Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid, Spain

Size: px
Start display at page:

Download "Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid, Spain"

Transcription

1 Gemán Siea Instituto de Física Teóica CSIC-UAM, Madid, Spain Wo in pogess done in collaboation with J. Lins and S. Y. Zhao (Univ. Queensland, Austalia) and M. Ibañez (IFT, Madid) Taled pesented at the INSTANTS Confeence at the Galileo Galilei Institute, Fienze, Septembe 2008.

2 - Recent inteest in p-wave supeconductivity is motivated by its applications to He3 films, supeconductos as S2RuO4, supefluids of femi cold atoms in optical taps, etc. - p+ip paiing symmety in the BCS model gives ise to the pfaffian state, which is closely elated to the Mooe and Read state fo the Factional Quantum Hall state fo the filling faction 5/2. When consideing the votices in the BCS model one gets non abelians anyons simila to those of the Mooe-Read model (Geen-Read 2000). Thus the p+ip supeconductos allows fo Topological Quantum Computation, although non univesal. - So fa the studies of the BCS model with p+ip symmety ae based on a mean-field analysis using the BdG Hamiltonian. The coesponding phase diagam contains thee egions:

3 Wea coupling -> standad Coope pais (BCS type) Wea paiing -> Mooe Read pais Stong paiing -> localized Coope pais (BEC type) The wea and stong paiing egions ae sepaated by a second ode phase tansition whee the gap vanishes. The mean field wave function also expeiences a topological phase tansition acoss these two egions (Volovi). The bounday between the wea paiing and the wea coupling egions has not been well chaacteized. It is thus of geat inteest to have an exactly solvable BCS model with p+ip symmety to analyze in detail the natue of the Mooe-Read Pfaffian state and the diffeent phases boundaies of the model.

4 This model is the so called educed BCS model with p+ip wave symmety and it is analogous to the educed BCS model with s-wave symmety. The latte model was solved by Richadson in 1963 and it is closely elated to the Gaudin spin Hamiltonians. The Richadson model was extensively used to study ultasmall supeconducting gains made of Al in the 1990s. The integability of the Richadson-Gaudin models can be poved using the standad Quantum Invese Scatteing Methods. These ae the methods that we apply to the p+ip model.

5 Outline - The pfaffian state in the BCS model - Mean-field appoach to the p + i p model - Exact Bethe ansatz solution - Numeical solution of the BAEs - Themodynamic limit: electostatic analogy. Connection between the mean-field and the exact solution - Puzzles in the wea paiing egion

6 The BCS state (Poyected BCS state) fo p-wave % BCS "exp' 1 & 2 * c g $ g c * * c # ( % * 0 + PBCS "' $ g ) & c * * c # Opeato that ceates a polaised electon with momenta Wave function of the Coope pai in momentum space The poyected state has 2N electons with wave function "( 1,K, 2N ) = A #( 1 $ 2 )#( "( ) = ( * ) 3 $ 4 )K#( 2N$1 $ 2N ) [ ] $ g( )exp(i # ) This wave function is a pfaffian = sqt(deteminant) Mooe-Read coesponds to the long distance/small momenta behaviou: "( ) #1/(x + i y), $ %, g( ) #1/( x + i y ), N 0 $ 0

7 The educed BCS Hamiltonian with p+ip wave symmety eads: 2 H = " 2m c * c # G " 4m ( x + i y )($ x # i $ y ) c * * c # c # c $ $ % ' To be compaed with the s-wave symmety (Richadson model) 2 H = 2m c * * * # c $ G,"," # c c,& $ c c,' $ (,' (,&," % ' In the standad mean-field appoximation: H = $ " = ( x # i y ) c # # 2 2m " µ & )% ( c * c " G $ 2' 2m ) x >0, y c * ( x " i y )c " c ( + h.c. + + ) Which can be diagonalized by a Bogoliubov tansfomation

8 The gap " and chemical potential µ ae solution of the eqs (m=1) µ % x $0, y % x $0, y 2 ( 2 " µ ) # " µ ( ) # 2 = 1 G = 2N " L + 1 G L is the numbe of enegy levels and N is the numbe of pais The themodynamic limit is defined by L " #, N " #, G " 0 Such that g = G L, x = N L ( filling facto) ae constant The solution of the gap and chemical potential eqs yield µ = µ(g,x), " = "(g,x)

