TIME-CORRELATION FUNCTIONS

Size: px
Start display at page:

Download "TIME-CORRELATION FUNCTIONS"

Transcription

1 p. 8 TIME-CORRELATION FUNCTIONS Time-correlatio fuctios are a effective way of represetig the dyamics of a system. They provide a statistical descriptio of the time-evolutio of a variable for a esemble at thermal equilibrium. They are geerally applicable to ay time-depedet process for a esemble, but are commoly used to describe radom or stochastic processes i codesed phases. We will use them i a descriptio of spectroscopy ad relaxatio pheomea. This work is motivated by fidig a geeral tool that will help us deal with the iheret radomess of molecular systems at thermal equilibrium. The quatum equatios of motio are determiistic, but this oly applies whe we ca specify the positios ad mometa of all the particles i our system. More geerally, we observe a small subset of all degrees of freedom, ad the time-depedet properties show radom fluctuatios ad irreversible relaxatio as a result of couplig to the surroudigs. It is useful to treat the eviromet with the miimum umber of variables ad iterpret i a statistical sese for istace i terms of temperature. Statistics Commoly you would describe the statistics of a measuremet i terms of the momets of the distributio. I fact, this was a postulate of quatum mechaics that the expectatio value is the mea value of the observable over may observatios. If A is a microscopic variable: N Average: A = 1 A i (9.1) N i=1 1 Mea Square Value: A = N AA i i N i=1 (9.) The ability to specify a value for A is captured i the variace of the distributio σ = A A (9.3) To characterize the statistical relatioship betwee two variables, we ca defie a correlatio fuctio C AB = AB A B (9.4)

2 p. 83 You ca see that this is the covariace the variace for a bivariate distributio. To iterpret this it helps to defie a correlatio coefficiet ρ = C AB. (9.5) σ A σ B ρ ca take o values from +1 to 1. If ρ = 1 the there is perfect correlatio betwee the two distributios. If the variables A ad B deped the same way o a commo iteral variable, the they are correlated. If o statistical relatioship exists betwee the two distributios, the they are ucorrelated, ρ = 0, ad AB = A B. It is also possible that the distributios deped i a equal ad opposite maer o a iteral variable, i which case we call them ati-correlated with ρ = 1. For time-correlatio fuctios we will be ivestigatig correlatio fuctios of the form (9.4), except rather tha two differet variables, we will be iterested i the value of the same iteral variable, although at differet poits i time. Equilibrium systems For the case of a system at thermal equilibrium, we describe the probability of observig a variable A through a equilibrium esemble average A. Classically this is A = dp dq A( pq, ;t) f (p, q ) (9.6) where f is the caoical probability distributio for a equilibrium system at temperature T β H f = e (9.7) Z Z is the partitio fuctio ad β=k B T. I the quatum mechaical case, we ca write A = p A (9.8) where p = e β E / Z (9.9) Equatio (9.8) may ot seem obvious, sice it is differet tha our earlier expressio A = m, a a A = Tr m m (ρ A). The differece is that i the preset case, we are dealig with a statistical mixture or mixed state, i which o cohereces (phase relatioships) are preset i the sample. To look at it a bit more closely, the expectatio value for a mixture

3 p. 84 A = p k ψ k A ψ k (9.10) k ca be writte somewhat differetly as a explicit sum over N statistically idepedet molecules 1 N () i () i A = ( a ) a m A m (9.11) N i=1, m Sice the molecules are statistically idepedet, this sum over molecules is just the esemble averaged value of the expasio coefficiets A = a a m, m A m (9.1) We ca evaluate this average recogizig that these are complex umbers, ad that the equilibrium esemble average of the expasio coefficiets is equivalet to phase averagig over the expasio coefficiets. Sice at equilibrium all phases are equally probable 1 π 1 m aa m d m 0 0 a a = π φ = a a π e iφ m dφ m (9.13) π where I have used a = a e iφ ad φ m = φ φ m. The itegral i (9.13) is quite clearly zero uless φ = φ m, givig β E a a = p = e m (9.14) Z Of course, eve at equilibrium the expectatio value of A for a member of esemble as a fuctio of time A t. Although the behavior of A i i () ( ) it geerally is observed to fluctuate radomly: t may be well-defied ad periodic, for mixed states Ai ( t) A t

