Quantum Fourier Transform

Size: px
Start display at page:

Download "Quantum Fourier Transform"

Transcription

1 Chapte 5 Quantum Fouie Tansfom Many poblems in physics and mathematics ae solved by tansfoming a poblem into some othe poblem with a known solution. Some notable examples ae Laplace tansfom, Legende tansfom, etc., but by fa the most commonly used tansfomations is the Fouie tansfomation. A discete vesion Fouie tansfomation can be defined as y k Ô N ÿ x j e 2fii j k/n (5.) N whee x (x 0, x,..., x N ) is the vecto that is being tansfomed. The quantum Fouie tansfom in based on essentially the same idea with the only di eence that the vectos x and y ae state vectos, i.e. x y N ÿ N ÿ x j jí (5.2) y j jí. (5.3) Then the action on the components of state vecto x is descibed by 5. so that o N ÿ x j jí æ N ÿ N ÿ x j jí æ y k kí Ô N ÿ N N ÿ N ÿ x j e 2fii j k/n kí (5.4) N ÿ x j Ô e 2fii j k/n kí. (5.5) N 5

2 CHAPTER 5. QUANTUM FOURIER TRANSFORM 52 In othe wods the incoming amplitude x j of a given basis vecto jí (in oiginal o position space) is distibuted among all basis vecto (in Fouie o momentum space) N ÿ x j jí æx j Ô e 2fii j k/n kí. (5.6) N What is, howeve, di eent is that both the oiginal vecto x and the tansfomed vecto y is ecoded using the vey same Hilbet space. 5. Quantum Cicuit In the case of quantum computation the basis vectos jí ae the computational basis vectos (i.e. j œ N) fo let say n q-bits. Then it will be useful to adopt the binay epesentation j : N æ{0, } n (5.7) such that and binay function such that nÿ j [j j 2...j n ] j i 2 n i (5.8) i 0. : {0, } m æ (0, ) (5.9) mÿ 0.(j,j 2,..., j m ) j i 2 m. (5.0) i

3 CHAPTER 5. QUANTUM FOURIER TRANSFORM 53 Then (5.6) implies 2 jí [j j 2...j n ]Í æ 2 n ÿ n 2 2fii j k 2 n2 [k...k n ]Í A A ÿ ÿ n B B 2 n ÿ fii j k l 2 n l 2 n [k...k n ]Í k 0 k n0 l ÿ ÿ np 2 n fii j kl 2 l2 k l Í 2 k 0 k n0 l Q np ÿ 2 n 2 a R 2fii j k l 2 l2 k l Íb l k l 0 np 2 2 n 2 0Í + 2fii j 2 l Í 2 l A A A np n B B B 2 n ÿ 2 0Í + 2fii j k 2 n k 2 l Í l k 2 n 2 ( 0Í +(2fii 0.(jn )) Í)... ( 0Í +(2fii 0.(j...j n ))(5.) Í). whee in the last step we used A A n BB A A ÿ n l BB Q Q RR ÿ nÿ 2fii j k 2 (n l) k 2fii j k 2 (n l) k a2fii a j k 2 (n l) k bb k k kn l+ Q Q RR nÿ a2fii a j k 2 (n l) k bb. (5.2) kn l+ Then we can constuct a collection of two q-bit gates which descibe otations of elative phase 0 R k 2fii. (5.3) 2 k 0 e These otations can be used to constuct the following cicuit on a system of n q-bits:

4 CHAPTER 5. QUANTUM FOURIER TRANSFORM 54 It is easy to see that the above cicuit would pefom a quantum Fouie tansfom on the input gates. Afte the fist Hadamad gate we get 2 2 0Í + e 2fii 0.(j ) Í 2 j 2...j n Í (5.4) since Y ] e 2fii 0.(j) + if j 0 [ if j, afte the contolled-r 2 gate (5.5) 2 2 0Í + e 2fii 0.(j j 2 ) Í 2 j 2...j n Í (5.6) and so on until afte the contolled-r n gate we get 2 2 0Í + e 2fii 0.(j j 2..j n) Í 2 j 2...j n Í. (5.7) Then we do a simila opeation on the second bit to get Í + e 2fii 0.(j j 2..j n) Í 2 0Í + e 2fii 0.(j 2..j n) Í 2 j 3...j n Í (5.8) and so on until we get 0Í + e 2fii 0.(j j 2...j n) Í 2 0Í + e 2fii 0.(j 2...j n) Í Í + e 2fii 0.(jn) Í 2 2 n 2 (5.9) and finally we can pefom a swap opeation to evese the ode of q-bits 2 n 2 0Í + e 2fii 0.(j n) Í Í + e 2fii 0.(j j 2..j n) Í 2 (5.20) which is the desied esult accoding to the poduct ansion of (5.). How many gates have we used? It is plus n/2 swaps each using thee C-NOT gates n +(n ) (5.2) n +(n ) n 2 O(n2 ) (5.22) swaps. The best classical algoithm of pefoming Fouie tansfom (namely Fast Fouie Tansfom o FFT) on a vecto in 2 n dimensional space uses onentially many gates (n2 n ). (5.23) Of couse, keep in mind that not all of the infomation about the Fouie tansfomed state vecto can be etieved, but one can still use it to design e cient quantum algoithms using the so-called phase estimation pocedue.

5 CHAPTER 5. QUANTUM FOURIER TRANSFORM Phase Estimation Conside a unitay opeato U whose eigenvecto ÂÍ has eigenvalue e 2fii Ï, i.e. U ÂÍ e 2fii Ï ÂÍ. (5.24) Let us also suppose that we ae able to pefom contolled-u 2k (fo any k) opeations on state vecto ÂÍ and ou task is to estimate Ï. Then we can constuct the following quantum cicuit: whee Fn epesents an invese Quantum Fouie Tansfom on n q-bits. The initial state of the system is afte applying the Hadamad gates it is 2 n 2 0Í n ÂÍ (5.25) 2 n ÿ jí ÂÍ (5.26) all of the contolled opeations (but befoe Fn ) the state of the systems is 2 n 2 0Í + e 2fii 2 0Ï Í 2 0Í + e 2fii 2Ï Í Í + e 2fii 2n Ï Í 2 ÂÍ 2 n 2 Fo example if 2 n ÿ (5.27) Ï [0.Ï Ï 2...Ï n ] (5.28) then Eq. (5.27) can be witten as 2 n 2 0Í + e 2fii [0.Ï Ï 2...Ï n] Í 2 0Í + e 2fii [0.Ï 2...Ï n] Í Í + e 2fii [0.Ïn] Í 2 ÂÍ. (5.29) This is exactly what we we had in (5.9), and thus by evesing the Quantum Fouie Tansfomation cicuit (but without swapping bits) we get ÏÍ ÂÍ (5.30) whee Ï is an estimated value of Ï (to fist n bits in binay ansion). e 2fii Ïj jí ÂÍ.

6 CHAPTER 5. QUANTUM FOURIER TRANSFORM Ode-finding Fo positive integes x and N such that x<n the ode of x modulo N is defined to be the smallest intege such that o in othe wods thee exist R œ N such that Note that x ( mod N). (5.3) x RN +. (5.32) x 0 ( mod N) x ( mod N) x 2 ( mod N)... (5.33) The poblem of finding when x and N have no common factos is believed to be a had poblem on a classical compute in a sense that no algoithm is known to solve the poblem using polynomial esouces in the numbe of bits, i.e. O (log N) k2 (5.34) fo any k. Thee is howeve an e cient quantum algoithm based on phase estimation. Conside a collection of unitay opeatos U x which act on state vectos as U x yí xy ( mod N)Í (5.35) whee y œ{0, } L and L is the numbe of q-bits. It is also assumed that U acts non-tivially only if y<n, i.e. Y ] xy ( mod N) if 0 Æ y<n xy ( mod N) [ y if N Æ y Æ 2 L. (5.36) Then the eigenstates of U ae u s Í /2 ÿ 2fii sk x k ( mod N)Í (5.37) with eigenvalues 3 4 2fii s (5.38)

