15. SIMPLE MHD EQUILIBRIA

Size: px
Start display at page:

Download "15. SIMPLE MHD EQUILIBRIA"

Transcription

1 15. SIMPLE MHD EQUILIBRIA In this Section we will examine some simple examples of MHD equilibium configuations. These will all be in cylinical geomety. They fom the basis fo moe the complicate equilibium states in tooial geomety. Many MHD equilibium configuations incluing tokamaks, spheomaks, an RFPs) ae base on the pinch effect, which esults fom the attactive natue of paallel cuents exceptions ae mios an stellaatos). Consie two elements caying cuents J 1 an J 2 in the z-iection, as shown in the figue. The magnetic fiel B 1 pouce by J 1 encicles element 1 accoing to the ight han ule, an similaly fo B 2 an J 2. The Loentz foce J 1 B 2 acting in element 1 is iecte towa element 2. Similaly, the Loentz foce J 2 B 1 acting on element 2 is iecte towa element 1. If the cuent J is istibute continuously in space, the net effect of the Loentz foce will be to pull the flui togethe, compessing it an theeby inceasing the pessue. This pocess will cease when the incease in the pessue foce tening to expan the flui just balances the Loentz foce tening to compess the flui, o p = J B. If the cuent flows in a column, the column will ten to contact, o pinch, in a iection pepenicula to its axis until the equilibium conition is eache. This is calle the pinch effect, an is shown in the figue. 1

2 Equilibium configuations base on the pinch effect ae name afte the iection of the cuent, not the magnetic fiel. We will now examine seveal of these in cylinical geomety. In the Theta Pinch o -Pinch), the cuent flows only in the azimuthal, o, iection. This pouces a magnetic fiel in the z-iection, as shown in the figue. The magnetic fiel is a combination of a unifom, extenally geneate fiel an the fiel pouce by the cuent. We take B z to be in the positive z-iection, an J to be in the negative -iection. We assume that all quantities ae functions of only. The Loentz foce is then aially inwa, i.e., J B = J ê B z ê z = J B z ê. 15.1) We will geneally use thee equations to analyze an equilibium configuation. These ae: 1. B = 0 ; J = B ; an, 3. Foce balance, p = J B. These ae now consiee fo the case of the Theta-Pinch. 1. B = 0. In cylinical geomety, this is 1 B ) + 1 B + B z z = ) Since the configuation epens only on, an B = 0, we equie B z z which is satisfie automatically. = 0, 15.3) J = B. Une these conitions, this becomes J = B z. 15.4) 3. Foce balance, p = J B. This becomes 2

3 = J B z. 15.5) Substituting Equation 15.4) into Equation 15.5), we have o = B z 1 B z $ z 2 ' = 2 B z $ 2 ', $ = ) The secon tem in paentheses is the magnetic pessue. This can be integate to yiel z = B 2 0, 15.7) 2 2 so that B z = B 0 when p = 0, i.e., outsie the flui. The constant B 0 is thus the extenally geneate component of the axial magnetic fiel. Note that Equation 15.7) is a single equation containing two unknowns, B z an p. We ae fee to specify one an then etemine the othe. This will be a geneal popety of MHD equilibia. An example of a solution of Equation 15.7) is an p) = p 0 e 2 /a 2, 15.8) B z ) = B e 2 /a ) 2 1/2, 15.9) whee 0 = 2 p 0 / B 0 2 an = a is the aius of the oute bounay. These solutions ae sketche vey oughly) in the figue. We now consie the linea Z-pinch. The cuent now flows in the z-iection, an the magnetic fiel is in the -iection, as shown in the figue 3

4 We again assume that thee is only, an pocee as with the -pinch. 1. B = 0. 1 B ) + 1 B + B z z We have B = B z = 0, so we equie = ) B = 0, 15.11) which is automatically satisfie if B = B ). J = B. J z = 1 3. Foce balance, p = J B. Using Equation 15.12), o B ) ) = J zb ) = B B ), = B B B 2, $ 2 ' = B ) This looks like the esult fo the -pinch, Equation 15.16), with the aition of a tem on the ight han sie. This tem is calle the hoop stess, an aises fom the cuvatue of the magnetic fiel lines. In the -pinch, the fiel lines ae staight.) 4

