Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30.

Size: px
Start display at page:

Download "Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30."

Transcription

1 Reading Assignment Read Chaptes 29 and 30. Poblem Desciption fo Homewok #9 In this homewok, you will solve the inhomogeneous Laplace s equation to calculate the electic scala potential that exists between two lage paallel plates (i.e. a capacito) filled with an unconventional dielectic. A diagam of the poblem is povided below. Using two voltage souces, the bottom plate is held at 1.5 V and the top plate is held at 6 V above the bottom plate. The plates ae sepaated along the z-axis by a distance of 2.0 cm (i.e. z1 = 0 cm and z2 = 2.0 cm). The dielectic between the plates is inhomogeneous and has a elative pemittivity foming a tiangula pofile as quantified in the figue above. This homewok will step you though the thee majo phases fo solving this type of poblem numeically. Fist is the fomulation step whee all the necessay equations ae deived fo solving the poblem. Second is the numeical implementation step whee the equations deived in the fist step ae solved numeically. In this homewok, the finite-diffeence method will be implemented in MATLAB to solve the final diffeential equation. Last is the visualization step whee the esults of the poblem ae visualized in a pofessional manne so that meaningful conclusions can be made about the poblem. Page 1 of 9

2 Poblem #1: Fomulation Fo poblem #1, you will deive all the necessay equations needed to implement the solution in MATLAB. All of this should be done by hand o in a wod pocesso. MATLAB should not be used at all fo Poblem #1. Ceate a pofessional quality document that looks like you ae explaining and fomulating this poblem on you own. Do not copy/paste anything fom this homewok into you document. Ceate eveything on you own. Pat 1 Deive Diffeential Equation Electostatic poblems have the following govening equations wee D is the electic flux density (C/m 2 ), E is the electic field intensity (V/m), V is the electic scala potential (volts V), is the pemittivity of fee space (F/m), is the elative pemittivity, is the vecto del opeato, and is position. D 0 Gauss Law. (1) E D Constitutive Relation (2) E 0 V Electic Potential (3) The diffeential equation fo this poblem is deived by fist substituting Eq. (3) into Eq. (2) to eliminate E, and then substituting this new expession into Eq. (1) to eliminate D. The final vecto diffeential equation is 0 V Povide Eqs. (1)-(3) in you document. Then pefom all of the steps to deive Eq. (4). Pat 2 Reduce to One-Dimension We wish to educe this to a one-dimensional poblem. This is valid as long as we ae only inteested in finding the electic potential fa away fom the edges of the capacito. To do this mathematically, we assume the functions V ae only a function of z. Unde this assumption, Eq. (4) educes to z and 2 d V z d z dv z 0 2 (5) dz dz dz Add explanation and fill in the steps to deive Eq. (5) fom Eq. (4). (4) Page 2 of 9

3 Pat 3 Deive Matix Equation To solve Eq. (5) using the finite-diffeence method, z and V z ae known only at discete points along a one-dimensional gid epesenting the z-axis. The matix equation deived fom Eq. (5) has the following fom. 2 D vd v 0 (6) z z Fill in the steps to deive Eq. (6) fom Eq. (5). You should not have to explicitly handle any finite-diffeences. This step should be almost effotless, but add explanations and attempt to visualize the step as best as possible. Pat 4 [A][x]=[0] Fom Equation (6) has the geneal fom [A][x]=[0], whee Av 0 (7) A D 2 D (8) z z Fill in the steps to deive this esult fom Eq. (6). Visualize all of the matices and column vectos in Eq. (8). Fo example, [Dz] might be visualized as D z Pat 5 Apply Bounday Conditions z Equation (7) is not yet solvable because v A 0 0 is a tivial solution. It must be put into the fom [A][x]=[b] by applying the bounday conditions V1 2 V z1 1.5 V a21 a22 a2, N 1 a 2N V 2 0 an 1,1 an 1,2 an 1,N 1 an 1,N VN V N 6 V z2 7.5 V A Fill in the steps to deive this esult fom Eqs. (7)-(8). Descibe the opeations that must be pefomed in ode to incopoate the bounday conditions. Visualize and explain this step as best as possible. v b (9) (10) Page 3 of 9