4 p. 85 If we look at this behavior there seems to be little iformatio i the radom fluctuatios of A, but there are characteristic time scales ad amplitudes to these chages. We ca characterize these by comparig the value of A at time t with the value of A at time t later. With that i mid we defie a time-correlatio fuctio (TCF) as a time-depedet quatity, At ( ), multiplied by that quatity at some later time, A( t ), ad averaged over a equilibrium esemble: C AA (t, t ) A( t ) A( t ) (9.15) Techically this is a auto-correlatio fuctio, which correlates the same variable at two poits i time, whereas the correlatio of two differet variables i time is described through a crosscorrelatio fuctio Followig (9.6), the classical correlatio fuctio is C AB (t, t ) A( t ) B( t ) (9.16) C AA ( t t ) p pq ) (p q, ), = d dq A(, ;t A, ;t ') f (p q (9.17) while from (9.8) we ca see that the quatum correlatio fuctio ca be evaluated as C AA (t t, ) = p A( t ) A( t ). (9.18) So, what does a time-correlatio fuctio tell us? Qualitatively, a TCF describes how log a give property of a system persists util it is averaged out by microscopic motios of system. It describes how ad whe a statistical relatioship has vaished. We ca use correlatio fuctios to describe various time-depedet chemical processes. We will use μ (t) μ ( 0 ) -the dyamics of the molecular dipole momet- to describe spectroscopy. We will also use is for relaxatio processes iduced by the iteractio of a system ad bath: H SB (t ) H SB (0). Classically, you ca use if to characterize trasport processes. For istace a diffusio coefficiet is related to the 1 velocity correlatio fuctio: D = 3 dt v t v 0 0 () ( )

5 p. 86 Properties of Correlatio Fuctios A typical correlatio fuctio for radom fluctuatios i the variable A might look like: A C t AA (, t ') A ad is described by a umber of properties: t 1. Whe evaluated at t = t, we obtai the maximum amplitude, the mea square value of A, which is positive for a autocorrelatio fuctio ad idepedet of time. ( ) A( t ) C A AA (t, t ) = A t = 0 (9.19). For log time separatios, the values of A become ucorrelated lim C (t, t ') = A( t ) A( t ') = A (9.0) t AA 3. Sice it s a equilibrium quatity, correlatio fuctios are statioary. That meas they do ot deped o the absolute poit of observatio (t ad t ), but rather the time-iterval betwee observatios. A statioary radom process meas that the referece poit ca be shifted by a value T C AA (t, t ) = C AA ( t + T, t + T ). (9.1) So, choosig T = t, we see that oly the time iterval t t τ matters C AA (t, t ) = C AA (t t,0 ) = C AA (τ ) (9.) Implicit i this statemet is a uderstadig that we take the time-average value of A to be equal to the equilibrium esemble average value of A. This is the property of ergodic systems. More o Statioary Processes 1 The esemble average value of A ca be expressed as a time-average or a esemble average. For a equilibrium system, the time average is

6 p. 87 lim 1 T A = dt A i () t (9.3) T T T ad the esemble average is E A = e β A. (9.4) Z These quatities are equal for a ergodic system A = A. We assume this property for our correlatio fuctios. So, the correlatio of fluctuatios ca be writte lim 1 At () A ( 0 ) = T T T 0 ( ) ( ) d τ A t i +τ A i τ (9.5) β E () ( ) () ( ) = e or At A 0 At A 0 (9.6) Z 4. Classical correlatio fuctios are real ad eve i time: At ( ) At ( ) = At ( ) At ( ) C AA ( τ ) = C AA ( τ ) 5. Whe we observe fluctuatios about a average, we ofte redefie the correlatio fuctio i terms of the deviatio from average C A A () δ δ δ A A A () δ ( ) C () (9.7) (9.8) t = δ A t A 0 = AA t A (9.9) Now we see that the log time limit whe correlatio is lost lim C A A () time value is just the variace t δ δ t = 0, ad the zero C A δ δ ( 0 )= δ A A A = A (9.30) 6. The characteristic time-scale of a radom process is the correlatio time, τ c. This characterizes the time scale for TCF to decay to zero. We ca obtai τ c from τ = c 1 δ A dt δ A t 0 A 0 ()δ ( ) (9.31) which should be apparet if you have a expoetial form C( t ) = C ( 0exp ) ( t /τ c ).