9 % BCS "exp' 1 & 2 The mean field wave function: $ g c * * c # g( ) = v u ( % * 0 + PBCS "' $ g ) & = E( ) " 2 + µ x + i y ( )# * c * * c # ( * ) N 0 The behaviou as -> 0 depends cucially on the sign of µ < 0 " g( ) # x $ i y, %( ) # e $ / 0 µ > 0 " g( ) # At whee µ = 0 E( ) = ( 2 " µ ) # 2 1, %( ) # x + i y is the enegy of the quasipaticles 1 x + i y µ : Stong paiing phase :Wea paiing phase thee is a second ode phase tansition (Read-Geen line) E( ) " # 0 but thee is also a topological tansition

10 Topological natue of the wea-stong tansition (Volovi) Momentum space " " # " Wave function g( ) " 0 " 0 " 0 " µ > 0 µ < # +1 µ > 0 (wea paiing) Winding numbe of the map S 2 " S 2 : $ % 0 µ < 0 (stong paiing)

11 Solution of the gap and chemical potential equations Paameteize the dispesion elation as E( ) = ( 2 " µ ) # 2 = ( 2 " a) 2 " b ( ) The paametes a and b have a meaning in the electostatic solution of the exact model (see late) Wea coupling a,b = " 0 ± i# 0 µ > # 2 4 Mooe $ Re ad line a = b = $µ µ = # 2 4 x > x MR % x MR = 1$ 1 ( ' * & g) Wea paiing a < b < 0 0 < µ < #2 x 4 RG < x < x MR Re ad $ Geen line a < b = 0 µ = 0 x RG = 1 % 2 1$ 1 ( ' * & g) Stong paiing a < b < 0 µ < 0 x < x RG

12 Phase diagam of the p + ip wave model

13 Duality between wea and stong paiing phase Given two points in the phase diagam (g,x I ) " wea paiing phase (µ > 0) (g,x II ) " stong paiing phase (µ < 0) If x I + x II =1" 1 g # E I = E II, $ I = $ II, µ I = "µ II The Read-Geen line is selfdual The Mooe-Read line is dual to the empty state x = 0 (in paticula the GS enegy on this line is zeo) This duality also appeas in the exact solution and plays an impotant ole.

14 Recall the Hamiltonian: 2 H = " 2m c * c # G " 4m ( x + i y )($ x # i $ y ) c Setting z 2 = 2 /m % ' * * c # c # $ c $ Define the had coe boson opeatos: b * = " i x y Then the Hamiltonian can be bought into the fom c * * c " H = % x &0, y z 2 N " G % $ # z z b * # b # And can be solved using the Quantum Invese Scatteing Method stating fom the XXZ R-matix and taing a quasi-classical limit

15 The Schoedinge equation: H " = E " is solved exactly by the states (m=1) N " = # C(y m ) 0, C(y) = m=1 & x %0, y x $ i 2 $ y c * * c $ whee the apidities y m satisfy the Bethe ansatz eqs " G"1 " L + 2N "1 y m " L $ =1 N 1/2 2 y m " z + 1 $ y = 0 (m =1,K,N) j#m m " y j N " The total enegy is E = (1+ G) y m m=1 2 lim G "0 y m = z Fo G # 0 " y m : eal o complex Complex solutions always appea in conjugate pais

16 Roots of the p + i p model (numeical solution with L=12,N=6, x=1/2) Im y m Re y m

17 Roots in the complex y-plane (p + i p model) g

18 Roots fo the exactly solvable s-wave model g

19 L, N " #, G " 0, with x = N L, g = G L finite y m Let us assume that the oots fom an ac in the complex plane with a density (y) 2 The enegies " = z fom anothe ac " with density "(#) The BAEs become $ # %(") d" " & y & q 0 y & P q 0 = 1 2G & L 2 + N $ ( dy' N = $ dy (y), E = dy y (y) ( $ ( " (y') y' & y = 0, y ) ( Thee is a analytic solution of these equations which agee with the mean-field solution to leading ode in L and N