4 Pat 6 Solve fo [v] Complete you fomulation by stating that the potential function v is calculated fom Eq. (10) as follows. Poblem #2: Implementation 1 v A b (11) In Poblem #2, you will implement the finite-diffeence method that you fomulated in Poblem #1. You implementation should have vey clean MATLAB code that is welloganized and well-c0mmented. At the end, geneate a cude plot of the electic potential V(z) obtained fom you pogam. Do not woy about quality gaphics yet. That will be addessed in Poblem #3. You pogam should follow the steps below. Pat 1 Pogam Heade and Dashboad Stat you MATLAB pogam with the following heade: % HW9_Pob2.m % % Homewok #9, Poblems #2 and #3 % Computational Methods in EE % Univesity of Texas at El Paso % Instucto: D. Raymond C. Rumpf % INITIALIZE MATLAB close all; clc; clea all; % UNITS centimetes = 0.01; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% DASHBOARD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % BOUNDARY CONDITIONS z1 = 0 * centimetes; Va = 1.5; z2 = 2 * centimetes; Vb = ; % NUMBER OF GRID POINTS Nz = 100; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% PERFFORM FINITE-DIFFERENCE METHOD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Pat 2 Calculate Gid Calculate z and calculate a one-dimensional aay of points z descibing the position of each of the points in the inteval z1 z z2. Page 4 of 9

5 Pat 3 Constuct (z) Constuct an aay ER along z that epesents the pemittivity pofile (z) shown in the figue of the capacito. Pat 4 Calculate Numeical Deivative of (z) Use numeical diffeentiation to calculate the deivative of ER at EVERY point in the one-dimensional gid. Use the following finite-diffeence appoximation to do so. df1 25 f 48 f 36 f 16 f 3 f dz 12z df2 3 f 10 f 18 f 6 f f dz 12z df f 8f 8f f dz 12z i i2 i1 i1 i2 df f 6 f 18 f 10 f 3 f dz 12z N 1 N 4 N 3 N 2 N 1 N df 3 f 16 f 36 f 48 f 25 f dz 12z N N 4 N 3 N 2 N 1 N DO NOT use deivative matices to do this. Instead, calculate the deivatives like you did in Homewok #7 fo numeical diffeentiation. Pat 5 Constuct Point-by-Point Multiplication Matices Constuct two diagonal matices ER and ERD fom the functions espectively. Pat 6 Constuct Deivative Opeatos z and d z dz Constuct the two deivative matices DZ and DZ2 by calling the fdde1d() function that you wote in Homewok #8. Pat 7 Build [A] Build the matix A you fomulated in Eq. (8). Pat 8 Initialize [b] Initialize a column vecto b to contain all zeos. Pat 9 Apply Bounday Condition at z = z 1 Modify the matix A and the column vecto b consistent with Eq. (10) to incopoate the bounday condition at z = z1. Pat 10 Apply Bounday Condition at z = z 2 Modify the matix A and the column vecto b consistent with Eq. (10) to incopoate the bounday condition at z = z2. (12) (13) (14) (15) (16) Page 5 of 9

6 Pat 11 Calculate the Potential [v] Calculate the electic scala potential function v by solving Eq. (11). Pat 12 Plot V(z) in the Inteval z 1 z z 2 Plot the scala electic potential with plot(z,v). Use the default MATLAB gaphics fo this. You will make it look pofessional in the next poblem. You plot should look like what is shown below. Page 6 of 9

7 Poblem #3: Visualization In this poblem, you will geneate pofessional quality gaphics to visualize you poblem and its solution. You figue will contain fou subplots placed hoizontally next to each othe: (1) the device, (2) the pemittivity function (z), (3) the deivative of the pemittivity function, and (4) the electic scala potential V(z). In the end, you figue and esults should look something like the following: Pat 1 Open a New Figue Window Open a new figue window that has a white backgound. Size the window such that the y-axis of all the plots line up and match the device. Pat 2 Open a Subplot to Show the Device Select the fist subplot using the subplot() function in MATLAB. Pat 3 Define the RGB Values fo Coppe A list of many options fo RGB values fo coppe can be found hee: The values used in the solution fo this homewok wee: c = [ ]; Feel fee to pick you favoite! Pat 4 Daw the Bottom Plate Use the fill() command to daw a ectangle fo the bottom plate. Conside using the following limits fo you ectangle. Use the coppe colo defined in Pat 3. x z x z z z y z y z Page 7 of 9