7 CHAPTER 5. QUANTUM FOURIER TRANSFORM 57 fo 0 Æ s Æ. This can be veified by diect computation U u s Í /2 ÿ 2fii sk x k+ ( mod N)Í 3 4 2fii s ÿ 2fii sk /2 x k ( mod N)Í k 3 4 A B 2fii s /2 x ÿ 2fii sk ( mod N)Í + x k ( mod N)Í k 3 4 2fii s /2 ÿ 2fii sk x k ( mod N)Í 3 4 2fii s u s Í. (5.39) So, if we ae able to ceate such a state then we can use the phase estimation pocedue to detemine s/ fom which the ode can be detemined. But fo that we should fist show how to pepae any of the state vectos u s Í (with non-tivial eigenvalues) and also to implement contolled-u 2k (fo any intege k) used in the phase estimation pocedue. In fact the application of contolled-u 2k gates phase estimation pocedue is equivalent to zí yí æ zíu zt2k...u z 2 0 yí zí x zt2k...x z 2 0 y( mod N)Í zí x z y( mod N)Í. (5.40) which can be accomplished using the thid egiste, zí yí 0Í æ zí yí x z ( mod N)Í æ zí yx z ( mod N)Í zí yx z ( mod N)Í æ zí yx z ( mod N)Í 0Í. (5.4) What is less tivial is how to pepae a vecto u s Í (without a pio knowledge of ) if not in an eigenstate, at least in a useful supeposition. Note that we

8 CHAPTER 5. QUANTUM FOURIER TRANSFORM 58 can ess Í in eigenbasis u s Í as /2 ÿ u s Í /2 ÿ /2 ÿ s0 s0 ÿ ÿ s0 ÿ 2fii sk x k ( mod N)Í 2fii sk x k ( mod N)Í 0k x k ( mod N)Í Í. (5.42) Theefoe U j Í U /2 ÿ u s Í 5.4 Shoe algoithm s0 x j ( mod N)Í /2 ÿ e 2fiisj/ u s Í (5.43) s0 Now we can descibe the Sho s algoithm to find. Stat with a state (accoding to 5.42) 0...0Í 0...0Í 0Í t ÿ ÿ 2fii sk x k ( mod N)Í (5.44) s0

9 CHAPTER 5. QUANTUM FOURIER TRANSFORM 59 afte Hadamad gates (accoding to.65) the state is 2 t/2 ÿ j jí ÿ ÿ s0 2fii sk x k ( mod N)Í (5.45) afte modula onentiation is applied (accoding to 5.44) the state is 2 t/2 ÿ j jí ÿ ÿ s0 A 2fii sj B 2fii sk x k ( mod N)Í (5.46) afte measuing second egiste the state is S T ÿ U2 t/2 ÿ 3 4 2fii sj 2fii sk jív x k ( mod N)Í (5.47) s0 j and afte the invese Quantum Fouie Tansfomation ÿ s/í 2fii sk x k ( mod N)Í. (5.48) s0 Then we use the so-called continued faction ansion algoithm to find, i.e. a 0 + a + (5.49) a 2 + a 3... Fo example if s/ (5.50) then and thus Anothe example (5.5) 3. (5.52) s/ (5.53) then (5.54)

10 CHAPTER 5. QUANTUM FOURIER TRANSFORM 60 and 27. (5.55) Since the value of s/ is only appoximate, the algoithm might fail but it is easy to veify fo a given if x ( mod N). (5.56) The most impotant application of Sho s algoithm is fo factoing of lage numbes N (into pime factos). Hee is how it woks:. If N is even output the facto 2. Uses O() steps. 2. Seach though all possible a Ø and b Ø 2 to detemine if N a b.if so, output a (pehaps b times). Uses O(n 3 ) steps. 3. Choose a andom x in the ange < x < N and (using Euclid s algoithm) find the geatest common diviso of x and N (o gcd(x, N)). If gcd(x, N) > then output it. Uses O(n) steps. 4. Use Sho s algoithm to find the ode of x modulo N, i.e. smallest such that x ( mod N). 5. If is even and x /2 N ( mod N) (both of which happen with pobability O()) then compute gcd(x /2,N) and gcd(x /2 +,N) to see if any of these give us a non-tivial facto of N, Uses O(n 3 ) steps. x x /2 2 x /2 + 2 N 0( mod N)

