MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.07: Electomagnetism II Septembe 5, 202 Pof. Alan Guth PROBLEM SET 2 DUE DATE: Monday, Septembe 24, 202. Eithe hand it in at the lectue, o by 6:00 pm in the 8.07 homewok boxes. READING ASSIGNMENT: Chapte 2 of Giffiths: Electostatics. GRADING OF THIS PROBLEM SET: The poblem set is woth 85 points plus 20points exta cedit. It is theefoe time to claify the opeational definition of exta cedit. We will keep tack of the exta cedit gades sepaately, and at the end of the couse I will fist assign povisional gades based solely on the egula cousewok. I will consult with Pof. Chen and Ahmet Demi, and we will ty to make sue that these gades ae easonable. Then I will add in the exta cedit, allowing the gades to change upwads accodingly. Finally, we will look at each student s gades individually, and we might decide to give a highe gade to some students who ae slightly below a bodeline. Students whose gades have impoved significantly duing the tem, and students whose aveage has been pushed down by single low gade, will be the ones most likely to be boosted. The bottom line is that you should feel fee to skip the exta cedit poblems, and you will still get an excellent gade in the couse if you do well on the egula poblems. Howeve, if you ae the kind of student who eally wants to get the most out of the couse, then I hope that you will find these exta cedit poblems challenging, inteesting, and educational. (As descibed in the solutions to Poblem Set, the poblem sets in the couse will not be gaded in full, but instead only selected poblems will actually be gaded. The exta cedit poblems will neve be among the gaded poblems.) PROBLEM : THE LAPLACIAN AS THE ANTI-LUMPINESS OPERA TOR (5 points) In this poblem you will pove a elation that was stated in lectue. Le ϕ(f) be any scala function of position f. We ae inteested in elating the value of ϕ at an abitay point f 0 to the aveage value of ϕ on a sphee that is centeed at f 0. While the point f 0 is abitay, we can simpify ou notation by choosing a coodinate system so that f 0 is the oigin f0. Then the elation to be poved can be witten ϕ(f0) ϕ (R) = d 3 x 2 ϕ. (.) 4π <R R Hee ϕ(r) epesents the aveage value of ϕ on the suface of a sphee of adius R, which can be witten explicitly as 2π π ϕ (R) = ϕ(r, θ, φ) sin θ dθ dφ. (.2) 4π 0 0

2 8.07 PROBLEM SET 2, FALL 202 p. 2 The integation in Eq. (.) is ove the volume of a sphee of adius R, centeed at the oigin. The elation to lumpiness can be seen by thinking of ϕ as the density of a pudding. The equation implies that if 2 ϕ = 0, then the value of ϕ at the oigin is the same as the aveage value of its suoundings (no lumpiness). But if 2 ϕ<0, then the value of ϕ at the oigin is highe than the aveage value of its suoundings (i.e., thee is a lump). (a) Defining g() (.3) R fo compactness, use the divegence theoem to show that d 3 x f g ϕ f =0. (.4) <R (b) Use index notation (i.e., f eˆi i ) to show that fo abitay scala functions g(f) and ϕ(f) (g f f ϕ)= g f ϕ f + g 2 ϕ. (.5) (c) Use the identity in pat (b) to ewite the integand of the integal of Eq. (.4), and evaluate each tem sepaately. We suggest that the integal of f g f ϕ be expessed in spheical pola coodinates. Show that the vanishing of the integal in Eq. (.4), e-expessed in this way, implies Eq. (.). PROBLEM 2: CAPACITANCE OF A CYLINDRICAL CAPACITOR (0 points) A vey long conducting cylinde (length e and adius a) caying a total chage +q is suounded by a thin conducting cylindical shell (length e and adius b) with total chage -q, as shown in coss section in the sketch. (a) Using Gauss s law, find an expession fo the electic field E f (f) at points a<<b. Neglect end effects due to the finite length of the capacito. (b) Using you expession fo E f fom pat (a), find the potential diffeence V between the oute shell and the inne cylinde. (c) Deive an expession fo the capacitance of this capacito in tems of the quantities given. What is the capacitance pe unit length? (d) Let the gap d = b a between the cylindes be small compaed to the adii, a and b. Show that in this case you answe fo pat (c) educes to that fo a paallel plate capacito (see Giffiths Eq. (2.54) on p. 05).