8 Pat 5 Daw the Top Plate Use the fill() command to daw a ectangle fo the top plate. Conside using the following limits fo you ectangle. Use the coppe colo defined in Pat 3. Pat 6 Daw the Dielectic x z x z z z y1 z2 y2 z Use a loop to daw the dielectic egion one slice (thin ectangle) at a time along the z- axis. Use the fill() command to visualize each dielectic slice with a geen colo. Do not use an edge line fo the ectangles. Scale its shade of geen to convey the magnitude of the elative pemittivity (z), whee the dake shade coesponds to highe pemittivity. Conside calculating an auxiliay function fo colo scale pehaps accoding to f z then calculate the colo fo a slice accoding to z z z z min , max min c = (1-f(nz))*[1 1 1] + f(nz)*[ ]; Pat 7 Set the Gaphics View fo the Fist Subplot Set a pofessional view fo the device gaphic by tuning off the axes, giving the subplot the title DEVICE, and pehaps othe options of you choosing. Pat 8 Calculate the Vetical Tick Positions and Labels fo the Remaining Plots You tick maks should go fom 0 to 2.0 in steps of 0.2. You labels should all have the same numbe of digits, except fo zeo which should only have one. Pat 9 Plot the Relative Pemittivity Function (z) In the fist subplot fom the ight of the device, plot the elative pemittivity function (z) using a dak geen line. The units fo the vetical axis should be centimetes. Be sue linewidths ae sufficient, but not ovebeaing. Label the x-axis with (z) and label the y-axis with z (cm). Set the y-axis limits so that the position of the function coesponds to the position of the devices to its left. Give the subplot the title PERMITTIVITY. Dess up anything else in the plot that does not look pofessional and eady fo publication. Page 8 of 9

9 Pat 10 Plot the Deivative of the Relative Pemittivity Function d (z)/dz In the second subplot fom the ight of the device, plot the deivative of the elative pemittivity function using a blue line. The units fo the vetical axis should be centimetes. Be sue linewidths ae sufficient, but not ovebeaing. Label the x-axis with d(z)/dz and label the y-axis with z (cm). Set the y-axis limits so that the position of the function coesponds to the position of the devices to its left. Give the subplot the title DERIVATIVE. Dess up anything else in the plot that does not look pofessional and eady fo publication. Pat 11 Plot the Electic Scala Potential V(z) In the last subplot on the ight, plot the electic scala potential function V(z) using a ed line. The units fo the vetical axis should be centimetes. Be sue linewidths ae sufficient, but not ovebeaing. Label the x-axis with V(z) and label the y-axis with z (cm). Set the y-axis limits so that the position of the function coesponds to the position of the devices to its left. Give the subplot the title POTENTIAL. Dess up anything else in the plot that does not look pofessional and eady fo publication. Page 9 of 9

1D2G - Numerical solution of the neutron diffusion equation

1D2G - Numerical solution of the neutron diffusion equation DG - Numeical solution of the neuton diffusion equation Y. Danon Daft: /6/09 Oveview A simple numeical solution of the neuton diffusion equation in one dimension and two enegy goups was implemented. Both

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Dymore User s Manual Two- and three dimensional dynamic inflow models

Dymore User s Manual Two- and three dimensional dynamic inflow models Dymoe Use s Manual Two- and thee dimensional dynamic inflow models Contents 1 Two-dimensional finite-state genealized dynamic wake theoy 1 Thee-dimensional finite-state genealized dynamic wake theoy 1

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere Applied Mathematics, 06, 7, 709-70 Published Online Apil 06 in SciRes. http://www.scip.og/jounal/am http://dx.doi.og/0.46/am.06.77065 Absoption Rate into a Small Sphee fo a Diffusing Paticle Confined in

More information

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

Part V: Closed-form solutions to Loop Closure Equations

Part V: Closed-form solutions to Loop Closure Equations Pat V: Closed-fom solutions to Loop Closue Equations This section will eview the closed-fom solutions techniques fo loop closue equations. The following thee cases will be consideed. ) Two unknown angles

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

Implementation of RCWA

Implementation of RCWA Instucto D. Ramond Rumpf (915) 747 6958 cumpf@utep.edu EE 5337 Computational Electomagnetics Lectue # Implementation of RCWA Lectue These notes ma contain copighted mateial obtained unde fai use ules.