5 Consie the cuve shown in the figue. Let s be the istance along the cuve, an efine t as a unit vecto tangent to the cuve. The cuvatue vecto is then efine as = t, 15.15) s the ate of change of the tangent vecto as we move along the cuve. The aius of cuvatue at a point s is efine as R c = ) If the cuve is a magnetic fiel line, the unit tangent vecto is ˆb = B / B, an / s = ˆb, so the cuvatue of a magnetic fiel line is = ˆb ˆb ) A staightfowa calculation yiels ) = ˆb $ˆb = ) ˆb ˆb Then anothe staightfowa calculation using Ampée s law an foce balance leas to ) = ˆb $ ˆb o = B $p B $ B, = B $ p + B2 ) 2 ' 2 * +, 5

6 p + B2 $ 2 ' = B ) If = 0, as in the -pinch, we obtain Equation 15.6). Fo the case of the z-pinch, we have = ˆb ˆb = B $ê$ B $ê$ B $ ' ) *, = ê $ ê $ = ê $ ' = 1 Then Equation 15.17) becomes ê $ +ê $ + B $ ) *, ê = ê ) p + B2 $ 2 ' = B2 ê, o, fo ou one-imensional configuation, $ 2 ' = B 2, 15.19) which agees with Equation 15.14). The hoop stess, o tension foce, balances the gaient of the total pessue. Again, this is one equations in two unknowns. One can be specifie abitaily. The case that contains both B ) an B z ) an, consequently, both J an J z ) is calle the geneal scew pinch, because the fiel lines wap aoun the cyline in a helical fashion, like the theas on a scew. Fo this configuation: 1. B = 0. 1 B + B z z = 0, 15.20) which is tivially satisfie if the fiels ae functions of only. an J = B. J = B z, 15.21) J z = 1 3. Foce balance, p = J B. B ) ) 6

7 o = J B z J z B, = 2 B z $ 2 ' 2 B $ 2 ' B 2, 2 + B z $ 2 ' = B ) We now have one equation in thee unknowns, so that two of functions can be specifie. We will follow the same poceue fo analyzing the moe complicate situation of tooial equilibium. Finally, we emak that in each of the examples consiee in this Section, the cyline is infinitely long in the z-iection, i.e., each example is puely two-imensional. Recall that the Viial Theoem poven in Section 14 assume that a suface of integation coul be taken completely outsie the flui. This is clealy impossible if the flui extens to infinity in some iection. We thus o not expect the Viial Theoem to apply to these simple examples. 7

Equilibria of a cylindrical plasma

Equilibria of a cylindrical plasma // Miscellaneous Execises Cylinical equilibia Equilibia of a cylinical plasma Consie a infinitely long cyline of plasma with a stong axial magnetic fiel (a geat fusion evice) Plasma pessue will cause the

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 4: Toroidal Equilibrium and Radial Pressure Balance .615, MHD Theoy of Fusion Systems Pof. Feidbeg Lectue 4: Tooidal Equilibium and Radial Pessue Balance Basic Poblem of Tooidal Equilibium 1. Radial pessue balance. Tooidal foce balance Radial Pessue Balance

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHY 8 Test Pactice Solutions Sping Q: [] A poton an an electon attact each othe electically so, when elease fom est, they will acceleate towa each othe. Which paticle will have a lage acceleation? (Neglect

More information

PH126 Exam I Solutions

PH126 Exam I Solutions PH6 Exam I Solutions q Q Q q. Fou positively chage boies, two with chage Q an two with chage q, ae connecte by fou unstetchable stings of equal length. In the absence of extenal foces they assume the equilibium

More information

Physics 122, Fall December 2012

Physics 122, Fall December 2012 Physics 1, Fall 01 6 Decembe 01 Toay in Physics 1: Examples in eview By class vote: Poblem -40: offcente chage cylines Poblem 8-39: B along axis of spinning, chage isk Poblem 30-74: selfinuctance of a

More information

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions Poblem 1: Electic Potential an Gauss s Law, Configuation Enegy Challenge Poblem Solutions Consie a vey long o, aius an chage to a unifom linea chage ensity λ a) Calculate the electic fiel eveywhee outsie

More information

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields Chapte 8: Magnetic fiels Histoically, people iscoe a stone (e 3 O 4 ) that attact pieces of ion these stone was calle magnets. two ba magnets can attact o epel epening on thei oientation this is ue to

More information

Section 5: Magnetostatics

Section 5: Magnetostatics ection 5: Magnetostatics In electostatics, electic fiels constant in time ae pouce by stationay chages. In magnetostatics magnetic fiels constant in time ae pouces by steay cuents. Electic cuents The electic

More information

Physics Courseware Physics II Electric Field and Force

Physics Courseware Physics II Electric Field and Force Physics Cousewae Physics II lectic iel an oce Coulomb s law, whee k Nm /C test Definition of electic fiel. This is a vecto. test Q lectic fiel fo a point chage. This is a vecto. Poblem.- chage of µc is

More information

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d

Moment. F r F r d. Magnitude of moment depends on magnitude of F and the length d Moment Tanslation Tanslation + Rotation This otation tenency is known as moment M of foce (toque) xis of otation may be any line which neithe intesects no paallel to the line of action of foce Magnitue

More information

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton.