3 8.07 PROBLEM SET 2, FALL 202 p. 3 PROBLEM 3: THE ELECTRIC FIELD, POTENTIAL, AND ENERGY OF A UNIFORM SPHERE OF CHARGE (5 points) (a) A unifomly chaged sphee of chage has adius R and total chage Q. Using Gauss s law, calculate the electic field E f (f) eveywhee. (b) Using the electic field you calculated in pat (a), find the electic potential V (f) eveywhee. (c) Using the expession W = 2 0 E f 2 d 3 x, (3.) all space fo the total wok needed to assemble the chage configuation, calculate W using you expessions above. (d) Using the expession W = ρv d 3 x, (3.2) 2 all space calculate W again using you expessions above. PROBLEM 4: CALCULATING FORCES USING VIRTUAL WORK (0 points) Use vitual wok to calculate the attactive foce between conductos in the paallel plate capacito (aea A, sepaation d). That is, use consevation of enegy to detemine how much wok must be done to move one plate by an infinitesimal amount, and then use the value of the wok to detemine the foce. Do you vitual wok computations in two ways: (a) keeping fixed the chages on the plates, and, (b) keeping a fixed the voltage between the plates. PROBLEM 5: MUTUAL CAPACITANCE (5 points) In lectue we discussed elations of the fom n Q i = C ij V j, i,j =, 2,...,n. (5.) j= govening the potentials and chages of n conductos (with the potential taken to be zeo at spatial infinity). (a) Pove that C ij = C ji.[hint: Conside how much enegy is needed to stat with the system unchaged, then add chage Q i to conducto i, and then add chage Q j to

4 8.07 PROBLEM SET 2, FALL 202 p. 4 conducto j. Then conside stating again with the system unchaged, and pefoming these opeations in the opposite ode. That is, add chage Q j to conducto j, and then Q i to conducto i. Then think about how to use you answes to pove the desied esult.] (b) Conside a two-conducto configuation. Calculate the conventional capacitance C in tems of C,C 2,C 2, and C 22. (c) Conside two concentic spheical conducting shells of adii a and b with a<b. Call the inne shell conducto, and the oute shell conducto 2. Calculate the matix of capacitances C ij and use you esult fom pat (b) to infe the conventional capacitance C. Compae you answe with Example 2. in Giffiths, p. 05. PROBLEM 6: SPACE CHARGE, VACUUM DIODES, AND THE CHILD LANGMUIR LAW (20 points) Giffiths Poblem 2.48 (p. 07). Challenging! Fo pat (e), you can solve the diffeential equation eithe by guessing a solution and showing that it woks, o by finding a fist integal by the same method that is used in mechanics to go fom Newton s 2nd ode equation of motion to the fist ode equation fo the consevation of mechanical enegy. PROBLEM 7: 2 (/) IN THE LANGUAGE OF DISTRIBUTIONS (20 points exta cedit) This poblem will have a longwinded pedagogical intoduction, since it concens an appoach which was discussed in lectue, but is not discussed in the textbook. In Poblem 5 of Poblem Set, you evaluated 2 (/4π) by eplacing / by / 2 + a 2. Afte calculating g a () 2 (/4π 2 + a 2 ), you showed that its integal ove all space is, and that fo any = 0it appoaches 0as a 0. This execise was intended to convey a useful intuition about δ-functions, and about the elation 2 = δ 3 (f). (7.) 4π Howeve, fom the standpoint of a mathematically igoous teatment, thee is a shotcoming to this and all simila teatments of the δ-function as a limit of a sequence of functions. While the sequence of functions leads to eliable intuition, the pecise mathematical pictue is complicated by the odeing of limits. That is, you showed in you poblem set solutions that g a ()d 3 x = fo any a>0, and hence all space lim g a ()d 3 x =. (7.2) a 0 all space