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

ScienceDirect. The modelling of the electric field generated by the electrical transport lines

ScienceDirect. The modelling of the electric field generated by the electrical transport lines Available online at www.sciencediect.com ScienceDiect Enegy ocedia 85 (016) 170 177 Sustainable Solutions fo Enegy and Envionment, EENVIRO - YRC 015, 18-0 Novembe 015, Buchaest, Romania The modelling of

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 33: Electomagnetic Fields and Waves Fall 7 Homewok 6 Due on Oct. 5, 7 by 5: PM Reading Assignments: i) Review the lectue notes. ii) Review

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Intoduction: In this lab, you will investigate the motion of a olling cat as it tavels in a staight line. Although this setup may seem ovesimplified, you will soon see that a detailed

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

you of a spring. The potential energy for a spring is given by the parabola U( x)

you of a spring. The potential energy for a spring is given by the parabola U( x) Small oscillations The theoy of small oscillations is an extemely impotant topic in mechanics. Conside a system that has a potential enegy diagam as below: U B C A x Thee ae thee points of stable equilibium,

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

An Exact Solution of Navier Stokes Equation

An Exact Solution of Navier Stokes Equation An Exact Solution of Navie Stokes Equation A. Salih Depatment of Aeospace Engineeing Indian Institute of Space Science and Technology, Thiuvananthapuam, Keala, India. July 20 The pincipal difficulty in

More information

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx. 9. LAGRANGIAN OF THE ELECTROMAGNETIC FIELD In the pevious section the Lagangian and Hamiltonian of an ensemble of point paticles was developed. This appoach is based on a qt. This discete fomulation can

More information

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1

Phys102 Second Major-182 Zero Version Monday, March 25, 2019 Page: 1 Monday, Mach 5, 019 Page: 1 Q1. Figue 1 shows thee pais of identical conducting sphees that ae to be touched togethe and then sepaated. The initial chages on them befoe the touch ae indicated. Rank the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue,

More information

CALCULUS II Vectors. Paul Dawkins

CALCULUS II Vectors. Paul Dawkins CALCULUS II Vectos Paul Dawkins Table of Contents Peface... ii Vectos... 3 Intoduction... 3 Vectos The Basics... 4 Vecto Aithmetic... 8 Dot Poduct... 13 Coss Poduct... 21 2007 Paul Dawkins i http://tutoial.math.lama.edu/tems.aspx

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

4/18/2005. Statistical Learning Theory

4/18/2005. Statistical Learning Theory Statistical Leaning Theoy Statistical Leaning Theoy A model of supevised leaning consists of: a Envionment - Supplying a vecto x with a fixed but unknown pdf F x (x b Teache. It povides a desied esponse

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden Applied Mathematical Sciences, Vol. 7, 13, no. 7, 335-348 Mathematical Model of Magnetometic Resistivity Sounding fo a Conductive Host with a Bulge Ovebuden Teeasak Chaladgan Depatment of Mathematics Faculty

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

Phys 1215, First Test. September 20, minutes Name:

Phys 1215, First Test. September 20, minutes Name: Phys 115, Fist Test. Septembe 0, 011 50 minutes Name: Show all wok fo maximum cedit. Each poblem is woth 10 points. k =.0 x 10 N m / C ε 0 = 8.85 x 10-1 C / N m e = 1.60 x 10-1 C ρ = 1.68 x 10-8 Ω m fo

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

30 The Electric Field Due to a Continuous Distribution of Charge on a Line

30 The Electric Field Due to a Continuous Distribution of Charge on a Line hapte 0 The Electic Field Due to a ontinuous Distibution of hage on a Line 0 The Electic Field Due to a ontinuous Distibution of hage on a Line Evey integal ust include a diffeential (such as d, dt, dq,

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

% ionic character = {1 exp 0.25 X 2

% ionic character = {1 exp 0.25 X 2 Pactice Poblems Set I MIME6 P1. Calculate the faction of bonding of MgO that is ionic (use the figue below). : % ionic chaacte = {1 exp.5 X A X } 1 Electonegativities of Mg and O ae 1. and 3.5 espectively.

