Gauss Law. Physics 231 Lecture 2-1

Size: px
Start display at page:

Download "Gauss Law. Physics 231 Lecture 2-1"

Transcription

1 Gauss Law Physics 31 Lectue -1

2 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing though a given suface that is elated to the electic field Physics 31 Lectue -

3 Flux How much of something passes though some suface Numbe of paticles passing though a given suface Two ways to define Numbe pe unit aea (e.g., 10 paticles/cm ) Numbe passing though an aea of inteest Physics 31 Lectue -3

4 lectic Flux The electic flux is defined to be Φ = A Whee is the electic field and A is the aea Physics 31 Lectue -4

5 lectic Flux If suface aea is not pependicula to the electic field we have to slightly change ou definition of the flux Φ = Acosφ Whee φ is the angle between the field and the unit vecto that is pependicula to the suface Physics 31 Lectue -5

6 lectic Flux We can see that the elationship between the flux and the electic field and the aea vecto is just the dot poduct of two vectos Φ Φ = A = Anˆ nˆ is a unit vecto pependicula to the suface Physics 31 Lectue -6

7 A Convention The diection of a unit vecto fo an open suface is ambiguous Fo a closed suface, the unit vecto is taken as being pointed outwad Physics 31 Lectue -7

8 lectic Flux Whee flux lines ente the suface, the suface nomal and the electic field lines ae anti-paallel Whee the flux lines exit the suface they ae paallel Physics 31 Lectue -8

9 lectic Flux Is thee a diffeence in the net flux though the cube between the two situations? No! It is impotant to emembe to popely take into account the vaious dot poducts Physics 31 Lectue -9

10 lectic Flux The equation we have fo flux is fine fo simple situations the electic field is unifom and the suface aea is plane What happens when eithe one o the othe o both is not tue Physics 31 Lectue -10

11 lectic Flux We poceed as we did in the tansition fom discete chages to a continuous distibution of chages We beak the suface aea into small pieces and then calculate the flux though each piece and then sum them In the limit of infinitesimal aeas this just becomes an integal Φ = da Physics 31 Lectue -11

12 lectic Flux of a Point Chage What is electic flux that comes fom a point chage? We stat fom Φ = da The electic field is given by 1 4πε The poblem has spheical symmety, we theefoe use a sphee as the Gaussian suface Since is adial, its dot poduct with the diffeential aea vecto, which is also adial, is always one Also is the same at evey point on the suface of the sphee = 0 q Physics 31 Lectue -1

13 lectic Flux of a Point Chage Fo these easons, can be pulled out fom the integal and what emains is Φ = da The integal ove the suface aea of the sphee yields A = 4π Pulling all this togethe then yields Φ = A; Φ = q ε Φ 0 = 1 4πε 0 q 4π Notice that this is independent of the adius of the sphee Physics 31 Lectue -13

14 ds xample 1 ds 1 A positive chage is contained inside a spheical shell. How does the diffeential electic flux, dф, though the suface element ds change when the chage is moved fom position 1 to position? dф a) inceases b) deceases c) doesn t change Physics 31 Lectue -14

15 xample 1 - continued ds ds 1 dф a) inceases b) deceases c) doesn t change The total flux of a chage is constant, with the density of flux lines being highe the close you ae to the chage Theefoe as you move the chage close to the suface element, the density of flux lines inceases Multiplying this highe density by the same value fo the aea of ds gives us that the incemental flux also inceases Physics 31 Lectue -15

16 ds xample ds 1 A positive chage is contained inside a spheical shell. How does the total flux, Ф, though the entie suface change when the chage is moved fom position 1 to position? a) Ф inceases b) Ф deceases c) Ф doesn t change As we peviously calculated, the total flux fom a point chage depends only upon the chage Physics 31 Lectue -16

17 Gauss Law The esult fo a single chage can be extended to systems consisting of moe than one chage One epeats the calculation fo each of the chages enclosed by the suface and then sum the individual fluxes Φ = 1 q i ε0 i Gauss Law elates the flux though a closed suface to chage within that suface Physics 31 Lectue -17

18 Gauss Law Gauss Law states that The net flux though any closed suface equals the net (total) chage inside that suface divided by ε 0 Qnet Φ = da = ε 0 Note that the integal is ove a closed suface Physics 31 Lectue -18

19 A B xample 3 A blue sphee A is contained within a ed spheical shell B. Thee is a chage Q A on the blue sphee and chage Q B on the ed spheical shell. The electic field in the egion between the sphees is completely independent of Q B the chage on the ed spheical shell. Tue False Physics 31 Lectue -19

20 Sufaces Choose suface appopiate to poblem It does not have to be a sphee xploit symmeties, if any Physics 31 Lectue -0