5 8.07 PROBLEM SET 2, FALL 202 p. 5 Howeve, if we had taken the limit fist, we would have found 0if =0 lim g a () = (7.3) a 0 if =0, and we showed in lectue that the integal of this function, defined as the aea unde the cuve, is in fact zeo. So we cannot quite say that g a () appoaches a δ-function as a 0. Instead, we have to keep in mind the slightly moe complicated pictue in which g a () acts like a δ-function when a is vey vey small, and behaves exactly as a δ-function if we take the limit a 0 afte any integations have been caied out. Since the integal of the function descibed in Eq. (7.3) vanishes, thee is no nomal function that behaves as a Diac δ-function. Thus the δ-function is technically not a function, but athe what the mathematicians call a genealized function,o a distibution. It is eally the concept of integation that is being genealized, and a distibution is the integand of a genealized integal. Stating with functions of one vaiable, we can conside an abitay function ϕ(x). Its integal, ϕ(x)dx, (7.4) maps the function ϕ(x) into a single eal numbe, the value of its integal. It is a linea map, in the sense that [ϕ (x)+ λϕ 2 (x)] dx = ϕ (x)dx + λ ϕ 2 (x)dx, (7.5) whee λ is a constant. A distibution defines a genealized integal, which is an abitay linea map fom the space of smooth test functions ϕ(x) to eal numbes. These test functions ae equied not only to be smooth, but also to fall off apidly at lage values of x.* The distibution that coesponds to a δ-function is the map which takes the function ϕ(x) to ϕ(x 0 ), its value at some paticula point x 0. While thee is no function that behaves as a Diac δ-function, it is pefectly clea that this map fom functions to eal numbes is well-defined. Thinking of this map as a genealization of integation, we can wite it as ϕ(x) δ(x x 0 )dx ϕ(x 0 ). (7.6) * Vaious choices can be made fo the pecise estictions on the space of test functions. A fequently used choice is the space of Schwatz functions, which ae infinitely diffeentiable, and which have the popety that the function and all its deivatives fall off faste than any powe at lage x. The distibutions associated with this definition of smoothness ae called tempeed distibutions.

6 8.07 PROBLEM SET 2, FALL 202 p. 6 But emembe that the integal sign hee does not descibe the aea unde a cuve; instead it denotes a linea map fom the function ϕ(x) to a eal numbe, and the symbol δ(x x 0 ) indicates the paticula linea map which maps ϕ(x) to its value at x 0,namely ϕ(x 0 ). Mathematically, Eq. (7.6) defines the δ-function, which is defined solely as a pesciption fo a genealized type of integation. The deivative of a distibution is defined so that genealized integation is consistent with the usual pocedue of integation by pats: d dϕ(x) ϕ(x) δ(x x 0 )dx δ(x x 0 )dx ϕ ' (x 0 ), (7.7) dx dx whee ϕ ' (x) dϕ(x)/dx. Note that we do not include any bounday tems, as ϕ(x) is equied to fall off at lage x fast enough to cause any bounday tems to vanish. We ae now eady to evaluate 2 (/) in the language of distibutions. Note that in the language of functions 2 (/) is ill-defined, because / is not diffeentiable at = 0. But we can pomote / to a distibution by defining it as a mapping fom test functions ϕ(f) to numbes, whee the mapping is given by the (odinay) integal ϕ(f) d 3 x. (7.8) Note that even though / is singula at = 0, this integal is pefectly well defined, since in spheical pola coodinates we have d 3 x = d sin θ dθ dφ. (7.9) By defining the deivative of a distibution by integation by pats, as in Eq. (7.7), we can wite the distibution coesponding to 2 (/), which I will call F [ϕ(f)] fo futue efeence: ( ) ( ) 2 ϕ(f) d 3 x = ϕ(f) i i d 3 x (7.0a) ( ) = i ϕ(f) i d 3 x (70b) ( ) = 2 ϕ(f) d 3 x, (7.0c) so ( ) F [ϕ(f)] 2 ϕ(f) d 3 x. (7.)