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

Quantum Fourier Transform

Quantum Fourier Transform Chapte 5 Quantum Fouie Tansfom Many poblems in physics and mathematics ae solved by tansfoming a poblem into some othe poblem with a known solution. Some notable examples ae Laplace tansfom, Legende tansfom,

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

18.06 Problem Set 4 Solution

18.06 Problem Set 4 Solution 8.6 Poblem Set 4 Solution Total: points Section 3.5. Poblem 2: (Recommended) Find the lagest possible numbe of independent vectos among ) ) ) v = v 4 = v 5 = v 6 = v 2 = v 3 =. Solution (4 points): Since

More information

PY208 Matter & Interactions Final Exam S2005

PY208 Matter & Interactions Final Exam S2005 PY Matte & Inteactions Final Exam S2005 Name (pint) Please cicle you lectue section below: 003 (Ramakishnan 11:20 AM) 004 (Clake 1:30 PM) 005 (Chabay 2:35 PM) When you tun in the test, including the fomula

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Goodness-of-fit for composite hypotheses.

Goodness-of-fit for composite hypotheses. Section 11 Goodness-of-fit fo composite hypotheses. Example. Let us conside a Matlab example. Let us geneate 50 obsevations fom N(1, 2): X=nomnd(1,2,50,1); Then, unning a chi-squaed goodness-of-fit test

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Problem Set 10 Solutions

Problem Set 10 Solutions Chemisty 6 D. Jean M. Standad Poblem Set 0 Solutions. Give the explicit fom of the Hamiltonian opeato (in atomic units) fo the lithium atom. You expession should not include any summations (expand them

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Conservative Averaging Method and its Application for One Heat Conduction Problem

Conservative Averaging Method and its Application for One Heat Conduction Problem Poceedings of the 4th WSEAS Int. Conf. on HEAT TRANSFER THERMAL ENGINEERING and ENVIRONMENT Elounda Geece August - 6 (pp6-) Consevative Aveaging Method and its Application fo One Heat Conduction Poblem

More information

Particle Systems. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Particle Systems. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Paticle Systems Univesity of Texas at Austin CS384G - Compute Gaphics Fall 2010 Don Fussell Reading Requied: Witkin, Paticle System Dynamics, SIGGRAPH 97 couse notes on Physically Based Modeling. Witkin

More information

TheWaveandHelmholtzEquations

TheWaveandHelmholtzEquations TheWaveandHelmholtzEquations Ramani Duaiswami The Univesity of Mayland, College Pak Febuay 3, 2006 Abstact CMSC828D notes (adapted fom mateial witten with Nail Gumeov). Wok in pogess 1 Acoustic Waves 1.1

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a)

Why Professor Richard Feynman was upset solving the Laplace equation for spherical waves? Anzor A. Khelashvili a) Why Pofesso Richad Feynman was upset solving the Laplace equation fo spheical waves? Anzo A. Khelashvili a) Institute of High Enegy Physics, Iv. Javakhishvili Tbilisi State Univesity, Univesity St. 9,

More information

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3

Math 1105: Calculus I (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 3 Math : alculus I Math/Sci majos MWF am / pm, ampion Witten homewok Review: p 94, p 977,8,9,6, 6: p 46, 6: p 4964b,c,69, 6: p 47,6 p 94, Evaluate the following it by identifying the integal that it epesents:

More information

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy Fascati Physics Seies Vol. X (998), pp. 47-54 4 th Advanced ICFA Beam Dynamics Wokshop, Fascati, Oct. -5, 997 EFFECTS OF FRININ FIELDS ON SINLE PARTICLE DYNAMICS M. Bassetti and C. Biscai INFN-LNF, CP

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

Chapter 9 Dynamic stability analysis III Lateral motion (Lectures 33 and 34)