20 Stuctue of the acs fomed by the oots y

21 The equation of the complex ac can be detemined and compaed with the numeical esults: Example with x = 1/2 and g = 1.99 (wea coupling egion)

22 The Mooe-Read line x " x MR =1# 1 g $ y m " 0 %m Recall N " = # C(y m ) 0, C(y) = m=1 & x %0, y x $ i y 2 $ y c * * c $ C(0) = N 1 c * * $ c x + i " % & = C(0) 0 y x #0, y ', MR state m=1

23 At x MR =1" 1 g all the oots collapse to y = 0 and thee is no ac as we assumed above. This implies that the mean field appoximation is not valid on the Mooe-Read line lim x "x MR lim L "# $ lim L "# lim x "x MR This suggests the existence of a phase tansition on the MR-line, whose natue is not clea

24 The collapse of oots to zeo occus in the whole wea paiing phase fo fixed values of the coupling

25 Wea-stong paiing duality: dessing opeation N W N 0 N S : numbe of oots in the wea paiing phase : numbe of zeo oots (y=0) : numbe of non zeo oots N W = N 0 + N S The collapse of oots happens iff N 0 L + 2 N S L =1" 1 g Moeove the non zeo oots satisfy the BAE in the stong paiing phase N 0 + N S L + N S L =1" 1 g # x I + x II =1" 1 g Wea-stong duality An eigenstate S> in the stong paiing phase can be dessed by Mooe-Read pais obtaining an eigenstate W> in the wea paiing phase with the same enegy N 0 DRESSING : H S = E S " H W = H [ C(0) ] N 0 S = E W

26 Discontinuity of the GS enegy on the MR line Tae one pai fo g >1. Its enegy in the L>> 1 limit is finite y 1 " log # % 1+ " $ y 1 & ( =1) 1 ' g Dess this pai with N 0 MR pais x I + x II = x I + 1 L =1" 1 g # x I =1" 1 g " 1 L $1" 1 g = x MR lim x "x MR E 0 ( g,x) = y 1 # E 0 (g,x MR ) = 0 One may call this a zeo ode phase tansition

27 Questions and suggestions: - What s the themodynamic limit of this model in the wea paiing phase? It seems that one have to distinguish between ational and iational values of the coupling g. Rational g s -> collapse of oots (non mean-field desciption) Iational g s -> smooth acs (mean-field desciption) - What ae the elementay excitations: is thee a gap in the wea paiing phase? is thee any signatue of non abelian anyons? - The Mooe-Read line is a cossove o a tue phase tansition (pehaps topological)?

Local Density Functional Theory for Superfluid Fermionic Systems. The Unitary Fermi Gas

Local Density Functional Theory for Superfluid Fermionic Systems. The Unitary Fermi Gas Local Density unctional Theoy fo Supefluid emionic Systems The Unitay emi Gas Unitay emi gas in a hamonic tap Chang and Betsch, physics/070390 Outline: What is a unitay emi gas Vey bief/sewed summay of

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

EQUATIONS OF MOTION LUCA GUIDO MOLINARI

EQUATIONS OF MOTION LUCA GUIDO MOLINARI EQUATIONS OF MOTION LUCA GUIDO MOLINARI 1. Equation of motion of destuction opeatos Conside a system of bosons o femions descibed by a Hamiltonian H = H 1 + H 2, whee H 1 and H 2 ae espectively the one

More information

arxiv: v1 [physics.gen-ph] 18 Aug 2018

arxiv: v1 [physics.gen-ph] 18 Aug 2018 Path integal and Sommefeld quantization axiv:1809.04416v1 [physics.gen-ph] 18 Aug 018 Mikoto Matsuda 1, and Takehisa Fujita, 1 Japan Health and Medical technological college, Tokyo, Japan College of Science

More information

DILUTE QUANTUM DROPLETS

DILUTE QUANTUM DROPLETS DILUTE QUANTUM DROPLETS Auel Bulgac Phys. Rev. Lett. 89, 54 Quantum Fluids at T Liquid 4 He and He Electons but only embedded in an ion backgound BEC in alkali atoms and hydogen and the Femi-Diac countepats

More information

I. CONSTRUCTION OF THE GREEN S FUNCTION

I. CONSTRUCTION OF THE GREEN S FUNCTION I. CONSTRUCTION OF THE GREEN S FUNCTION The Helmohltz equation in 4 dimensions is 4 + k G 4 x, x = δ 4 x x. In this equation, G is the Geen s function and 4 efes to the dimensionality. In the vey end,

More information

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30.