7 p. 88 Examples of Time-Correlatio Fuctios EXAMPLE 1: Velocity autocorrelatio fuctio for gas. V x : xˆ Compoet of molecular velocity V x = 0 C t = V t V kt 0 C 0 = V 0 = VV () () ( ) VV ( ) ( ) x x x x x x x m Ideal gas: No collisios. Velocities are uchaged over t. C VV () t x x kt / m t Dilute gas: Ifrequet collisios V t V 0 for t < x ()= x ( ) x ()= x ( ) τ c V t V 0 ± δ for t >τ c τ c is related to mea time betwee collisios. After collisios, correlatio is lost. C VV () t x x kt / m τ c t

8 p. 89 EXAMPLE : Dipole momet for diatomic molecule i dilute gas: μ i. μ i = 0 (all agles are equally likely i a isotropic system) μ i = μ 0 û (the dipole has a magitude ad directio) C μμ () t = μ () t μ ( 0 ) = μ 0 uˆ () t uˆ ( 0) μ 0 collisioal dampig The correlatio fuctio projects the time-depedet orietatio oto the iitial orietatio oscillatio frequecy gives momet of iertia EXAMPLE 3: Displacemet of harmoic oscillator. mq = κq q = ω q q( t) = q ( 0cosωt ) Sice q ( 0 ) = kt mω C t = q t q 0 = q 0 cosωt qq () () ( ) kt = cosωt mω ( ) kt / mω dampig will cause Cqq to decay

9 p. 90 QUANTUM CORRELATION FUNCTIONS Quatum correlatio fuctios ivolve the equilibrium (thermal) average over a product of Hermetia operators evaluated two times. The thermal average is implicit i writig C AA ( t, t ) = A( t ) ( ) A t. Naturally, this also ivokes a Heiseberg represetatio of the operators, although i almost all cases, we will be writig correlatio fuctios as iteractio picture operators A t = e +ih t Ae I () 0 ih 0t. To emphasize the thermal average, the quatum correlatio fuctio ca also be writte as β H C t, t = A() t A( t ) AA ( ) e Z (9.3) If we evaluate this i a basis set, by isertig a projectio operator, this leads to our previous expressio C AA (t, t ) = p A( t ) A( t ) (9.33) with p = e β E Z. Give the case of time-idepedet Hamiltoia we ca also express this i the Schrödiger picture C t, t AA ( ) = = = m, = m, p p U HJJJJJJ J m ( t ) AU ( t ) U ( t ) AU ( t ) AU ( ) t t A p A m m A p A e ( t t ) i ω m e i ω ( t t ) e ( t t ) i ω m JJJJJJJJJJG A (9.34) Properties of Quatum Correlatio Fuctios There are a few properties of quatum correlatio fuctios that ca be obtaied usig the properties of the time-evolutio operator. First, we ca show the property of statioarity, which we have come to expect:

10 p. 91 At () At ( ) = U (t) A(0)U (t) U (t ) A(0)U (t ) ( ) () () ( ) = U t U t AU t U t A = U t AU t (t ) (t ) = At ( t ) A ( 0 ) A (9.35) Also, we ca show that ( ) ( 0) = A() t ( ) A( ) A( t ) A t A A 0 = 0 (9.36) or C AA (t) = C AA ( t ) (9.37) A( 0 ) A( t) = A(0)U AU = U AU A ( ) ( ) = A t A 0 (9.38) () ( ) At A 0 = U AU A = U AU A = A( 0) A( t ) (9.39) Note that the quatum C AA (t) is complex. You caot directly measure a quatum correlatio fuctio, but observables are ofte related to the real or imagiary part of correlatio fuctios, or other combiatios of correlatio fuctios. CAA ( t ) = C AA ( t ) + i C AA ( t ) (9.40) C () t = 1 C () t + C 1 t 1 = At (), A( 0 ) + A() t A ( 0 ) + A( 0) A( t) AA ( ) AA AA = (9.41) 1 1 C t AA ()= AA t t A t i C () C AA ( ) = i 1 = A () t, A ( 0 ) i () ( ) A A( ) A( t ) We ca also defie a spectral or frequecy-domai correlatio fuctio by Fourier trasformig the TCF. (9.4) C ω t + AA ( ) = F C AA () = dt e i t C AA ω () t (9.43)

11 p. 9 For a time-idepedet Hamiltoia, as we might have i a iteractio picture problem, the TCF i eq. (9.34) gives C AA ( ω )= p A m δ ( ω ω m ). (9.44) m, This expressio looks very similar to the Golde rule trasitio rate from first order perturbatio theory. I fact, the Fourier trasform of time correlatio fuctios evaluated at the eergy gap gives the trasitio rate betwee states. Note that this expressio is valid whether the iitial states are higher or lower i eergy tha fial states m, ad accouts for upward ad dowward trasitios. If we compare the ratio of upward ad dowward trasitio rates betwee two states i ad j, we have C AA (ω ij ) p j β E ij C ( ω ) = p = e. (9.45) AA ji i This is oe way of showig the priciple of detailed balace, which relates upward ad dowward trasitio rates at equilibrium to the differece i thermal occupatio betwee states: C AA (ω) = e β=ω C AA ( ω). (9.46)

8. IRREVERSIBLE AND RANDOM PROCESSES Concepts and Definitions

8. IRREVERSIBLE AND RANDOM PROCESSES Concepts and Definitions 8. IRREVERSIBLE ND RNDOM PROCESSES 8.1. Cocepts ad Defiitios I codesed phases, itermolecular iteractios ad collective motios act to modify the state of a molecule i a time-depedet fashio. Liquids, polymers,

More information

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m "2 + V ( r,t) (1.

The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): ( ) ( ) 2m 2 + V ( r,t) (1. Adrei Tokmakoff, MIT Departmet of Chemistry, 2/13/2007 1-1 574 TIME-DEPENDENT QUANTUM MECHANICS 1 INTRODUCTION 11 Time-evolutio for time-idepedet Hamiltoias The time evolutio of the state of a quatum system

More information

5.74 TIME-DEPENDENT QUANTUM MECHANICS

5.74 TIME-DEPENDENT QUANTUM MECHANICS p. 1 5.74 TIME-DEPENDENT QUANTUM MECHANICS The time evolutio of the state of a system is described by the time-depedet Schrödiger equatio (TDSE): i t ψ( r, t)= H ˆ ψ( r, t) Most of what you have previously

More information

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions

Microscopic Theory of Transport (Fall 2003) Lecture 6 (9/19/03) Static and Short Time Properties of Time Correlation Functions .03 Microscopic Theory of Trasport (Fall 003) Lecture 6 (9/9/03) Static ad Short Time Properties of Time Correlatio Fuctios Refereces -- Boo ad Yip, Chap There are a umber of properties of time correlatio

More information

Chapter 10 Advanced Topics in Random Processes

Chapter 10 Advanced Topics in Random Processes ery Stark ad Joh W. Woods, Probability, Statistics, ad Radom Variables for Egieers, 4th ed., Pearso Educatio Ic.,. ISBN 978--3-33-6 Chapter Advaced opics i Radom Processes Sectios. Mea-Square (m.s.) Calculus

More information

PHYC - 505: Statistical Mechanics Homework Assignment 4 Solutions

PHYC - 505: Statistical Mechanics Homework Assignment 4 Solutions PHYC - 55: Statistical Mechaics Homewor Assigmet 4 Solutios Due February 5, 14 1. Cosider a ifiite classical chai of idetical masses coupled by earest eighbor sprigs with idetical sprig costats. a Write