21 xample 4 Thin Infinite Sheet of Chage A given sheet has a chage density given by σ C/m By symmety, is pependicula to the sheet Use a suface that exploits this fact A cylinde A Gaussian pillbox Physics 31 Lectue -1

22 Thin Infinite Sheet of Chage A A da = σa ε + 0 A left + cuved ight = σa ε But and A cuved ae pependicula to each othe so thei dot poduct is zeo and the middle tem on the left disappeas A σa = ε = 0 σ ε 0 0 Physics 31 Lectue -

23 xample 5 Infinite Line having a Chage Density λ y h Apply Gauss Law: On the ends, ds = 0 On the bael, quating these and eaanging yields By Symmety -field must be to line of chage and can only depend on distance fom the line Theefoe, choose the Gaussian suface to be a cylinde of adius and length h aligned with the x-axis ds = π h since // is zeo and q = λh λ πε 0 This is the same esult as using the integal fomulation = Physics 31 Lectue -3

24 xample 6 Solid Unifomly Chaged Sphee A chage Q is unifomly distibuted thoughout the volume of an insulating sphee of adius R. What is the electic field fo < R? Calculate aveage chage density Chage Density : ρ = Q 4π R Now select a Gaussian sphee of adius within this lage sphee Chage within this sphee is given by Q Q 4 Q 4π R / 3 R 3 encl = ρvencl = = 3 π /3 Physics 31 Lectue -4

25 xample 6 Solid Unifomly Chaged Sphee lectic Field is eveywhee pependicula to suface, i.e. paallel to suface nomal Gauss Law then gives 4π da = = Q 4πε 0 Q ε Q = ε 0 R encl 3 0 R 3 3 Field inceases linealy within sphee Outside of sphee, electic field is given by that of a point chage of value Q Physics 31 Lectue -5

26 Chages on Conductos Given a solid conducto, on which is placed an excess chage then in the static limit The excess chage will eside on the suface of the conducto and veywhee the electic field due to this excess chage will be pependicula to the suface and The electic field within the conducto will eveywhee be zeo Physics 31 Lectue -6

27 xample 7 A solid conducting sphee is concentic with a thin conducting shell, as shown The inne sphee caies a chage Q 1, and the spheical shell caies a chage Q, such that Q = - 3 Q 1 1. How is the chage distibuted on the sphee?. How is the chage distibuted on the spheical shell? 3. What is the electic field at < R 1? Between R 1 and R?At > R? 4. What happens when you connect the two sphees with a wie? (What ae the chages?) Physics 31 Lectue -7

28 1. How is the chage distibuted on the sphee? Remembe that the electic field inside a conducto in a static situation is zeo. By Gauss s Law, thee can be no net chage inside the conducto The chage, Q 1, must eside on the outside suface of the sphee + + Physics 31 Lectue

29 . How is the chage distibuted on the spheical shell? The electic field inside the conducting shell is zeo. Thee can be no net chage inside the conducto Using Gauss Law it can be shown that the inne suface of the shell must cay a net chage of -Q 1 The oute suface must cay the chage +Q 1 + Q, so that the net chage on the shell equals Q The chages ae distibuted unifomly ove the inne and oute sufaces of the shell, hence σ inne Q = 4πR 1 and σ oute Q + Q Q = = 4πR 4πR 1 1 Physics 31 Lectue -9

30 3. What is the lectic Field at < R 1? Between R 1 and R? At > R? The electic field inside a conducto is zeo. < R 1 : This is inside the conducting sphee, theefoe = 0 Between R 1 and R : R 1 < < R Chage enclosed within a Gaussian sphee = Q 1 = k Q 1 ˆ > R Chage enclosed within a Gaussian sphee = Q 1 + Q = k Q + Q Q 3Q 1 ˆ = k 1 1 ˆ = Q k 1 ˆ Physics 31 Lectue -30

31 4. What happens when you connect the two sphees with a wie? (What ae the chages?) Afte electostatic equilibium is eached, thee is no chage on the inne sphee, and none on the inne suface of the shell The chage Q 1 + Q esides on the oute suface Also, fo < R = 0 and fo > R = k Q 1 ˆ Physics 31 Lectue -31

32 xample 8 An unchaged spheical conducto has a weidly shaped cavity caved out of it. Inside the cavity is a chage -q. -q i) How much chage is on the cavity wall? (a) Less than q (b) xactly q (c) Moe than q ii) How is the chage distibuted on the cavity wall? (a) Unifomly (b) Moe chage close to q (c) Less chage close to -q iii) How is the chage distibuted on the outside of the sphee? (a) Unifomly (b) Moe chage nea the cavity (c) Less chage nea the cavity Physics 31 Lectue -3