That is, the acceleration of the electron is larger than the acceleration of the proton by the same factor the electron is lighter than the proton. PHYS 55 Pactice Test Solutions Fall 8 Q: [] poton an an electon attact each othe electicall so, when elease fom est, the will acceleate towa each othe Which paticle will have a lage acceleation? (Neglect

More information

of Technology: MIT OpenCourseWare). (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike.

of Technology: MIT OpenCourseWare).   (accessed MM DD, YYYY). License: Creative Commons Attribution- Noncommercial-Share Alike. MIT OpenCouseWae http://ocw.mit.eu 6.013/ESD.013J Electomagnetics an Applications, Fall 005 Please use the following citation fomat: Makus Zahn, Eich Ippen, an Davi Staelin, 6.013/ESD.013J Electomagnetics

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

General Relativity Homework 5

General Relativity Homework 5 Geneal Relativity Homewok 5. In the pesence of a cosmological constant, Einstein s Equation is (a) Calculate the gavitational potential point souce with = M 3 (). R µ Rg µ + g µ =GT µ. in the Newtonian

More information

A Crash Course in (2 2) Matrices

A Crash Course in (2 2) Matrices A Cash Couse in ( ) Matices Seveal weeks woth of matix algeba in an hou (Relax, we will only stuy the simplest case, that of matices) Review topics: What is a matix (pl matices)? A matix is a ectangula

More information

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates, MAE B Homewok Solution #6 Winte Quate, 7 Poblem a Expecting a elocity change of oe oe a aial istance, the conition necessay fo the ow to be ominate by iscous foces oe inetial foces is O( y ) O( ) = =

More information

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm

SPH4UI 28/02/2011. Total energy = K + U is constant! Electric Potential Mr. Burns. GMm 8//11 Electicity has Enegy SPH4I Electic Potential M. Buns To sepaate negative an positive chages fom each othe, wok must be one against the foce of attaction. Theefoe sepeate chages ae in a higheenegy

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

Conservation of Linear Momentum using RTT

Conservation of Linear Momentum using RTT 07/03/2017 Lectue 21 Consevation of Linea Momentum using RTT Befoe mi-semeste exam, we have seen the 1. Deivation of Reynols Tanspot Theoem (RTT), 2. Application of RTT in the Consevation of Mass pinciple

More information

Magnetohydrodynamics (MHD) I

Magnetohydrodynamics (MHD) I Magnetohydodynamics (MHD) I Yong-Su Na National Fusion Reseach Cente POSTECH, Koea, 8-10 May, 006 Contents 1. Review Confinement & Single Paticle Motion. Plasmas as Fluids Fluid Equations 3. MHD Equations

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them.

4.[1pt] Two small spheres with charges -4 C and -9 C are held 9.5 m apart. Find the magnitude of the force between them. . [pt] A peson scuffing he feet on a wool ug on a y ay accumulates a net chage of - 4.uC. How many ecess electons oes this peson get? Coect, compute gets:.63e+4. [pt] By how much oes he mass incease? Coect,

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Much that has already been said about changes of variable relates to transformations between different coordinate systems.

Much that has already been said about changes of variable relates to transformations between different coordinate systems. MULTIPLE INTEGRLS I P Calculus Cooinate Sstems Much that has alea been sai about changes of vaiable elates to tansfomations between iffeent cooinate sstems. The main cooinate sstems use in the solution

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Current Balance Warm Up

Current Balance Warm Up PHYSICS EXPERIMENTS 133 Cuent Balance-1 Cuent Balance Wam Up 1. Foce between cuent-caying wies Wie 1 has a length L (whee L is "long") and caies a cuent I 0. What is the magnitude of the magnetic field

More information

PHY 213. General Physics II Test 2.

PHY 213. General Physics II Test 2. Univesity of Kentucky Depatment of Physics an Astonomy PHY 3. Geneal Physics Test. Date: July, 6 Time: 9:-: Answe all questions. Name: Signatue: Section: Do not flip this page until you ae tol to o so.