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30. Reading Assignment Read Chaptes 29 and 30. Poblem Desciption fo Homewok #9 In this homewok, you will solve the inhomogeneous Laplace s equation to calculate the electic scala potential that exists between

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Quantum vortices and competing orders

Quantum vortices and competing orders Talk online: Google Sachdev Quantum votices and competing odes cond-mat/0408329 and cond-mat/0409470 Leon Balents (UCSB) Loenz Batosch (Yale) Anton Bukov (UCSB) Subi Sachdev (Yale) Kishnendu Sengupta (Toonto)

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS

ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS ON THE TWO-BODY PROBLEM IN QUANTUM MECHANICS L. MICU Hoia Hulubei National Institute fo Physics and Nuclea Engineeing, P.O. Box MG-6, RO-0775 Buchaest-Maguele, Romania, E-mail: lmicu@theoy.nipne.o (Received

More information

The Unitary Fermi Gas

The Unitary Fermi Gas Local Density unctional Theoy fo Supefluid emionic Systems The Unitay emi Gas A. Bulgac, Univesity of Washington axiv:cond-mat/070356, PRA, R, in pess (007 Unitay emi gas in a hamonic tap Chang and Betsch,

More information

Competing orders: beyond Landau-Ginzburg-Wilson theory

Competing orders: beyond Landau-Ginzburg-Wilson theory Talk online: Google Sachdev Competing odes: beyond Landau-Ginzbug-Wilson theoy Colloquium aticle in Reviews of Moden Physics 75, 913 (2003) Leon Balents (UCSB) Loenz Batoh (Yale) Anton Bukov (UCSB) Eugene

More information

Explosive Contagion in Networks (Supplementary Information)

Explosive Contagion in Networks (Supplementary Information) Eplosive Contagion in Netwoks (Supplementay Infomation) Jesús Gómez-Gadeñes,, Laua Loteo, Segei N. Taaskin, and Fancisco J. Péez-Reche Institute fo Biocomputation and Physics of Comple Systems (BIFI),

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon

Annihilation of Relativistic Positrons in Single Crystal with production of One Photon Annihilation of Relativistic Positons in Single Cystal with poduction of One Photon Kalashnikov N.P.,Mazu E.A.,Olczak A.S. National Reseach Nuclea Univesity MEPhI (Moscow Engineeing Physics Institute),

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

Let us next consider how one can calculate one- electron elements of the long- range nuclear- electron potential:

Let us next consider how one can calculate one- electron elements of the long- range nuclear- electron potential: Hatee- Fock Long Range In the following assume the patition of 1/ into shot ange and long ance components 1 efc( / a) ef ( / a) + Hee a is a paamete detemining the patitioning between shot ange and long

More information

The Poisson bracket and magnetic monopoles

The Poisson bracket and magnetic monopoles FYST420 Advanced electodynamics Olli Aleksante Koskivaaa Final poject ollikoskivaaa@gmail.com The Poisson backet and magnetic monopoles Abstact: In this wok magnetic monopoles ae studied using the Poisson

More information

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams

Supporting Information Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi 2 Se 3 Probed by Electron Beams Suppoting Infomation Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulato Bi 2 Se 3 Pobed by Electon Beams Nahid Talebi, Cigdem Osoy-Keskinboa, Hadj M. Benia, Klaus Ken, Chistoph T. Koch,