AQI: Advanced Quantum Information Lecture 2 (Module 4): Order finding and factoring algorithms February 20, 2013

AQI: Advanced Quantum Information Lecture 2 (Module 4): Order finding and factoring algorithms February 20, 2013 AQI: Advanced Quantum Infomation Lectue 2 (Module 4): Ode finding and factoing algoithms Febuay 20, 203 Lectue: D. Mak Tame (email: m.tame@impeial.ac.uk) Intoduction In the last lectue we looked at the

More information

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012 Stanfod Univesity CS59Q: Quantum Computing Handout 8 Luca Tevisan Octobe 8, 0 Lectue 8 In which we use the quantum Fouie tansfom to solve the peiod-finding poblem. The Peiod Finding Poblem Let f : {0,...,

More information

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22 C/CS/Phys C9 Sho s ode (peiod) finding algoithm and factoing /2/4 Fall 204 Lectue 22 With a fast algoithm fo the uantum Fouie Tansfom in hand, it is clea that many useful applications should be possible.

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information

QIP Course 10: Quantum Factorization Algorithm (Part 3)

QIP Course 10: Quantum Factorization Algorithm (Part 3) QIP Couse 10: Quantum Factoization Algoithm (Pat 3 Ryutaoh Matsumoto Nagoya Univesity, Japan Send you comments to yutaoh.matsumoto@nagoya-u.jp Septembe 2018 @ Tokyo Tech. Matsumoto (Nagoya U. QIP Couse

More information

Quantum Information & Quantum Computation

Quantum Information & Quantum Computation CS29A, Sping 25: Quantum Infomation & Quantum Computation Wim van Dam Engineeing, Room 59 vandam@cs http://www.cs.ucsb.edu/~vandam/teaching/cs29/ Administivia ext week talk b Matthias Steffen on uclea

More information

The Substring Search Problem

The Substring Search Problem The Substing Seach Poblem One algoithm which is used in a vaiety of applications is the family of substing seach algoithms. These algoithms allow a use to detemine if, given two chaacte stings, one is

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov

Introduction Common Divisors. Discrete Mathematics Andrei Bulatov Intoduction Common Divisos Discete Mathematics Andei Bulatov Discete Mathematics Common Divisos 3- Pevious Lectue Integes Division, popeties of divisibility The division algoithm Repesentation of numbes

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

When two numbers are written as the product of their prime factors, they are in factored form.

When two numbers are written as the product of their prime factors, they are in factored form. 10 1 Study Guide Pages 420 425 Factos Because 3 4 12, we say that 3 and 4 ae factos of 12. In othe wods, factos ae the numbes you multiply to get a poduct. Since 2 6 12, 2 and 6 ae also factos of 12. The

More information

QUANTUM ALGORITHMS IN ALGEBRAIC NUMBER THEORY

QUANTUM ALGORITHMS IN ALGEBRAIC NUMBER THEORY QUANTU ALGORITHS IN ALGEBRAIC NUBER THEORY SION RUBINSTEIN-SALZEDO Abstact. In this aticle, we discuss some quantum algoithms fo detemining the goup of units and the ideal class goup of a numbe field.

More information

Probablistically Checkable Proofs

Probablistically Checkable Proofs Lectue 12 Pobablistically Checkable Poofs May 13, 2004 Lectue: Paul Beame Notes: Chis Re 12.1 Pobablisitically Checkable Poofs Oveview We know that IP = PSPACE. This means thee is an inteactive potocol

More information

Berkeley Math Circle AIME Preparation March 5, 2013

Berkeley Math Circle AIME Preparation March 5, 2013 Algeba Toolkit Rules of Thumb. Make sue that you can pove all fomulas you use. This is even bette than memoizing the fomulas. Although it is best to memoize, as well. Stive fo elegant, economical methods.