Chapter 9 Dynamic stability analysis III Lateral motion (Lectures 33 and 34) Pof. E.G. Tulapukaa Stability and contol Chapte 9 Dynamic stability analysis Lateal motion (Lectues 33 and 34) Keywods : Lateal dynamic stability - state vaiable fom of equations, chaacteistic equation

More information

Lecture 2 Date:

Lecture 2 Date: Lectue 2 Date: 5.1.217 Definition of Some TL Paametes Examples of Tansmission Lines Tansmission Lines (contd.) Fo a lossless tansmission line the second ode diffeential equation fo phasos ae: LC 2 d I

More information

is the instantaneous position vector of any grid point or fluid

is the instantaneous position vector of any grid point or fluid Absolute inetial, elative inetial and non-inetial coodinates fo a moving but non-defoming contol volume Tao Xing, Pablo Caica, and Fed Sten bjective Deive and coelate the govening equations of motion in

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

General Solution of EM Wave Propagation in Anisotropic Media

General Solution of EM Wave Propagation in Anisotropic Media Jounal of the Koean Physical Society, Vol. 57, No. 1, July 2010, pp. 55 60 Geneal Solution of EM Wave Popagation in Anisotopic Media Jinyoung Lee Electical and Electonic Engineeing Depatment, Koea Advanced

More information

EE 5337 Computational Electromagnetics

EE 5337 Computational Electromagnetics Instucto D. Ramond Rumpf (95) 747 6958 cumpf@utep.edu EE 5337 Computational Electomagnetics Lectue # WEM Etas Lectue These notes ma contain copighted mateial obtained unde fai use ules. Distibution of

More information

J. Electrical Systems 1-3 (2005): Regular paper

J. Electrical Systems 1-3 (2005): Regular paper K. Saii D. Rahem S. Saii A Miaoui Regula pape Coupled Analytical-Finite Element Methods fo Linea Electomagnetic Actuato Analysis JES Jounal of Electical Systems In this pape, a linea electomagnetic actuato

More information

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005 MIT OpenouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion Sping 2005 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 6.641 Electomagnetic

More information

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations MATH 415, WEEK 3: Paamete-Dependence and Bifucations 1 A Note on Paamete Dependence We should pause to make a bief note about the ole played in the study of dynamical systems by the system s paametes.

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Chapter 5 Linear Equations: Basic Theory and Practice

Chapter 5 Linear Equations: Basic Theory and Practice Chapte 5 inea Equations: Basic Theoy and actice In this chapte and the next, we ae inteested in the linea algebaic equation AX = b, (5-1) whee A is an m n matix, X is an n 1 vecto to be solved fo, and

More information

Analytical evaluation of 3D BEM integral representations using complex analysis

Analytical evaluation of 3D BEM integral representations using complex analysis BIR Wokshop 5w5052 Moden Applications of Complex Vaiables: Modeling, Theoy and Computation Analytical evaluation of 3D BEM integal epesentations using complex analysis onia Mogilevskaya Depatment of Civil,

More information

THE INFLUENCE OF THE MAGNETIC NON-LINEARITY ON THE MAGNETOSTATIC SHIELDS DESIGN

THE INFLUENCE OF THE MAGNETIC NON-LINEARITY ON THE MAGNETOSTATIC SHIELDS DESIGN THE INFLUENCE OF THE MAGNETIC NON-LINEARITY ON THE MAGNETOSTATIC SHIELDS DESIGN LIVIU NEAMŢ 1, ALINA NEAMŢ, MIRCEA HORGOŞ 1 Key wods: Magnetostatic shields, Magnetic non-lineaity, Finite element method.

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

PHYS 301 HOMEWORK #10 (Optional HW)

PHYS 301 HOMEWORK #10 (Optional HW) PHYS 301 HOMEWORK #10 (Optional HW) 1. Conside the Legende diffeential equation : 1 - x 2 y'' - 2xy' + m m + 1 y = 0 Make the substitution x = cos q and show the Legende equation tansfoms into d 2 y 2

More information

Lab 10: Newton s Second Law in Rotation

Lab 10: Newton s Second Law in Rotation Lab 10: Newton s Second Law in Rotation We can descibe the motion of objects that otate (i.e. spin on an axis, like a popelle o a doo) using the same definitions, adapted fo otational motion, that we have

More information