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

12.1 INTRODUCTION: STATES OF MANY-PARTICLE SYSTEMS

12.1 INTRODUCTION: STATES OF MANY-PARTICLE SYSTEMS Chapte 1 2 : Many- Paticle Systems Chapte 12: Many-Paticle Systems...186 12.1 Intoduction: States of Many-Paticle Systems...186 12.2 Systems Divisible into Independent Subsystems...188 12.2.1 Distinguishable

More information

ANALYSIS OF QUANTUM EIGENSTATES IN A 3-MODE SYSTEM

ANALYSIS OF QUANTUM EIGENSTATES IN A 3-MODE SYSTEM AAYSIS OF QUATUM EIGESTATES I A 3-MODE SYSTEM SRIHARI KESHAVAMURTHY AD GREGORY S. EZRA Depatment of Chemisty, Bake aboatoy Conell Univesity, Ithaca, Y 14853, USA. Abstact. We study the quantum eigenstates

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Many Electron Theory: Particles and holes. Unitary transformations.

Many Electron Theory: Particles and holes. Unitary transformations. Many Electon Theoy: Paticles and holes. Unitay tansfomations. Continued notes fo a wokgoup Septembe-Octobe 00. Notes pepaed by Jan Lindebeg, Septembe 00 Heny Eying Cente fo Theoetical Chemisty Equivalencies

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Circuit Synthesizable Guaranteed Passive Modeling for Multiport Structures

Circuit Synthesizable Guaranteed Passive Modeling for Multiport Structures Cicuit Synthesizable Guaanteed Passive Modeling fo Multipot Stuctues Zohaib Mahmood, Luca Daniel Massachusetts Institute of Technology BMAS Septembe-23, 2010 Outline Motivation fo Compact Dynamical Passive

More information

The Cooper Problem. Problem : A pair of electrons with an attractive interaction on top of an inert Fermi sea c c FS,

The Cooper Problem. Problem : A pair of electrons with an attractive interaction on top of an inert Fermi sea c c FS, Jorge Duelsy Brief History Cooper pair and BCS Theory (1956-57) Richardson exact solution (1963). Gaudin magnet (1976). Proof of Integrability. CRS (1997). Recovery of the exact solution in applications

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Dissipation and quantum phase transitions of a pair of Josephson junctions

Dissipation and quantum phase transitions of a pair of Josephson junctions Dissipation and quantum phase tansitions of a pai of Josephson junctions Gil Refael, Eugene Demle, Yuval Oeg, and Daniel S. Fishe Depatment of Physics, Havad Univesity, Cambidge, Massachusetts 38, USA

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information

Introduction to Nuclear Forces

Introduction to Nuclear Forces Intoduction to Nuclea Foces One of the main poblems of nuclea physics is to find out the natue of nuclea foces. Nuclea foces diffe fom all othe known types of foces. They cannot be of electical oigin since

More information

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks Intenet Appendix fo A Bayesian Appoach to Real Options: The Case of Distinguishing Between Tempoay and Pemanent Shocks Steven R. Genadie Gaduate School of Business, Stanfod Univesity Andey Malenko Gaduate

More information

by numerous studies); ii) MSWT spectrum is symmetric with respect to point while numerical methods give asymmetrical spectrum with gap = = 2.

by numerous studies); ii) MSWT spectrum is symmetric with respect to point while numerical methods give asymmetrical spectrum with gap = = 2. SPIN-WAVE THEORY FOR S= ANTIFERROMAGNETIC ISOTROPIC CHAIN D. V. Spiin V.I. Venadsii Tauida National Univesity, Yaltinsaya st. 4, Simfeopol, 957, Cimea, Uaine E-mail: spiin@cimea.edu, spiin@tnu.cimea.ua

More information

QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT WITH DONOR IMPURITY * 1. INTRODUCTION

QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT WITH DONOR IMPURITY * 1. INTRODUCTION ATOMIC PHYSICS QUASI-STATIONARY ELECTRON STATES IN SPHERICAL ANTI-DOT ITH DONOR IMPURITY * V. HOLOVATSKY, O. MAKHANETS, I. FRANKIV Chenivtsi National Univesity, Chenivtsi, 581, Ukaine, E-mail: ktf@chnu.edu.ua