7 8.07 PROBLEM SET 2, FALL 202 p. 7 Note that the squae backets used fo the agument of F is a common notation fo a functional, i.e., a function of a function. Hee F maps the function ϕ(f) tothe numbe given by the (odinay) integal on the ight-hand side of Eq. (7.). AT LAST: THE HOMEWORK PROBLEM: (a) Evaluate F [ϕ(f)] (as defined by Eq. (7.)) fo an abitay smooth test function ϕ(f) which falls off apidly fo lage f. Show that F [ϕ(f)] = 4πϕ(f0). (7.2) Since ϕ(f) δ 3 (f) = ϕ(f0), (7.3) Eq. (7.2) is equivalent to witing ( ) 2 = 4πδ 3 (f) (7.4) in the sense of distibutions, which is the esult we seek. [Hint: Although Eq. (7.) is the defining equation, thee is nothing that pevents you fom integating by pats once to etieve the integal in the fom of Eq. (7.0b). Wite this in spheical pola coodinates, and then ty to evaluate it.] (b) Use the language of distibutions to evaluate 2 ln in two dimensions. (See Poblem 6(d) of Poblem Set.)

8 MIT OpenCouseWae Electomagnetism II Fall 202 Fo infomation about citing these mateials o ou Tems of Use, visit:

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

EM Boundary Value Problems

EM Boundary Value Problems EM Bounday Value Poblems 10/ 9 11/ By Ilekta chistidi & Lee, Seung-Hyun A. Geneal Desciption : Maxwell Equations & Loentz Foce We want to find the equations of motion of chaged paticles. The way to do

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

arxiv: v1 [physics.pop-ph] 3 Jun 2013

arxiv: v1 [physics.pop-ph] 3 Jun 2013 A note on the electostatic enegy of two point chages axiv:1306.0401v1 [physics.pop-ph] 3 Jun 013 A C Tot Instituto de Física Univesidade Fedeal do io de Janeio Caixa Postal 68.58; CEP 1941-97 io de Janeio,

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

PES 3950/PHYS 6950: Homework Assignment 6

PES 3950/PHYS 6950: Homework Assignment 6 PES 3950/PHYS 6950: Homewok Assignment 6 Handed out: Monday Apil 7 Due in: Wednesday May 6, at the stat of class at 3:05 pm shap Show all woking and easoning to eceive full points. Question 1 [5 points]

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Physics 1502: Lecture 4 Today s Agenda

Physics 1502: Lecture 4 Today s Agenda 1 Physics 1502: Today s genda nnouncements: Lectues posted on: www.phys.uconn.edu/~cote/ HW assignments, solutions etc. Homewok #1: On Mastephysics today: due next Fiday Go to masteingphysics.com and egiste

More information

Physics 122, Fall September 2012

Physics 122, Fall September 2012 Physics 1, Fall 1 7 Septembe 1 Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Today in Physics 122: getting V from E

Today in Physics 122: getting V from E Today in Physics 1: getting V fom E When it s best to get V fom E, athe than vice vesa V within continuous chage distibutions Potential enegy of continuous chage distibutions Capacitance Potential enegy

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me!

Your Comments. Do we still get the 80% back on homework? It doesn't seem to be showing that. Also, this is really starting to make sense to me! You Comments Do we still get the 8% back on homewok? It doesn't seem to be showing that. Also, this is eally stating to make sense to me! I am a little confused about the diffeences in solid conductos,

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Contact impedance of grounded and capacitive electrodes

Contact impedance of grounded and capacitive electrodes Abstact Contact impedance of gounded and capacitive electodes Andeas Hödt Institut fü Geophysik und extateestische Physik, TU Baunschweig The contact impedance of electodes detemines how much cuent can

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

Current, Resistance and

Current, Resistance and Cuent, Resistance and Electomotive Foce Chapte 25 Octobe 2, 2012 Octobe 2, 2012 Physics 208 1 Leaning Goals The meaning of electic cuent, and how chages move in a conducto. What is meant by esistivity

More information

1 Spherical multipole moments

1 Spherical multipole moments Jackson notes 9 Spheical multipole moments Suppose we have a chage distibution ρ (x) wheeallofthechageiscontained within a spheical egion of adius R, as shown in the diagam. Then thee is no chage in the

