Statistical Fundamentals and Control Charts


 Christopher Barnaby Patrick
 10 months ago
 Views:
Transcription
1 Statistical Fudametals ad Cotrol Charts 1. Statistical Process Cotrol Basics Chace causes of variatio uavoidable causes of variatios Assigable causes of variatio large variatios related to machies, materials, operators or others Process i statistical cotrol the system is operatig with oly chace causes of variatio preset Process out of cotrol the system is operatig i presece of assigable causes of variatio The evetual goal of SPC is reductio or elimiatio of variability i the process by idetificatio of assigable causes 40
2 Basic Priciples A typical cotrol chart has cotrol limits set at values such that if the process is i cotrol, early all poits will lie betwee the upper cotrol limit (UCL) ad the lower cotrol limit (LCL). OutofCotrol Situatios If at least oe poit plots beyod the cotrol limits, the process is out of cotrol If the poits behave i a systematic or oradom maer, the the process could be out of cotrol. Eample. I a electroic maufacturig process, the true = 1.5 ad stadard deviatio is = May samples are take with each sample of size 5. The stadard deviatio of the sample average is: If the cotrol limits are set at 3 stadard deviatios from the mea, it gives the 3 sigma cotrol limits : 41
3 UCL = (0.0671) = CL= 1.5 LCL = 1.53(0.0671) = The cotrol chart 4
4 The quality cotrol process Types of Process Variability Statioary behavior, ucorrelated data Statioary behavior, autocorrelated data Nostatioary behavior 99.7% of the Data approimately 99.7% of the data lies withi 3 of the mea (i.e., 99.7% of the data should lie withi the cotrol limits), 0.3% of the data ca fall outside 3 (or 0.3% of the data lies outside the cotrol limits) is the probability of a Type I error or a false alarm 43
5 ThreeSigma Limits The use of 3sigma limits geerally gives good results i practice. Distributio of should be ormal distributio These limits are ofte referred to as actio limits Ratioal subgroups Select cosecutive uits of productio to provide a sapshot of the process. Effective at detectig process shifts. May be ieffective i detectig if the mea has wadered outofcotrol ad the back Select a radom sample over the etire samplig iterval. 44
6 Noradom patters ca idicate outofcotrol coditios Cycles, treds ad rus : all above or below the ceter lie, ru up ad ru dow Rus of 8 observatios or more could idicate outofcotrol. A oradom patter eample Patter is very oradom i appearace 19 of 5 poits plot below the ceter lie, while oly 6 plot above Followig 4 th poit, 5 poits i a row icrease i magitude, a ru up There is also a uusually log ru dow begiig with 18 th poit. Widely Used Cotrol Charts for Variables: R chart ad S chart Moitor both the mea value of the characteristic ad the variability associated with the characteristic. 45
7 If the process mea ad stadard deviatio are kow, we ca follow the oe phase approach to set up R or S cotrol charts to moitor the process o  size of the sample (sometimes called a subgroup) o i  average of the observatios i the ith sample i=1,,3, i i1 i... o is a ormally distributed variable with mea ad stadard i deviatio o 1 is the probability that will fall betwee ad Z Z Z Z o I settig up a Shewhart cotrol chart, it typically uses Z / The i values will be plotted i the cotrol chart with kow : UCL= 3 Ceter Lie = LCL= 3 o We also eed to use R or S cotrol chart to moitor the process variace as productio cotiues. This will be discussed later. If the process mea ad stadard deviatio are ot kow while we ca assume that the process follows ormal or close to ormal distributio, we eed a twophase approach to set up Shewhart cotrol chart i Phase I ad to use the 46
8 established cotrol charts i Phase II. The most popular oes are ad R cotrol charts. I Phase I: o m is the umber of samples selected ad o is the size of each sample o  grad average or average of the averages (this value is used as the ceter lie of the cotrol chart) 1... m m o Ri  rage of the values i the ith sample R i ma{ j ij } mi{ j ij } i,ma i,mi o R  average rage for all m samples R R1 R... Rm m cotrol Limits for the chart UCL= A R Ceter Lie = LCL= A R A is foud i Appedi VI for various values of. Cotrol Limits for the R chart UCL= D 4 R Ceter Lie = R LCL= D 3 R 47
9 D 3 ad D 4 are foud i Appedi VI for various values of. The above cotrol charts are based o the followig ubiased estimator of the process stadard R deviatio : ˆ as discussed i Chapter 3. d Sice A R d R, so A d 3. Its value ca be foud i Appedi VI for various values of. 48
10 Eample R 5 R i i UCL= D 4 R =(.114)(0.351)= Ceter Lie = R =0.351 LCL= D 3 R =(0)(0.351)=0 UCL= 5 i i A R = (0.5777) (0.351)= Ceter Lie = = LCL= A R = (0.5777) (0.351)=
11 ad R charts Cotrol limit for S Charts o S is a ubiased estimator of o S is NOT a ubiased estimator of o S is a ubiased estimator of o The stadard deviatio of S is c 4 1 c 4 o If a stadard deviatio is give, the cotrol limits for the S chart are: UCL= c 3 1 c c 3 1 c B Ceter Lie = c 4 LCL= c 3 1 c c 3 1 c B B 5, B 6, ad c 4 are foud i the Appedi for various values of. 50
12 o If a stadard deviatio is ot give, use a average sample stadard deviatio, ad the cotrol chart will be: chart whe usig S S 1 m m S i i 1 UCL= B 4 S Ceter Lie = S LCL= S The upper ad lower cotrol limits for the chart are give as UCL= A3 S Ceter Lie = LCL= A3 S S where A 3 is foud i the Appedi. ca be estimated by ˆ. c Eample 5. B
13 S 5 i1 5 5 i 5 s i i UCL= 3 A S = (1.47) (0.0094)= Ceter Lie = = LCL= 3 A S = (1.47) (0.0094)= For S chart UCL= B 4 S =(.089) (0.0094)= Ceter Lie = S = LCL= B 3 S =(0) (0.0094)=0 5