More information

Quantum theory of angular momentum

Quantum theory of angular momentum Quantum theoy of angula momentum Igo Mazets igo.mazets+e141@tuwien.ac.at (Atominstitut TU Wien, Stadionallee 2, 1020 Wien Time: Fiday, 13:00 14:30 Place: Feihaus, Sem.R. DA gün 06B (exception date 18 Nov.:

More information

EXAM NMR (8N090) November , am

EXAM NMR (8N090) November , am EXA NR (8N9) Novembe 5 9, 9. 1. am Remaks: 1. The exam consists of 8 questions, each with 3 pats.. Each question yields the same amount of points. 3. You ae allowed to use the fomula sheet which has been

More information

CHEM1101 Worksheet 3: The Energy Levels Of Electrons

CHEM1101 Worksheet 3: The Energy Levels Of Electrons CHEM1101 Woksheet 3: The Enegy Levels Of Electons Model 1: Two chaged Paticles Sepaated by a Distance Accoding to Coulomb, the potential enegy of two stationay paticles with chages q 1 and q 2 sepaated

More information

Single Particle State AB AB

Single Particle State AB AB LECTURE 3 Maxwell Boltzmann, Femi, and Bose Statistics Suppose we have a gas of N identical point paticles in a box of volume V. When we say gas, we mean that the paticles ae not inteacting with one anothe.

More information

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o Last Time Exam 3 esults Quantum tunneling 3-dimensional wave functions Deceasing paticle size Quantum dots paticle in box) This week s honos lectue: Pof. ad histian, Positon Emission Tomogaphy Tue. Dec.

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

Supporting information

Supporting information Electonic Supplementay Mateial (ESI) fo Physical Chemisty Chemical Physics. This jounal is the Owne Societies 18 Suppoting infomation Nonstoichiometic oxides as a continuous homologous seies: linea fee-enegy

More information

Exceptional regular singular points of second-order ODEs. 1. Solving second-order ODEs

Exceptional regular singular points of second-order ODEs. 1. Solving second-order ODEs (May 14, 2011 Exceptional egula singula points of second-ode ODEs Paul Gaett gaett@math.umn.edu http://www.math.umn.edu/ gaett/ 1. Solving second-ode ODEs 2. Examples 3. Convegence Fobenius method fo solving

More information

Information Retrieval Advanced IR models. Luca Bondi

Information Retrieval Advanced IR models. Luca Bondi Advanced IR models Luca Bondi Advanced IR models 2 (LSI) Pobabilistic Latent Semantic Analysis (plsa) Vecto Space Model 3 Stating point: Vecto Space Model Documents and queies epesented as vectos in the

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

Superfluid LDA (SLDA)

Superfluid LDA (SLDA) Supefluid LDA SLDA Local Density Appoximation / Kohn-Sham fo Systems with Supefluid Coelations Auel Bulgac Seattle and Yongle Yu Seattle Lund Slides will be posted shotly at http://www.phys.washington.edu/~bulgac/

More information

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential

( ) Bose-Einstein condensates in fast rotation. Rotating condensates. Landau levels for a rotating gas. An interesting variant: the r 2 +r 4 potential Bose-instein condensates in fast otation Jean Dalibad Laboatoie Kastle Bossel cole nomale supéieue, Pais xp: Baptiste Battelie, Vincent Betin, Zoan Hadibabic, Sabine Stock Th: Amandine Aftalion, Xavie

More information

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering

Particle Physics. From Monday: Summary. Lecture 9: Quantum Chromodynamics (QCD) q 2 m 2 Z. !q q!q q scattering Paticle Physics Lectue 9: Quantum Chomodynamics (QCD)!Colou chage and symmety!gluons!qcd Feynman Rules!! scatteing!jets! 1 Fom Monday: Summay Weak Neutal Cuent Caied by the massive Z-boson: acts on all

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

Non-Linear Dynamics Homework Solutions Week 2

Non-Linear Dynamics Homework Solutions Week 2 Non-Linea Dynamics Homewok Solutions Week Chis Small Mach, 7 Please email me at smach9@evegeen.edu with any questions o concens eguading these solutions. Fo the ececises fom section., we sketch all qualitatively

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pena Towe, Road No, Contactos Aea, Bistupu, Jamshedpu 8, Tel (657)89, www.penaclasses.com IIT JEE Mathematics Pape II PART III MATHEMATICS SECTION I Single Coect Answe Type This section contains 8 multiple

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

1.1 THE ELECTRIC CHARGE

1.1 THE ELECTRIC CHARGE 1.1 THE ELECTRIC CHARGE - In a dy day, one obseves "light spaks" when a wool pull is taken out o when the finges touch a metallic object. Aound the yea 1600, one classified these effects as electic phenomena.