33 xample 8 An unchaged spheical conducto has a weidly shaped cavity caved out of it. Inside the cavity is a chage -q. -q i) How much chage is on the cavity wall? (a) Less than< q (b) xactly q (c) Moe than q By Gauss Law, since = 0 inside the conducto, the total chage on the inne wall must be q (and theefoe -q must be on the outside suface of the conducto, since it has no net chage). Physics 31 Lectue -33

34 xample 8 An unchaged spheical conducto has a weidly shaped cavity caved out of it. Inside the cavity is a chage -q. -q ii) How is the chage distibuted on the cavity wall? (a) Unifomly (b) Moe chage close to q (c) Less chage close to -q The induced chage will distibute itself non-unifomly to exactly cancel eveywhee in the conducto. The suface chage density will be highe nea the -q chage. Physics 31 Lectue -34

35 xample 8 An unchaged spheical conducto has a weidly shaped cavity caved out of it. Inside the cavity is a chage -q. -q iii) How is the chage distibuted on the outside of the sphee? (a) Unifomly (b) Moe chage nea the cavity (c) Less chage nea the cavity The chage will be unifomly distibuted (because the oute suface is symmetic). Outside the conducto, the field always points diectly to the cente of the sphee, egadless of the cavity o chage o its location. Note: this is why you adio, cell phone, etc. won t wok inside a metal building! Physics 31 Lectue -35

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Welcome to Physics 272

Welcome to Physics 272 Welcome to Physics 7 Bob Mose mose@phys.hawaii.edu http://www.phys.hawaii.edu/~mose/physics7.html To do: Sign into Masteing Physics phys-7 webpage Registe i-clickes (you i-clicke ID to you name on class-list)

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Φ E = E A E A = p212c22: 1

Φ E = E A E A = p212c22: 1 Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flux. lectic Flux Φ though an aea A ~ Numbe of Field

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8.

13. The electric field can be calculated by Eq. 21-4a, and that can be solved for the magnitude of the charge N C m 8. CHAPTR : Gauss s Law Solutions to Assigned Poblems Use -b fo the electic flux of a unifom field Note that the suface aea vecto points adially outwad, and the electic field vecto points adially inwad Thus

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti

Target Boards, JEE Main & Advanced (IIT), NEET Physics Gauss Law. H. O. D. Physics, Concept Bokaro Centre P. K. Bharti Page 1 CONCPT: JB-, Nea Jitenda Cinema, City Cente, Bokao www.vidyadishti.og Gauss Law Autho: Panjal K. Bhati (IIT Khaagpu) Mb: 74884484 Taget Boads, J Main & Advanced (IIT), NT 15 Physics Gauss Law Autho:

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

UNIT 3:Electrostatics

UNIT 3:Electrostatics The study of electic chages at est, the foces between them and the electic fields associated with them. UNIT 3:lectostatics S7 3. lectic Chages and Consevation of chages The electic chage has the following

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

Module 5: Gauss s Law 1

Module 5: Gauss s Law 1 Module 5: Gauss s Law 1 4.1 lectic Flux... 4-4. Gauss s Law... 4-3 xample 4.1: Infinitely Long Rod of Unifom Chage Density... 4-8 xample 4.: Infinite Plane of Chage... 4-9 xample 4.3: Spheical Shell...

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212

Look over Chapter 22 sections 1-8 Examples 2, 4, 5, Look over Chapter 16 sections 7-9 examples 6, 7, 8, 9. Things To Know 1/22/2008 PHYS 2212 PHYS 1 Look ove Chapte sections 1-8 xamples, 4, 5, PHYS 111 Look ove Chapte 16 sections 7-9 examples 6, 7, 8, 9 Things To Know 1) What is an lectic field. ) How to calculate the electic field fo a point

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 -

Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 1 - Pepaed by: M. S. KumaSwamy, TGT(Maths) Page - - ELECTROSTATICS MARKS WEIGHTAGE 8 maks QUICK REVISION (Impotant Concepts & Fomulas) Chage Quantization: Chage is always in the fom of an integal multiple

More information

Chapter 4 Gauss s Law

Chapter 4 Gauss s Law Chapte 4 Gauss s Law 4.1 lectic Flux... 1 4. Gauss s Law... xample 4.1: Infinitely Long Rod of Unifom Chage Density... 7 xample 4.: Infinite Plane of Chage... 9 xample 4.3: Spheical Shell... 11 xample

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Continuous Charge Distributions: Electric Field and Electric Flux

Continuous Charge Distributions: Electric Field and Electric Flux 8/30/16 Quiz 2 8/25/16 A positive test chage qo is eleased fom est at a distance away fom a chage of Q and a distance 2 away fom a chage of 2Q. How will the test chage move immediately afte being eleased?