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Example

Example Chapte.4 iffusion with Chemical eaction Example.4- ------------------------------------------------------------------------------ fluiize coal eacto opeates at 45 K an atm. The pocess will be limite by

More information

Right-handed screw dislocation in an isotropic solid

Right-handed screw dislocation in an isotropic solid Dislocation Mechanics Elastic Popeties of Isolated Dislocations Ou study of dislocations to this point has focused on thei geomety and thei ole in accommodating plastic defomation though thei motion. We

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

N igerian Journal of M athematics and Applications V olume 24, (2015),

N igerian Journal of M athematics and Applications V olume 24, (2015), N igeian Jounal of M athematics an Applications V olume 24, 205), 228 236 c N ig. J. M ath. Appl. http : //www.kwsman.com Flow of an Incompessible MHD Thi Gae Flui Though a Cylinical Pipe with Isothemal

More information

2. Radiation Field Basics I. Specific Intensity

2. Radiation Field Basics I. Specific Intensity . Raiation Fiel Basics Rutten:. Basic efinitions of intensity, flux Enegy ensity, aiation pessue E Specific ntensity t Pencil beam of aiation at position, iection n, caying enegy E, pasg though aea, between

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

Jerk and Hyperjerk in a Rotating Frame of Reference

Jerk and Hyperjerk in a Rotating Frame of Reference Jek an Hypejek in a Rotating Fame of Refeence Amelia Caolina Spaavigna Depatment of Applie Science an Technology, Politecnico i Toino, Italy. Abstact: Jek is the eivative of acceleation with espect to

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Physics 107 HOMEWORK ASSIGNMENT #15

Physics 107 HOMEWORK ASSIGNMENT #15 Physics 7 HOMEWORK SSIGNMENT #5 Cutnell & Johnson, 7 th eition Chapte 8: Poblem 4 Chapte 9: Poblems,, 5, 54 **4 small plastic with a mass of 6.5 x - kg an with a chage of.5 µc is suspene fom an insulating

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Computational Methods of Solid Mechanics. Project report

Computational Methods of Solid Mechanics. Project report Computational Methods of Solid Mechanics Poject epot Due on Dec. 6, 25 Pof. Allan F. Bowe Weilin Deng Simulation of adhesive contact with molecula potential Poject desciption In the poject, we will investigate

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

MAGNETICS EFFECTS OF ELECTRIC CURRENT

MAGNETICS EFFECTS OF ELECTRIC CURRENT Lesson- MAGNETCS EFFECTS F ELECTC CUENT este in 8 by obseving the eflection of compass neele when it is bought nea a cuent caying conucto iscovee that a cuent caying conucto pouces magnetic fiel in space

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM

A NEW VARIABLE STIFFNESS SPRING USING A PRESTRESSED MECHANISM Poceedings of the ASME 2010 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 2010 August 15-18, 2010, Monteal, Quebec, Canada DETC2010-28496

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

b) The array factor of a N-element uniform array can be written

b) The array factor of a N-element uniform array can be written to Eam in Antenna Theo Time: 18 Mach 010, at 8.00 13.00. Location: Polacksbacken, Skivsal You ma bing: Laboato epots, pocket calculato, English ictiona, Råe- Westegen: Beta, Noling-Östeman: Phsics Hanbook,

More information

MATHEMATICAL TOOLS. Contents. Theory Exercise Exercise Advance Level Problems Answer Key

MATHEMATICAL TOOLS. Contents. Theory Exercise Exercise Advance Level Problems Answer Key MATHEMATICAL TOOLS Contents Topic Page No. Theoy - 6 Eecise - 7 - Eecise - - 7 Avance Level Poblems 8 - Answe Key - 9 Syllabus Diffeentiation, Integation & Vecto Name : Contact No. ARRIDE LEARNING ONLINE

More information

Liquid gas interface under hydrostatic pressure

Liquid gas interface under hydrostatic pressure Advances in Fluid Mechanics IX 5 Liquid gas inteface unde hydostatic pessue A. Gajewski Bialystok Univesity of Technology, Faculty of Civil Engineeing and Envionmental Engineeing, Depatment of Heat Engineeing,

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

A Lattice Energy Calculation for LiH

A Lattice Energy Calculation for LiH A Lattice Enegy Calculation fo LiH Fank Riou Lithium hyie is a white cystalline soli with the face-centee cubic cystal stuctue (see lattice shown below). The moel fo LiH(s) popose in this stuy constists

More information

Notes for the standard central, single mass metric in Kruskal coordinates

Notes for the standard central, single mass metric in Kruskal coordinates Notes fo the stana cental, single mass metic in Kuskal cooinates I. Relation to Schwazschil cooinates One oiginally elates the Kuskal cooinates to the Schwazschil cooinates in the following way: u = /2m