More information

Quantum Fourier Transform

Quantum Fourier Transform Chapte 5 Quantum Fouie Tansfom Many poblems in physics and mathematics ae solved by tansfoming a poblem into some othe poblem with a known solution. Some notable examples ae Laplace tansfom, Legende tansfom,

More information

Quantum Chemistry Notes:

Quantum Chemistry Notes: Quantum Chemisty otes: Hatee-Fock equations The Hatee-Fock method is the undelying appoximation to nealy all methods of computational chemisty, both ab initio and semi-empiical. Theefoe, a clea undestanding

More information

Quantum Mechanics I - Session 5

Quantum Mechanics I - Session 5 Quantum Mechanics I - Session 5 Apil 7, 015 1 Commuting opeatos - an example Remine: You saw in class that Â, ˆB ae commuting opeatos iff they have a complete set of commuting obsevables. In aition you

More information

Modeling Fermi Level Effects in Atomistic Simulations

Modeling Fermi Level Effects in Atomistic Simulations Mat. Res. Soc. Symp. Poc. Vol. 717 Mateials Reseach Society Modeling Femi Level Effects in Atomistic Simulations Zudian Qin and Scott T. Dunham Depatment of Electical Engineeing, Univesity of Washington,

More information

Method for Approximating Irrational Numbers

Method for Approximating Irrational Numbers Method fo Appoximating Iational Numbes Eic Reichwein Depatment of Physics Univesity of Califonia, Santa Cuz June 6, 0 Abstact I will put foth an algoithm fo poducing inceasingly accuate ational appoximations

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Hawking Radiation Seminar Talk

Hawking Radiation Seminar Talk Hawking Radiation Semina Talk Julius Eckhad, Max Lautsch June 9, 205 In this talk on Hawking Radiation we will fist motivate why we have to intoduce the counteintuitive concept of a black hole tempeatue

More information

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2.

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2. Lectue 5 Solving Poblems using Geen s Theoem Today s topics. Show how Geen s theoem can be used to solve geneal electostatic poblems. Dielectics A well known application of Geen s theoem. Last time we

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Quantum Monte Carlo studies of spinons in one-dimensional spin systems

Quantum Monte Carlo studies of spinons in one-dimensional spin systems Quantum Monte Calo studies of spinons in one-dimensional spin systems Ying Tang and Andes W. Sandvik Depatment of Physics, Boston Univesity, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA (Dated:

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma Reseach & Reviews: Jounal of Pue and Applied Physics Field emission of Electons fom Negatively Chaged Cylindical Paticles with Nonlinea Sceening in a Dusty Plasma Gyan Pakash* Amity School of Engineeing

More information

4. Compare the electric force holding the electron in orbit ( r = 0.53

4. Compare the electric force holding the electron in orbit ( r = 0.53 Electostatics WS Electic Foce an Fiel. Calculate the magnitue of the foce between two 3.60-µ C point chages 9.3 cm apat.. How many electons make up a chage of 30.0 µ C? 3. Two chage ust paticles exet a

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

Syntactical content of nite approximations of partial algebras 1 Wiktor Bartol Inst. Matematyki, Uniw. Warszawski, Warszawa (Poland)

Syntactical content of nite approximations of partial algebras 1 Wiktor Bartol Inst. Matematyki, Uniw. Warszawski, Warszawa (Poland) Syntactical content of nite appoximations of patial algebas 1 Wikto Batol Inst. Matematyki, Uniw. Waszawski, 02-097 Waszawa (Poland) batol@mimuw.edu.pl Xavie Caicedo Dep. Matematicas, Univ. de los Andes,

More information

Nuclear size corrections to the energy levels of single-electron atoms

Nuclear size corrections to the energy levels of single-electron atoms Nuclea size coections to the enegy levels of single-electon atoms Babak Nadii Nii a eseach Institute fo Astonomy and Astophysics of Maagha (IAAM IAN P. O. Box: 554-44. Abstact A study is made of nuclea

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2.