More information

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2 THE LAPLACE EQUATION The Laplace (o potential) equation is the equation whee is the Laplace opeato = 2 x 2 u = 0. in R = 2 x 2 + 2 y 2 in R 2 = 2 x 2 + 2 y 2 + 2 z 2 in R 3 The solutions u of the Laplace

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Lecture 23. Representation of the Dirac delta function in other coordinate systems Lectue 23 Repesentation of the Diac delta function in othe coodinate systems In a geneal sense, one can wite, ( ) = (x x ) (y y ) (z z ) = (u u ) (v v ) (w w ) J Whee J epesents the Jacobian of the tansfomation.

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything!

Your Comments. Conductors and Insulators with Gauss's law please...so basically everything! You Comments I feel like I watch a pe-lectue, and agee with eveything said, but feel like it doesn't click until lectue. Conductos and Insulatos with Gauss's law please...so basically eveything! I don't

More information

Homework # 3 Solution Key

Homework # 3 Solution Key PHYSICS 631: Geneal Relativity Homewok # 3 Solution Key 1. You e on you hono not to do this one by hand. I ealize you can use a compute o simply look it up. Please don t. In a flat space, the metic in

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

An o5en- confusing point:

An o5en- confusing point: An o5en- confusing point: Recall this example fom last lectue: E due to a unifom spheical suface chage, density = σ. Let s calculate the pessue on the suface. Due to the epulsive foces, thee is an outwad

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Geometry of the homogeneous and isotropic spaces

Geometry of the homogeneous and isotropic spaces Geomety of the homogeneous and isotopic spaces H. Sonoda Septembe 2000; last evised Octobe 2009 Abstact We summaize the aspects of the geomety of the homogeneous and isotopic spaces which ae most elevant

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005

6.641 Electromagnetic Fields, Forces, and Motion Spring 2005 MIT OpenouseWae http://ocw.mit.edu 6.641 Electomagnetic Fields, Foces, and Motion Sping 2005 Fo infomation about citing these mateials o ou Tems of Use, visit: http://ocw.mit.edu/tems. 6.641 Electomagnetic

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

Review. Electrostatic. Dr. Ray Kwok SJSU

Review. Electrostatic. Dr. Ray Kwok SJSU Review Electostatic D. Ray Kwok SJSU Paty Balloons Coulomb s Law F e q q k 1 Coulomb foce o electical foce. (vecto) Be caeful on detemining the sign & diection. k 9 10 9 (N m / C ) k 1 4πε o k is the Coulomb

More information

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2.

Lecture 5 Solving Problems using Green s Theorem. 1. Show how Green s theorem can be used to solve general electrostatic problems 2. Lectue 5 Solving Poblems using Geen s Theoem Today s topics. Show how Geen s theoem can be used to solve geneal electostatic poblems. Dielectics A well known application of Geen s theoem. Last time we

More information

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE

CHAPTER 10 ELECTRIC POTENTIAL AND CAPACITANCE CHAPTER 0 ELECTRIC POTENTIAL AND CAPACITANCE ELECTRIC POTENTIAL AND CAPACITANCE 7 0. ELECTRIC POTENTIAL ENERGY Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Depatment of Mechanical Engineeing 2.25 Advanced Fluid Mechanics Poblem 4.27 This poblem is fom Advanced Fluid Mechanics Poblems by A.H. Shapio and A.A. Sonin u(,t) pg Gas Liquid, density Conside a

More information

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk Appendix A Appendices A1 ɛ and coss poducts A11 Vecto Opeations: δ ij and ɛ These ae some notes on the use of the antisymmetic symbol ɛ fo expessing coss poducts This is an extemely poweful tool fo manipulating

More information

DonnishJournals

DonnishJournals DonnishJounals 041-1189 Donnish Jounal of Educational Reseach and Reviews. Vol 1(1) pp. 01-017 Novembe, 014. http:///dje Copyight 014 Donnish Jounals Oiginal Reseach Pape Vecto Analysis Using MAXIMA Savaş

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM.