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

MIT Department of Chemistry 5.74, Spring 2005: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff

MIT Department of Chemistry 5.74, Spring 2005: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff MIT Departmet of Chemistry 5.74, Sprig 5: Itroductory Quatum Mechaics II Istructor: Professor Adrei Tomaoff p. 97 ABSORPTION SPECTRA OF MOLECULAR AGGREGATES The absorptio spectra of periodic arrays of

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpeCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy ad Dyamics Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture # 33 Supplemet

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Matsubara-Green s Functions

Matsubara-Green s Functions Matsubara-Gree s Fuctios Time Orderig : Cosider the followig operator If H = H the we ca trivially factorise this as, E(s = e s(h+ E(s = e sh e s I geeral this is ot true. However for practical applicatio

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

The Heisenberg versus the Schrödinger picture in quantum field theory. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL USA

The Heisenberg versus the Schrödinger picture in quantum field theory. Dan Solomon Rauland-Borg Corporation 3450 W. Oakton Skokie, IL USA 1 The Heiseberg versus the chrödiger picture i quatum field theory by Da olomo Raulad-Borg Corporatio 345 W. Oakto kokie, IL 677 UA Phoe: 847-324-8337 Email: da.solomo@raulad.com PAC 11.1-z March 15, 24

More information

Multiple Groenewold Products: from path integrals to semiclassical correlations

Multiple Groenewold Products: from path integrals to semiclassical correlations Multiple Groeewold Products: from path itegrals to semiclassical correlatios 1. Traslatio ad reflectio bases for operators Traslatio operators, correspod to classical traslatios, withi the classical phase

More information

Probability, Expectation Value and Uncertainty

Probability, Expectation Value and Uncertainty Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such

More information

Chapter 5 Vibrational Motion

Chapter 5 Vibrational Motion Fall 4 Chapter 5 Vibratioal Motio... 65 Potetial Eergy Surfaces, Rotatios ad Vibratios... 65 Harmoic Oscillator... 67 Geeral Solutio for H.O.: Operator Techique... 68 Vibratioal Selectio Rules... 7 Polyatomic

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y

S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y 1 Sociology 405/805 Revised February 4, 004 Summary of Formulae for Bivariate Regressio ad Correlatio Let X be a idepedet variable ad Y a depedet variable, with observatios for each of the values of these

More information

5.76 Lecture #33 5/08/91 Page 1 of 10 pages. Lecture #33: Vibronic Coupling

5.76 Lecture #33 5/08/91 Page 1 of 10 pages. Lecture #33: Vibronic Coupling 5.76 Lecture #33 5/8/9 Page of pages Lecture #33: Vibroic Couplig Last time: H CO A A X A Electroically forbidde if A -state is plaar vibroically allowed to alterate v if A -state is plaar iertial defect

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

2C09 Design for seismic and climate changes

2C09 Design for seismic and climate changes 2C09 Desig for seismic ad climate chages Lecture 02: Dyamic respose of sigle-degree-of-freedom systems I Daiel Grecea, Politehica Uiversity of Timisoara 10/03/2014 Europea Erasmus Mudus Master Course Sustaiable

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

1 Adiabatic and diabatic representations

1 Adiabatic and diabatic representations 1 Adiabatic ad diabatic represetatios 1.1 Bor-Oppeheimer approximatio The time-idepedet Schrödiger equatio for both electroic ad uclear degrees of freedom is Ĥ Ψ(r, R) = E Ψ(r, R), (1) where the full molecular

More information

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING

FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING Mechaical Vibratios FREE VIBRATION RESPONSE OF A SYSTEM WITH COULOMB DAMPING A commo dampig mechaism occurrig i machies is caused by slidig frictio or dry frictio ad is called Coulomb dampig. Coulomb dampig

More information

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka) 7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.