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 9:2. OLYMON Poduced by the Canadian Mathematical Society and the Depatment of Mathematics of the Univesity of Toonto Please send you solution to Pofesso EJ Babeau Depatment of Mathematics Univesity of Toonto

More information

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a)

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a) Why Pofesso Richad Feynman was upset solving the Laplace equation fo spheical waves? Anzo A. Khelashvili a) Institute of High Enegy Physics, Iv. Javakhishvili Tbilisi State Univesity, Univesity St. 9,

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

BLACK HOLES IN STRING THEORY

BLACK HOLES IN STRING THEORY Black holes in sting theoy N Sadikaj & A Duka Pape pesented in 1 -st Intenational Scientific Confeence on Pofessional Sciences, Alexande Moisiu Univesity, Dues Novembe 016 BLACK OLES IN STRING TEORY NDRIÇIM

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

Vortices Solutions in Chern-Simons-Maxwell-Higgs System

Vortices Solutions in Chern-Simons-Maxwell-Higgs System Votices Solutions in Chen-Simons-Maxwell-Higgs System Instituto de Física Teóica (IFT-UNESP, Bazil E-mail: hoff@ift.unesp.b M. C. B. Abdalla Ribeio Instituto de Física Teóica (IFT-UNESP, Bazil E-mail:

More information

Three-dimensional systems with spherical symmetry

Three-dimensional systems with spherical symmetry Thee-dimensiona systems with spheica symmety Thee-dimensiona systems with spheica symmety 006 Quantum Mechanics Pof. Y. F. Chen Thee-dimensiona systems with spheica symmety We conside a patice moving in

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C

, and the curve BC is symmetrical. Find also the horizontal force in x-direction on one side of the body. h C Umeå Univesitet, Fysik 1 Vitaly Bychkov Pov i teknisk fysik, Fluid Dynamics (Stömningsläa), 2013-05-31, kl 9.00-15.00 jälpmedel: Students may use any book including the textbook Lectues on Fluid Dynamics.

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Fluid flow in curved geometries: Mathematical Modeling and Applications

Fluid flow in curved geometries: Mathematical Modeling and Applications Fluid flow in cuved geometies: Mathematical Modeling and Applications D. Muhammad Sajid Theoetical Plasma Physics Division PINSTECH, P.O. Niloe, PAEC, Islamabad Mach 01-06, 010 Islamabad, Paistan Pesentation

More information

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4 Fouie tansfom pais: f(x) 1 f(k) e p 2 (k) p e iax 2 (k a) 2 e a x a a 2 + k 2 e a2 x 1 2, a > 0 a p k2 /4a2 e 2 1 H(x) ik p 2 + 2 (k) The fist few Y m Y 0 0 = Y 0 1 = Y ±1 1 = l : 1 Y2 0 = 4 3 ±1 cos Y

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Using Laplace Transform to Evaluate Improper Integrals Chii-Huei Yu

Using Laplace Transform to Evaluate Improper Integrals Chii-Huei Yu Available at https://edupediapublicationsog/jounals Volume 3 Issue 4 Febuay 216 Using Laplace Tansfom to Evaluate Impope Integals Chii-Huei Yu Depatment of Infomation Technology, Nan Jeon Univesity of

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

4.4 Buoyant plume from a steady heat source

4.4 Buoyant plume from a steady heat source 1 Notes on 1.63 Advanced Envionmental Fluid Mechanics Instucto: C. C. Mei, 22 ccmei@mit.edu, 1 617 253 2994 Octobe 25, 22 4-4 buoyplum.tex 4.4 Buoyant plume fom a steady heat souce [Refeence]: Gebhat,

More information