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Exact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads

Exact Solution for Electro- Thermo- Mechanical Behavior of Composite Cylinder Reinforced by BNNTs under Non- Axisymmetric Thermo- Mechanical Loads mikabi Univesity of Technology (Tehan Polytechnic) Vol, No, Sping 3, pp - mikabi Intenational Jounal of Science & Reseach (Moeling, Ientification, Simulation & Contol) (IJ - MISC) Exact Solution fo Electo-

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Hydrostatic Pressure. To determine the center position of pressure of a plane surface immersed in water

Hydrostatic Pressure. To determine the center position of pressure of a plane surface immersed in water Objectives 457.04 Elementa Flui Mechanics an Lab. Elementa Test Hostatic Pessue Chapte. Hostatic Pessue To etemine the cente position of pessue of a plane suface immese in wate To compae the expeimental

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism F Eectomagnetism exane. skana, Ph.D. Physics of Magnetism an Photonics Reseach Goup Magnetostatics MGNET VETOR POTENTL, MULTPOLE EXPNSON Vecto Potentia Just as E pemitte us to intouce a scaa potentia V

More information

556: MATHEMATICAL STATISTICS I

556: MATHEMATICAL STATISTICS I 556: MATHEMATICAL STATISTICS I CHAPTER 5: STOCHASTIC CONVERGENCE The following efinitions ae state in tems of scala anom vaiables, but exten natually to vecto anom vaiables efine on the same obability

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

7.2.1 Basic relations for Torsion of Circular Members

7.2.1 Basic relations for Torsion of Circular Members Section 7. 7. osion In this section, the geomety to be consideed is that of a long slende cicula ba and the load is one which twists the ba. Such poblems ae impotant in the analysis of twisting components,

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Module 18: Outline. Magnetic Dipoles Magnetic Torques

Module 18: Outline. Magnetic Dipoles Magnetic Torques Module 18: Magnetic Dipoles 1 Module 18: Outline Magnetic Dipoles Magnetic Toques 2 IA nˆ I A Magnetic Dipole Moment μ 3 Toque on a Cuent Loop in a Unifom Magnetic Field 4 Poblem: Cuent Loop Place ectangula

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

General Railgun Function

General Railgun Function Geneal ailgun Function An electomagnetic ail gun uses a lage Loentz foce to fie a pojectile. The classic configuation uses two conducting ails with amatue that fits between and closes the cicuit between

More information

Electrostatic Potential

Electrostatic Potential Chapte 23 Electostatic Potential PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Copyight 2008 Peason Education Inc., publishing as Peason

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A Geneal Physics II 11 AM-1:15 PM TR Olin 11 Plan fo Lectue 1 Chaptes 3): Souces of Magnetic fields 1. Pemanent magnets.biot-savat Law; magnetic fields fom a cuent-caying wie 3.Ampee Law 4.Magnetic

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Lecture 6: Electrostatic Potential

Lecture 6: Electrostatic Potential Lectue 6: Electostatic Potential Last lectue eview: Electostatic potential enegy U = F el l efeence point Fo two chages Q an q: U = qe Q l = qq 1 4πε 0 U U ++ o -- +- o -+ The electostatic potential enegy

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensos an ctuatos Intouction to sensos Sane Stuijk (s.stuijk@tue.nl) Depatment of Electical Engineeing Electonic Systems PITIE SENSORS (hapte 3., 7., 9.,.6, 3., 3.) 3 Senso classification type / quantity

More information

CHAPTER 2 DERIVATION OF STATE EQUATIONS AND PARAMETER DETERMINATION OF AN IPM MACHINE. 2.1 Derivation of Machine Equations

CHAPTER 2 DERIVATION OF STATE EQUATIONS AND PARAMETER DETERMINATION OF AN IPM MACHINE. 2.1 Derivation of Machine Equations 1 CHAPTER DERIVATION OF STATE EQUATIONS AND PARAMETER DETERMINATION OF AN IPM MACHINE 1 Deivation of Machine Equations A moel of a phase PM machine is shown in Figue 1 Both the abc an the q axes ae shown

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness

On the Stoney Formula for a Thin Film/Substrate System With Nonuniform Substrate Thickness X. Feng Y. Huang Depatment of Mechanical an Inustial Engineeing, Univesity of Illinois, Ubana, IL 61801 A. J. osakis Gauate Aeonautical Laboatoy, Califonia Institute of Technology, Pasaena, CA 9115 On

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information