More information

Information Retrieval Advanced IR models. Luca Bondi

Information Retrieval Advanced IR models. Luca Bondi Advanced IR models Luca Bondi Advanced IR models 2 (LSI) Pobabilistic Latent Semantic Analysis (plsa) Vecto Space Model 3 Stating point: Vecto Space Model Documents and queies epesented as vectos in the

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks

Internet Appendix for A Bayesian Approach to Real Options: The Case of Distinguishing Between Temporary and Permanent Shocks Intenet Appendix fo A Bayesian Appoach to Real Options: The Case of Distinguishing Between Tempoay and Pemanent Shocks Steven R. Genadie Gaduate School of Business, Stanfod Univesity Andey Malenko Gaduate

More information

10/04/18. P [P(x)] 1 negl(n).

10/04/18. P [P(x)] 1 negl(n). Mastemath, Sping 208 Into to Lattice lgs & Cypto Lectue 0 0/04/8 Lectues: D. Dadush, L. Ducas Scibe: K. de Boe Intoduction In this lectue, we will teat two main pats. Duing the fist pat we continue the

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30.

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30. Reading Assignment Read Chaptes 29 and 30. Poblem Desciption fo Homewok #9 In this homewok, you will solve the inhomogeneous Laplace s equation to calculate the electic scala potential that exists between

More information

A Crash Course in (2 2) Matrices

A Crash Course in (2 2) Matrices A Cash Couse in ( ) Matices Seveal weeks woth of matix algeba in an hou (Relax, we will only stuy the simplest case, that of matices) Review topics: What is a matix (pl matices)? A matix is a ectangula

More information

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0}, ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION E. J. IONASCU and A. A. STANCU Abstact. We ae inteested in constucting concete independent events in puely atomic pobability

More information

A proof of the binomial theorem

A proof of the binomial theorem A poof of the binomial theoem If n is a natual numbe, let n! denote the poduct of the numbes,2,3,,n. So! =, 2! = 2 = 2, 3! = 2 3 = 6, 4! = 2 3 4 = 24 and so on. We also let 0! =. If n is a non-negative

More information

11.2 Proving Figures are Similar Using Transformations

11.2 Proving Figures are Similar Using Transformations Name lass ate 11. Poving igues ae Simila Using Tansfomations ssential Question: How can similait tansfomations be used to show two figues ae simila? esouce ocke ploe onfiming Similait similait tansfomation

More information

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs

Math 301: The Erdős-Stone-Simonovitz Theorem and Extremal Numbers for Bipartite Graphs Math 30: The Edős-Stone-Simonovitz Theoem and Extemal Numbes fo Bipatite Gaphs May Radcliffe The Edős-Stone-Simonovitz Theoem Recall, in class we poved Tuán s Gaph Theoem, namely Theoem Tuán s Theoem Let

More information

Multiple Experts with Binary Features

Multiple Experts with Binary Features Multiple Expets with Binay Featues Ye Jin & Lingen Zhang Decembe 9, 2010 1 Intoduction Ou intuition fo the poect comes fom the pape Supevised Leaning fom Multiple Expets: Whom to tust when eveyone lies

More information

Evolutionary approach to Quantum and Reversible Circuits synthesis

Evolutionary approach to Quantum and Reversible Circuits synthesis Evolutionay appoach to Quantum and Revesible Cicuits synthesis Matin Lukac, Maek Pekowski, Hilton Goi, Mikhail Pivtoaiko +, Chung Hyo Yu, Kyusik Chung, Hyunkoo Jee, Byung-guk Kim, Yong-Duk Kim Depatment

More information

Suggested Solutions to Homework #4 Econ 511b (Part I), Spring 2004

Suggested Solutions to Homework #4 Econ 511b (Part I), Spring 2004 Suggested Solutions to Homewok #4 Econ 5b (Pat I), Sping 2004. Conside a neoclassical gowth model with valued leisue. The (epesentative) consume values steams of consumption and leisue accoding to P t=0

More information

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

Chapter 5 Linear Equations: Basic Theory and Practice

Chapter 5 Linear Equations: Basic Theory and Practice Chapte 5 inea Equations: Basic Theoy and actice In this chapte and the next, we ae inteested in the linea algebaic equation AX = b, (5-1) whee A is an m n matix, X is an n 1 vecto to be solved fo, and