More information

Lecture 25 (Dec. 6, 2017)

Lecture 25 (Dec. 6, 2017) Lecture 5 8.31 Quatum Theory I, Fall 017 106 Lecture 5 (Dec. 6, 017) 5.1 Degeerate Perturbatio Theory Previously, whe discussig perturbatio theory, we restricted ourselves to the case where the uperturbed

More information

Physics 2D Lecture Slides Lecture 25: Mar 2 nd

Physics 2D Lecture Slides Lecture 25: Mar 2 nd Cofirmed: D Fial Eam: Thursday 8 th March :3-:3 PM WH 5 Course Review 4 th March am WH 5 (TBC) Physics D ecture Slides ecture 5: Mar d Vivek Sharma UCSD Physics Simple Harmoic Oscillator: Quatum ad Classical

More information

Quantum Theory Assignment 3

Quantum Theory Assignment 3 Quatum Theory Assigmet 3 Assigmet 3.1 1. Cosider a spi-1/ system i a magetic field i the z-directio. The Hamiltoia is give by: ) eb H = S z = ωs z. mc a) Fid the Heiseberg operators S x t), S y t), ad

More information

Statistical Noise Models and Diagnostics

Statistical Noise Models and Diagnostics L. Yaroslavsky: Advaced Image Processig Lab: A Tutorial, EUSIPCO2 LECTURE 2 Statistical oise Models ad Diagostics 2. Statistical models of radom iterfereces: (i) Additive sigal idepedet oise model: r =

More information

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object

Last time: Moments of the Poisson distribution from its generating function. Example: Using telescope to measure intensity of an object 6.3 Stochastic Estimatio ad Cotrol, Fall 004 Lecture 7 Last time: Momets of the Poisso distributio from its geeratig fuctio. Gs () e dg µ e ds dg µ ( s) µ ( s) µ ( s) µ e ds dg X µ ds X s dg dg + ds ds

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

The Transition Dipole Moment

The Transition Dipole Moment The Trasitio Dipole Momet Iteractio of Light with Matter The probability that a molecule absorbs or emits light ad udergoes a trasitio from a iitial to a fial state is give by the Eistei coefficiet, B

More information

The Transition Dipole Moment

The Transition Dipole Moment The Trasitio Dipole Momet Iteractio of Light with Matter The probability that a molecule absorbs or emits light ad udergoes a trasitio from a iitial to a fial state is give by the Eistei coefficiet, B

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields

Hydrogen (atoms, molecules) in external fields. Static electric and magnetic fields Oscyllating electromagnetic fields Hydroge (atoms, molecules) i exteral fields Static electric ad magetic fields Oscyllatig electromagetic fields Everythig said up to ow has to be modified more or less strogly if we cosider atoms (ad ios)

More information

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators

Lecture 2: Poisson Sta*s*cs Probability Density Func*ons Expecta*on and Variance Es*mators Lecture 2: Poisso Sta*s*cs Probability Desity Fuc*os Expecta*o ad Variace Es*mators Biomial Distribu*o: P (k successes i attempts) =! k!( k)! p k s( p s ) k prob of each success Poisso Distributio Note

More information

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples:

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples: 5.6 4 Lecture #3-4 page HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT Do t restrict the wavefuctio to a sigle term! Could be a liear combiatio of several wavefuctios e.g. two terms:

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Andrei Tokmakoff, MIT Department of Chemistry, 5/19/

Andrei Tokmakoff, MIT Department of Chemistry, 5/19/ drei Tokmakoff, MT Departmet of Chemistry, 5/9/5 4-9 Rate of bsorptio ad Stimulated Emissio The rate of absorptio iduced by the field is E k " (" (" $% ˆ µ # (" &" k k (4. The rate is clearly depedet o

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

3/21/2017. Commuting and Non-commuting Operators Chapter 17. A a

3/21/2017. Commuting and Non-commuting Operators Chapter 17. A a Commutig ad No-commutig Operators Chapter 17 Postulate 3. I ay measuremet of the observable associated with a operator A the oly values that will ever be observed are the eige values, a, which satisfy

More information

A Brief Introduction to the Physical Basis for Electron Spin Resonance

A Brief Introduction to the Physical Basis for Electron Spin Resonance A Brief Itroductio to the Physical Basis for Electro Spi Resoace I ESR measuremets, the sample uder study is exposed to a large slowly varyig magetic field ad a microwave frequecy magetic field orieted

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

1. Hydrogen Atom: 3p State

1. Hydrogen Atom: 3p State 7633A QUANTUM MECHANICS I - solutio set - autum. Hydroge Atom: 3p State Let us assume that a hydroge atom is i a 3p state. Show that the radial part of its wave fuctio is r u 3(r) = 4 8 6 e r 3 r(6 r).