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Review for Midterm-1

Review for Midterm-1 Review fo Midtem-1 Midtem-1! Wednesday Sept. 24th at 6pm Section 1 (the 4:10pm class) exam in BCC N130 (Business College) Section 2 (the 6:00pm class) exam in NR 158 (Natual Resouces) Allowed one sheet

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter)

F = net force on the system (newton) F,F and F. = different forces working. E = Electric field strength (volt / meter) All the Impotant Fomulae that a student should know fom. XII Physics Unit : CHAPTER - ELECTRIC CHARGES AND FIELD CHAPTER ELECTROSTATIC POTENTIAL AND CAPACITANCE S. Fomula No.. Quantization of chage Q =

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

ELECTRIC FIELD. decos. 1 dq x.. Example:

ELECTRIC FIELD. decos. 1 dq x.. Example: ELECTRIC FIELD Example: Solution: A ing-shaped conducto with adius a caies a total positive chage Q unifomly distibuted on it. Find the electic field at a point P that lies on the axis of the ing at a

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux?

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux? om last times MTE1 esults Mean 75% = 90/120 Electic chages and foce Electic ield and was to calculate it Motion of chages in E-field Gauss Law Toda: Moe on Gauss law and conductos in electostatic equilibium

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Electric Field, Potential Energy, & Voltage

Electric Field, Potential Energy, & Voltage Slide 1 / 66 lectic Field, Potential negy, & oltage Wok Slide 2 / 66 Q+ Q+ The foce changes as chages move towads each othe since the foce depends on the distance between the chages. s these two chages

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A.

II. Electric Field. II. Electric Field. A. Faraday Lines of Force. B. Electric Field. C. Gauss Law. 1. Sir Isaac Newton ( ) A. II. Electic Field D. Bill Pezzaglia II. Electic Field. Faaday Lines of Foce B. Electic Field C. Gauss Law Updated 08Feb010. Lines of Foce 1) ction at a Distance ) Faaday s Lines of Foce ) Pinciple of Locality

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

8.022 (E&M) - Lecture 2

8.022 (E&M) - Lecture 2 8.0 (E&M) - Lectue Topics: Enegy stoed in a system of chages Electic field: concept and poblems Gauss s law and its applications Feedback: Thanks fo the feedback! caed by Pset 0? Almost all of the math

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

AP Physics Electric Potential Energy

AP Physics Electric Potential Energy AP Physics lectic Potential negy Review of some vital peviously coveed mateial. The impotance of the ealie concepts will be made clea as we poceed. Wok takes place when a foce acts ove a distance. W F

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 9 T K T o C 7.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC dt L pv nt Kt nt CV ideal monatomic gas 5 CV ideal diatomic gas w/o vibation V W pdv V U Q W W Q e Q Q e Canot H C T T S C

More information

Physics 2112 Unit 14

Physics 2112 Unit 14 Physics 2112 Unit 14 Today s Concept: What Causes Magnetic Fields d 0I ds ˆ 2 4 Unit 14, Slide 1 You Comments Can you give a summay fo eveything we use the ight hand ule fo? Wasn't too clea on this topic.

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapte 25 Electic Potential C H P T E R O U T L I N E 251 Potential Diffeence and Electic Potential 252 Potential Diffeences in a Unifom Electic Field 253 Electic Potential and Potential Enegy Due to Point

More information

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3 Review: Lectue : Consevation of negy and Potential Gadient Two ways to find V at any point in space: Integate dl: Sum o Integate ove chages: q q 3 P V = i 4πε q i i dq q 3 P V = 4πε dq ample of integating

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PH -C Fall 1 Magnetic Fields Due to Cuents Lectue 14 Chapte 9 (Halliday/esnick/Walke, Fundamentals of Physics 8 th edition) 1 Chapte 9 Magnetic Fields Due to Cuents In this chapte we will exploe the elationship

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second.

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second. Chapte 4 THINK Ampee is the SI unit fo cuent An ampee is one coulomb pe second EXPRESS To calculate the total chage though the cicuit, we note that A C/s and h 6 s ANALYZE (a) Thus, F I HG K J F H G I

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions

Phys 222 Sp 2009 Exam 1, Wed 18 Feb, 8-9:30pm Closed Book, Calculators allowed Each question is worth one point, answer all questions Phys Sp 9 Exam, Wed 8 Feb, 8-9:3pm Closed Book, Calculatos allowed Each question is woth one point, answe all questions Fill in you Last Name, Middle initial, Fist Name You ID is the middle 9 digits on

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information