More information

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7 FZX: Pesonal Lectue Notes fom Daniel W. Koon St. Lawence Univesity Physics Depatment CHAPTER 7 Please epot any glitches, bugs o eos to the autho: dkoon at stlawu.edu. 7. Momentum and Impulse Impulse page

More information

Compactly Supported Radial Basis Functions

Compactly Supported Radial Basis Functions Chapte 4 Compactly Suppoted Radial Basis Functions As we saw ealie, compactly suppoted functions Φ that ae tuly stictly conditionally positive definite of ode m > do not exist The compact suppot automatically

More information

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER

QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER QUALITATIVE AND QUANTITATIVE ANALYSIS OF MUSCLE POWER Jey N. Baham Anand B. Shetty Mechanical Kinesiology Laboatoy Depatment of Kinesiology Univesity of Nothen Coloado Geeley, Coloado Muscle powe is one

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

MULTILAYER PERCEPTRONS

MULTILAYER PERCEPTRONS Last updated: Nov 26, 2012 MULTILAYER PERCEPTRONS Outline 2 Combining Linea Classifies Leaning Paametes Outline 3 Combining Linea Classifies Leaning Paametes Implementing Logical Relations 4 AND and OR

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere Applied Mathematics, 06, 7, 709-70 Published Online Apil 06 in SciRes. http://www.scip.og/jounal/am http://dx.doi.og/0.46/am.06.77065 Absoption Rate into a Small Sphee fo a Diffusing Paticle Confined in

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

CALCULUS II Vectors. Paul Dawkins

CALCULUS II Vectors. Paul Dawkins CALCULUS II Vectos Paul Dawkins Table of Contents Peface... ii Vectos... 3 Intoduction... 3 Vectos The Basics... 4 Vecto Aithmetic... 8 Dot Poduct... 13 Coss Poduct... 21 2007 Paul Dawkins i http://tutoial.math.lama.edu/tems.aspx

More information

MONTE CARLO SIMULATION OF FLUID FLOW

MONTE CARLO SIMULATION OF FLUID FLOW MONTE CARLO SIMULATION OF FLUID FLOW M. Ragheb 3/7/3 INTRODUCTION We conside the situation of Fee Molecula Collisionless and Reflective Flow. Collisionless flows occu in the field of aefied gas dynamics.

More information

1 Explicit Explore or Exploit (E 3 ) Algorithm

1 Explicit Explore or Exploit (E 3 ) Algorithm 2.997 Decision-Making in Lage-Scale Systems Mach 3 MIT, Sping 2004 Handout #2 Lectue Note 9 Explicit Exploe o Exploit (E 3 ) Algoithm Last lectue, we studied the Q-leaning algoithm: [ ] Q t+ (x t, a t

More information

Relating Branching Program Size and. Formula Size over the Full Binary Basis. FB Informatik, LS II, Univ. Dortmund, Dortmund, Germany

Relating Branching Program Size and. Formula Size over the Full Binary Basis. FB Informatik, LS II, Univ. Dortmund, Dortmund, Germany Relating Banching Pogam Size and omula Size ove the ull Binay Basis Matin Saueho y Ingo Wegene y Ralph Wechne z y B Infomatik, LS II, Univ. Dotmund, 44 Dotmund, Gemany z ankfut, Gemany sauehof/wegene@ls.cs.uni-dotmund.de

More information

3.1 Random variables

3.1 Random variables 3 Chapte III Random Vaiables 3 Random vaiables A sample space S may be difficult to descibe if the elements of S ae not numbes discuss how we can use a ule by which an element s of S may be associated

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid.