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to: 2.003 Egieerig Dyamics Problem Set 9--Solutio Problem 1 Fid the equatio of motio for the system show with respect to: a) Zero sprig force positio. Draw the appropriate free body diagram. b) Static equilibrium

More information

Deterministic Model of Multipath Fading for Circular and Parabolic Reflector Patterns

Deterministic Model of Multipath Fading for Circular and Parabolic Reflector Patterns To appear i the Proceedigs of the 5 IEEE outheastco, (Ft. Lauderdale, FL), April 5 Determiistic Model of Multipath Fadig for Circular ad Parabolic Reflector Patters Dwight K. Hutcheso dhutche@clemso.edu

More information

Quantum Annealing for Heisenberg Spin Chains

Quantum Annealing for Heisenberg Spin Chains LA-UR # - Quatum Aealig for Heiseberg Spi Chais G.P. Berma, V.N. Gorshkov,, ad V.I.Tsifriovich Theoretical Divisio, Los Alamos Natioal Laboratory, Los Alamos, NM Istitute of Physics, Natioal Academy of

More information

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions

MCT242: Electronic Instrumentation Lecture 2: Instrumentation Definitions Faculty of Egieerig MCT242: Electroic Istrumetatio Lecture 2: Istrumetatio Defiitios Overview Measuremet Error Accuracy Precisio ad Mea Resolutio Mea Variace ad Stadard deviatio Fiesse Sesitivity Rage

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

Numerical Simulation of Thermomechanical Problems in Applied Mechanics: Application to Solidification Problem

Numerical Simulation of Thermomechanical Problems in Applied Mechanics: Application to Solidification Problem Leoardo Joural of Scieces ISSN 1583-0233 Issue 9, July-December 2006 p. 25-32 Numerical Simulatio of Thermomechaical Problems i Applied Mechaics: Applicatio to Solidificatio Problem Vicet Obiajulu OGWUAGWU

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 013 Lecture #5 page 1 Last time: Lecture #5: Begi Quatum Mechaics: Free Particle ad Particle i a 1D Box u 1 u 1-D Wave equatio = x v t * u(x,t): displacemets as fuctio of x,t * d -order: solutio

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

EXPERIMENT OF SIMPLE VIBRATION

EXPERIMENT OF SIMPLE VIBRATION EXPERIMENT OF SIMPLE VIBRATION. PURPOSE The purpose of the experimet is to show free vibratio ad damped vibratio o a system havig oe degree of freedom ad to ivestigate the relatioship betwee the basic

More information

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation Vibratory Motio Prof. Zheg-yi Feg NCHU SWC 1 Types of vibratory motio Periodic motio Noperiodic motio See Fig. A1, p.58 Harmoic motio Periodic motio Trasiet motio impact Trasiet motio earthquake A powerful

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Solution to problem set 2, Phys 210A

Solution to problem set 2, Phys 210A Solutio to problem set 2, Phys 20A Zhiyua Su Dated: April 27, 206 I. INFORMATION ENTROPY AND BOLTZMANN DISTRIBUTION a Usig Lagrage multipliers, we wat to maximize f p lp λe α From p f 0, we get p p lp

More information

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t,

mx bx kx F t. dt IR I LI V t, Q LQ RQ V t, Lecture 5 omplex Variables II (Applicatios i Physics) (See hapter i Boas) To see why complex variables are so useful cosider first the (liear) mechaics of a sigle particle described by Newto s equatio

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep.