Exam 1. Exam 1 is on Tuesday, February 14, from 5:00-6:00 PM. Exam 1 Exam 1 is on Tuesday, Febuay 14, fom 5:00-6:00 PM. Testing Cente povides accommodations fo students with special needs I must set up appointments one week befoe exam Deadline fo submitting accommodation

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 Today in Physics 1: electostatics eview David Blaine takes the pactical potion of his electostatics midtem (Gawke). 11 Octobe 01 Physics 1, Fall 01 1 Electostatics As you have pobably noticed, electostatics

More information

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr. POBLM S # SOLUIONS by obet A. DiStasio J. Q. he Bon-Oppenheime appoximation is the standad way of appoximating the gound state of a molecula system. Wite down the conditions that detemine the tonic and

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Module 05: Gauss s s Law a

Module 05: Gauss s s Law a Module 05: Gauss s s Law a 1 Gauss s Law The fist Maxwell Equation! And a vey useful computational technique to find the electic field E when the souce has enough symmety. 2 Gauss s Law The Idea The total

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapte : Gauss s Law Gauss s law : intoduction The total electic flux though a closed suface is equal to the total (net) electic chage inside the suface divided by ε Gauss s law is equivalent to Coulomb

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Related Rates - the Basics

Related Rates - the Basics Related Rates - the Basics In this section we exploe the way we can use deivatives to find the velocity at which things ae changing ove time. Up to now we have been finding the deivative to compae the

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call

Today s Plan. Electric Dipoles. More on Gauss Law. Comment on PDF copies of Lectures. Final iclicker roll-call Today s Plan lectic Dipoles Moe on Gauss Law Comment on PDF copies of Lectues Final iclicke oll-call lectic Dipoles A positive (q) and negative chage (-q) sepaated by a small distance d. lectic dipole

More information

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0

2 E. on each of these two surfaces. r r r r. Q E E ε. 2 2 Qencl encl right left 0 Ch : 4, 9,, 9,,, 4, 9,, 4, 8 4 (a) Fom the diagam in the textbook, we see that the flux outwad though the hemispheical suface is the same as the flux inwad though the cicula suface base of the hemisphee

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Physics 411 Lecture 34. Sourced Radiation. Lecture 34. Physics 411 Classical Mechanics II

Physics 411 Lecture 34. Sourced Radiation. Lecture 34. Physics 411 Classical Mechanics II Physics 411 Lectue 34 Souced Radiation Lectue 34 Physics 411 Classical Mechanics II Novembe 21st, 2007 We ae eady to move on to the souce side of lineaized waves. The point of this whole section has been

More information

IX INDUCTANCE AND MAGNETIC FIELDS

IX INDUCTANCE AND MAGNETIC FIELDS IX INDUCTNCE ND MGNETIC FIELDS 9. Field in a solenoid vaying cuent in a conducto will poduce a vaying magnetic field. nd this vaying magnetic field then has the capability of inducing an EMF o voltage

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

X ELECTRIC FIELDS AND MATTER

X ELECTRIC FIELDS AND MATTER X ELECTRIC FIELDS AND MATTER 1.1 Dielectics and dipoles It is an expeimentally obseved fact that if you put some (insulating) matte between the plates of a capacito then the capacitance inceases. Since

More information

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS

5.61 Physical Chemistry Lecture #23 page 1 MANY ELECTRON ATOMS 5.6 Physical Chemisty Lectue #3 page MAY ELECTRO ATOMS At this point, we see that quantum mechanics allows us to undestand the helium atom, at least qualitatively. What about atoms with moe than two electons,

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Stress Intensity Factor

Stress Intensity Factor S 47 Factue Mechanics http://imechanicaog/node/7448 Zhigang Suo Stess Intensity Facto We have modeled a body by using the linea elastic theoy We have modeled a cack in the body by a flat plane, and the

More information

Classical Mechanics Homework set 7, due Nov 8th: Solutions

Classical Mechanics Homework set 7, due Nov 8th: Solutions Classical Mechanics Homewok set 7, due Nov 8th: Solutions 1. Do deivation 8.. It has been asked what effect does a total deivative as a function of q i, t have on the Hamiltonian. Thus, lets us begin with

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information