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid. SIO 229 Gavity and Geomagnetism Lectue 6. J 2 fo Eath. J 2 in the sola system. A fist look at the geoid. The Thee Big Themes of the Gavity Lectues 1.) An ellipsoidal otating Eath Refeence body (mass +

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic

Analysis of Arithmetic. Analysis of Arithmetic. Analysis of Arithmetic Round-Off Errors. Analysis of Arithmetic. Analysis of Arithmetic In the fixed-oint imlementation of a digital filte only the esult of the multilication oeation is quantied The eesentation of a actical multilie with the quantie at its outut is shown below u v Q ^v The

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that

Divisibility. c = bf = (ae)f = a(ef) EXAMPLE: Since 7 56 and , the Theorem above tells us that Divisibility DEFINITION: If a and b ae integes with a 0, we say that a divides b if thee is an intege c such that b = ac. If a divides b, we also say that a is a diviso o facto of b. NOTATION: d n means

More information

HOW TO TEACH THE FUNDAMENTALS OF INFORMATION SCIENCE, CODING, DECODING AND NUMBER SYSTEMS?

HOW TO TEACH THE FUNDAMENTALS OF INFORMATION SCIENCE, CODING, DECODING AND NUMBER SYSTEMS? 6th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE HOW TO TEACH THE FUNDAMENTALS OF INFORMATION SCIENCE, CODING, DECODING AND NUMBER SYSTEMS? Cecília Sitkuné Göömbei College of Nyíegyháza Hungay Abstact: The

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

A STUDY OF HAMMING CODES AS ERROR CORRECTING CODES

A STUDY OF HAMMING CODES AS ERROR CORRECTING CODES AGU Intenational Jounal of Science and Technology A STUDY OF HAMMING CODES AS ERROR CORRECTING CODES Ritu Ahuja Depatment of Mathematics Khalsa College fo Women, Civil Lines, Ludhiana-141001, Punjab, (India)

More information

Classical Worm algorithms (WA)

Classical Worm algorithms (WA) Classical Wom algoithms (WA) WA was oiginally intoduced fo quantum statistical models by Pokof ev, Svistunov and Tupitsyn (997), and late genealized to classical models by Pokof ev and Svistunov (200).

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

MSE 561, Atomic Modeling in Material Science Assignment 1

MSE 561, Atomic Modeling in Material Science Assignment 1 Depatment of Mateial Science and Engineeing, Univesity of Pennsylvania MSE 561, Atomic Modeling in Mateial Science Assignment 1 Yang Lu 1. Analytical Solution The close-packed two-dimensional stuctue is

More information

4/18/2005. Statistical Learning Theory

4/18/2005. Statistical Learning Theory Statistical Leaning Theoy Statistical Leaning Theoy A model of supevised leaning consists of: a Envionment - Supplying a vecto x with a fixed but unknown pdf F x (x b Teache. It povides a desied esponse

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Encapsulation theory: the transformation equations of absolute information hiding.

Encapsulation theory: the transformation equations of absolute information hiding. 1 Encapsulation theoy: the tansfomation equations of absolute infomation hiding. Edmund Kiwan * www.edmundkiwan.com Abstact This pape descibes how the potential coupling of a set vaies as the set is tansfomed,

More information

6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS 6 PROBABILITY GENERATING FUNCTIONS Cetain deivations pesented in this couse have been somewhat heavy on algeba. Fo example, detemining the expectation of the Binomial distibution (page 5.1 tuned out to

More information

6 Matrix Concentration Bounds

6 Matrix Concentration Bounds 6 Matix Concentation Bounds Concentation bounds ae inequalities that bound pobabilities of deviations by a andom vaiable fom some value, often its mean. Infomally, they show the pobability that a andom

More information

CSCE 478/878 Lecture 4: Experimental Design and Analysis. Stephen Scott. 3 Building a tree on the training set Introduction. Outline.

CSCE 478/878 Lecture 4: Experimental Design and Analysis. Stephen Scott. 3 Building a tree on the training set Introduction. Outline. In Homewok, you ae (supposedly) Choosing a data set 2 Extacting a test set of size > 3 3 Building a tee on the taining set 4 Testing on the test set 5 Repoting the accuacy (Adapted fom Ethem Alpaydin and

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction

Fast DCT-based image convolution algorithms and application to image resampling and hologram reconstruction Fast DCT-based image convolution algoithms and application to image esampling and hologam econstuction Leonid Bilevich* a and Leonid Yaoslavsy** a a Depatment of Physical Electonics, Faculty of Engineeing,