PHYS-3301 Lecture 10. Wave Packet Envelope Wave Properties of Matter and Quantum Mechanics I CHAPTER 5. Announcement. Sep. Aoucemet Course webpage http://www.phys.ttu.edu/~slee/3301/ PHYS-3301 Lecture 10 HW3 (due 10/4) Chapter 5 4, 8, 11, 15, 22, 27, 36, 40, 42 Sep. 27, 2018 Exam 1 (10/4) Chapters 3, 4, & 5 CHAPTER 5 Wave

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Physics 232 Gauge invariance of the magnetic susceptibilty

Physics 232 Gauge invariance of the magnetic susceptibilty Physics 232 Gauge ivariace of the magetic susceptibilty Peter Youg (Dated: Jauary 16, 2006) I. INTRODUCTION We have see i class that the followig additioal terms appear i the Hamiltoia o addig a magetic

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Measurement uncertainty of the sound absorption

Measurement uncertainty of the sound absorption Measuremet ucertaity of the soud absorptio coefficiet Aa Izewska Buildig Research Istitute, Filtrowa Str., 00-6 Warsaw, Polad a.izewska@itb.pl 6887 The stadard ISO/IEC 705:005 o the competece of testig

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Perturbation Theory I (See CTDL , ) Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H. n ij n.

Perturbation Theory I (See CTDL , ) Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H. n ij n. Perturbatio Theory I (See CTDL 1095-1107, 1110-1119) 14-1 Last time: derivatio of all matrix elemets for Harmoic-Oscillator: x, p, H selectio rules scalig ij x i j i steps of 2 e.g. x : = ± 3, ± 1 xii

More information

Statistical Fundamentals and Control Charts

Statistical Fundamentals and Control Charts Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials,

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Preliminary Examination - Day 1 Thursday, May 12, 2016

Preliminary Examination - Day 1 Thursday, May 12, 2016 UNL - Departmet of Physics ad Astroomy Prelimiary Examiatio - Day Thursday, May, 6 This test covers the topics of Quatum Mechaics (Topic ) ad Electrodyamics (Topic ). Each topic has 4 A questios ad 4 B

More information

Lecture 6: Spectral decompositions of stochastic processes

Lecture 6: Spectral decompositions of stochastic processes Lecture 6: Spectral decompositios of stochastic processes Readigs Recommeded: Grimmett ad Stirzaker (2001) Chapter 9. Chori ad Hald (2009) Chapter 6 Pavliotis (2014), 1.2 Optioal: Yaglom (1962), Ch. 1,

More information

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II Solid State Pheomea Vol. 89 (003) pp 343-348 (003) Tras Tech Publicatios, Switzerlad doi:0.408/www.scietific.et/ssp.89.343 A New Impulse Mechaical Spectrometer to Study the Dyamic Mechaical Properties

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π 2 SECONDS AFTER IT IS TOSSED IN?

COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π 2 SECONDS AFTER IT IS TOSSED IN? COURSE INTRODUCTION: WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM π SECONDS AFTER IT IS TOSSED IN? DROR BAR-NATAN Follows a lecture give by the author i the trivial otios semiar i Harvard o April 9,

More information

Systems of Particles: Angular Momentum and Work Energy Principle

Systems of Particles: Angular Momentum and Work Energy Principle 1 2.003J/1.053J Dyamics ad Cotrol I, Sprig 2007 Professor Thomas Peacock 2/20/2007 Lecture 4 Systems of Particles: Agular Mometum ad Work Eergy Priciple Systems of Particles Agular Mometum (cotiued) τ

More information

The Relative Angle Distribution Function in the Langevin Theory of Dilute Dipoles. Robert D. Nielsen

The Relative Angle Distribution Function in the Langevin Theory of Dilute Dipoles. Robert D. Nielsen The Relative Agle Distributio Fuctio i the agevi Theory of Dilute Dipoles Robert D. Nielse ExxoMobil Research ad Egieerig Co., Clito Towship, 545 Route East, Aadale, NJ 0880 robert.ielse@exxomobil.com

More information

6.883: Online Methods in Machine Learning Alexander Rakhlin

6.883: Online Methods in Machine Learning Alexander Rakhlin 6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform

More information