuent and no axisymmety)

47 Poloidal field coils maintain plasma shape and position: Vetical field compensates expansion(pessue, cuent) - 'Shafanov-shift' due to lage field on outside

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance .615, MHD Theoy of Fusion Systems Pof. Feidbeg Lectue 4: Tooidal Equilibium and Radial Pessue Balance Basic Poblem of Tooidal Equilibium 1. Radial pessue balance. Tooidal foce balance Radial Pessue Balance

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST

Magnetic Fluctuation-Induced Particle Transport. and Zonal Flow Generation in MST Magnetic Fluctuation-Induced Paticle Tanspot and Zonal Flow Geneation in MST D.L. Bowe Weixing Ding, B.H. Deng Univesity of Califonia, Los Angeles, USA D. Caig, G. Fiksel, V. Minov, S.C. Page, J. Saff

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M.

Magnetostatics. Magnetic Forces. = qu. Biot-Savart Law H = Gauss s Law for Magnetism. Ampere s Law. Magnetic Properties of Materials. Inductance M. Magnetic Foces Biot-Savat Law Gauss s Law fo Magnetism Ampee s Law Magnetic Popeties of Mateials nductance F m qu d B d R 4 R B B µ 0 J Magnetostatics M. Magnetic Foces The electic field E at a point in

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field.

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field. Fom Last Time Electomagnetic waves Chages, cuent and foces: Coulomb s law. Acceleating chages poduce an electomagnetic wave The idea of the electic field. Today Electic fields, magnetic fields, and thei

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Review for 2 nd Midterm

Review for 2 nd Midterm Review fo 2 nd Midtem Midtem-2! Wednesday Octobe 29 at 6pm Section 1 N100 BCC (Business College) Section 2 158 NR (Natual Resouces) Allowed one sheet of notes (both sides) and calculato Coves Chaptes 27-31

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005 MIT OpenouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion Sping 2005 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 6.641 Electomagnetic

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

15. SIMPLE MHD EQUILIBRIA

15. SIMPLE MHD EQUILIBRIA 15. SIMPLE MHD EQUILIBRIA In this Section we will examine some simple examples of MHD equilibium configuations. These will all be in cylinical geomety. They fom the basis fo moe the complicate equilibium

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Magnetic phase transition and confinement regimes

Magnetic phase transition and confinement regimes Magnetic phase tansition and confinement egimes Emilia R. Solano 1,2, Richad D. Hazeltine 3 1 Laboatoio Nacional de Fusión, CIEMAT, Madid, Spain 2 JET EFDA CSU 3 Institute fo Fusion Studies, Univ. of Texas

More information

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force

18.1 Origin of Electricity 18.2 Charged Objects and Electric Force 1 18.1 Oigin of lecticity 18. Chaged Objects and lectic Foce Thee ae two kinds of electic chage: positive and negative. The SI unit of electic chage is the coulomb (C). The magnitude of the chage on an

More information

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +)

Conventional Current B = In some materials current moving charges are positive: Ionic solution Holes in some materials (same charge as electron but +) Conventional Cuent In some mateials cuent moving chages ae positive: Ionic solution Holes in some mateials (same chage as electon but +) Obseving magnetic field aound coppe wie: Can we tell whethe the

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Profile Formation and Sustainment of Autonomous Tokamak Plasma with Current Hole Configuration

Profile Formation and Sustainment of Autonomous Tokamak Plasma with Current Hole Configuration TH/- Pofile Fomation and Sustainment of Autonomous Tokamak Plasma with Cuent Hole Configuation N. Hayashi, T. Takizuka and T. Ozeki Naka JAERI, JAPAN Intoduction [MA/m] [kev] Cuent hole (CH) with nealy

More information

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions EN10: Continuum Mechanics Homewok 7: Fluid Mechanics Solutions School of Engineeing Bown Univesity 1. An ideal fluid with mass density ρ flows with velocity v 0 though a cylindical tube with cosssectional

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields Magnets and Magnetic ields Magnetism Howee, if you cut a magnet in half, you don t get a noth pole and a south pole you get two smalle magnets. ectue otes Chapte 20 Topics Magnets and Magnetic ields Magnets

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 272 Lectue 1 Electic Chage and Coulombs Law Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics272.html GO TO THIS SITE FOR ALL COURSE INFORMATION Phys-272 Bob Mose

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

How Electric Currents Interact with Magnetic Fields

How Electric Currents Interact with Magnetic Fields How Electic Cuents nteact with Magnetic Fields 1 Oested and Long Wies wote these notes to help ou with vaious diectional ules, and the equivalence between the magnetism of magnets and the magnets of electic

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

Physics 202, Lecture 2

Physics 202, Lecture 2 Physics 202, Lectue 2 Todays Topics Electic Foce and Electic Fields Electic Chages and Electic Foces Coulomb's Law Physical Field The Electic Field Electic Field Lines Motion of Chaged Paticle in Electic

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

1) Consider an object of a parabolic shape with rotational symmetry z

1) Consider an object of a parabolic shape with rotational symmetry z Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Mechanics (Stömningsläa), 01-06-01, kl 9.00-15.00 jälpmedel: Students may use any book including the tetbook Lectues on Fluid Dynamics.

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Physics 2112 Unit 14

Physics 2112 Unit 14 Physics 2112 Unit 14 Today s Concept: What Causes Magnetic Fields d 0I ds ˆ 2 4 Unit 14, Slide 1 You Comments Can you give a summay fo eveything we use the ight hand ule fo? Wasn't too clea on this topic.

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

UNIT 3:Electrostatics

UNIT 3:Electrostatics The study of electic chages at est, the foces between them and the electic fields associated with them. UNIT 3:lectostatics S7 3. lectic Chages and Consevation of chages The electic chage has the following

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information