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

Part V: Closed-form solutions to Loop Closure Equations

Part V: Closed-form solutions to Loop Closure Equations Pat V: Closed-fom solutions to Loop Closue Equations This section will eview the closed-fom solutions techniques fo loop closue equations. The following thee cases will be consideed. ) Two unknown angles

More information

Physics 211: Newton s Second Law

Physics 211: Newton s Second Law Physics 211: Newton s Second Law Reading Assignment: Chapte 5, Sections 5-9 Chapte 6, Section 2-3 Si Isaac Newton Bon: Januay 4, 1643 Died: Mach 31, 1727 Intoduction: Kinematics is the study of how objects

More information

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases

APPENDIX. For the 2 lectures of Claude Cohen-Tannoudji on Atom-Atom Interactions in Ultracold Quantum Gases APPENDIX Fo the lectues of Claude Cohen-Tannoudji on Atom-Atom Inteactions in Ultacold Quantum Gases Pupose of this Appendix Demonstate the othonomalization elation(ϕ ϕ = δ k k δ δ )k - The wave function

More information

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects

Pulse Neutron Neutron (PNN) tool logging for porosity Some theoretical aspects Pulse Neuton Neuton (PNN) tool logging fo poosity Some theoetical aspects Intoduction Pehaps the most citicism of Pulse Neuton Neuon (PNN) logging methods has been chage that PNN is to sensitive to the

More information

Goodness-of-fit for composite hypotheses.

Goodness-of-fit for composite hypotheses. Section 11 Goodness-of-fit fo composite hypotheses. Example. Let us conside a Matlab example. Let us geneate 50 obsevations fom N(1, 2): X=nomnd(1,2,50,1); Then, unning a chi-squaed goodness-of-fit test

More information

Complex Eigenvalues. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Complex Eigenvalues. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Pepaed by Vince Zaccone Fo ampus Leaning ssistance Sevices at USB omplex Numbes When solving fo the oots of a quadatic equation, eal solutions can not be found when the disciminant is negative. In these

More information

PHYS Summer Professor Caillault Homework Solutions

PHYS Summer Professor Caillault Homework Solutions PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 3 13. Pictue the Poblem: The whale dives along a staight line tilted 20.0 below hoizontal fo 150 m as shown in the figue. Stategy: Resolve

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r. The Laplace opeato in pola coodinates We now conside the Laplace opeato with Diichlet bounday conditions on a cicula egion Ω {(x,y) x + y A }. Ou goal is to compute eigenvalues and eigenfunctions of the

More information

Lab #4: Newton s Second Law

Lab #4: Newton s Second Law Lab #4: Newton s Second Law Si Isaac Newton Reading Assignment: bon: Januay 4, 1643 Chapte 5 died: Mach 31, 1727 Chapte 9, Section 9-7 Intoduction: Potait of Isaac Newton by Si Godfey Knelle http://www.newton.cam.ac.uk/at/potait.html

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectos Leaning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue poblem by finding the eigenvalues and the coesponding eigenvectos

More information

A New Design of Binary MDS Array Codes with Asymptotically Weak-Optimal Repair

A New Design of Binary MDS Array Codes with Asymptotically Weak-Optimal Repair IEEE TRANSACTIONS ON INFORMATION THEORY 1 A New Design of Binay MDS Aay Codes with Asymptotically Weak-Optimal Repai Hanxu Hou, Membe, IEEE, Yunghsiang S. Han, Fellow, IEEE, Patick P. C. Lee, Senio Membe,

More information

Basic Gray Level Transformations (2) Negative

Basic Gray Level Transformations (2) Negative Gonzalez & Woods, 22 Basic Gay Level Tansfomations (2) Negative 23 Basic Gay Level Tansfomations (3) Log Tansfomation (Example fo Fouie Tansfom) Fouie spectum values ~1 6 bightest pixels dominant display

More information

A Relativistic Electron in a Coulomb Potential

A Relativistic Electron in a Coulomb Potential A Relativistic Electon in a Coulomb Potential Alfed Whitehead Physics 518, Fall 009 The Poblem Solve the Diac Equation fo an electon in a Coulomb potential. Identify the conseved quantum numbes. Specify

More information