14 3. The Shewhart Cotrol Chart for Idividual Measuremets Sample size is 1 Every uit is aalyzed The productio rate is very slow Repeat measuremets o the process differ oly because of laboratory or aalysis error. X ad Movig Rage Charts The movig rage (MR) is defied as: MRi i MR i i i 1, ad MR 1 m The X chart is the plot of the idividual observatios. The cotrol limits: UCL= MR 3 d Ceter Lie = LCL= MR 3 d The cotrol limits o the movig rage chart are: UCL= D 4 MR m Eample 5. Ceter Lie = M R LCL=0 53
15 MR UCL= = ( ) = d 1.18 Ceter Lie = = MR LCL= = ( ) = 3.57 d 1.18 UCL= D 4 MR =3.67(0.576) = Ceter Lie = M R = LCL=0 54
16 Iterpretatio of the Charts o X charts ca be iterpreted similar to charts. MR charts caot be iterpreted the same as or R charts. o Sice the MR chart plots data that are correlated with oe aother, the lookig for patters o the chart does ot make sese. o MR chart caot really supply useful iformatio about process variability. o More emphasis should be placed o iterpretatio of the X chart. 4. Cotrol Limits, Natural Tolerace Limits ad Specificatio Limits Cotrol limits are fuctios of the atural variability of the process Natural tolerace limits represet the atural variability of the process (usually set at 3sigma from the mea) Specificatio limits are determied by developers/desigers. There is o mathematical relatioship betwee cotrol limits ad specificatio limits. Do ot plot specificatio limits o the charts 55
MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.
XI1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI2 (1075) STATISTICAL DECISION MAKING Advaced
More informationFinal Examination Solutions 17/6/2010
The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 00900 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:
More informationLINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity
LINEAR REGRESSION ANALYSIS MODULE IX Lecture  9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that
More information71. Chapter 4. Part I. Sampling Distributions and Confidence Intervals
71 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7 Sectio 1. Samplig Distributio 73 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses
More informationII. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation
II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso productmomet correlatio
More informationLecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting
Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would
More informationProbability, Expectation Value and Uncertainty
Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such
More informationChapter 13, Part A Analysis of Variance and Experimental Design
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of
More informationChapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol DiscreteEvent System Simulation
Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol DiscreteEvet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.
More informationProperties and Hypothesis Testing
Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Crosssectioal data. 2. Time series data.
More informationLinear Regression Models
Liear Regressio Models Dr. Joh MellorCrummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect
More information1 Inferential Methods for Correlation and Regression Analysis
1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet
More informationConfidence Intervals for the Population Proportion p
Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:
More informationNCSS Statistical Software. Tolerance Intervals
Chapter 585 Itroductio This procedure calculates oe, ad two, sided tolerace itervals based o either a distributiofree (oparametric) method or a method based o a ormality assumptio (parametric). A twosided
More informationPH 425 Quantum Measurement and Spin Winter SPINS Lab 1
PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the zaxis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured
More informationDS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10
DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set
More informationR. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State
Bayesia Cotrol Charts for the Twoparameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com
More informationSTA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:
STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform largesample ifereces (hypothesis test ad cofidece itervals) to compare two populatio
More information7: Sampling Distributions
7: Samplig Distributios 7.1 You ca select a simple radom sample of size = 2 usig Table 1 i Appedix I. First choose a startig poit ad cosider the first three digits i each umber. Sice the experimetal uits
More informationMeasures of Spread: Variance and Standard Deviation
Lesso 16 Measures of Spread: Variace ad Stadard Deviatio BIG IDEA Variace ad stadard deviatio deped o the mea of a set of umbers. Calculatig these measures of spread depeds o whether the set is a sample
More informationSampling Distributions, ZTests, Power
Samplig Distributios, ZTests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace
More informationBinomial Distribution
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible
More informationElementary Statistics
Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of
More informationKLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions
We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give
More informationMedian and IQR The median is the value which divides the ordered data values in half.
STA 666 Fall 2007 Webbased Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5umber summary mea ad stadard deviatio Media
More informationActivity 3: Length Measurements with the FourSided Meter Stick
Activity 3: Legth Measuremets with the FourSided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a foursided meter
More informationDISTRIBUTION LAW Okunev I.V.
1 DISTRIBUTION LAW Okuev I.V. Distributio law belogs to a umber of the most complicated theoretical laws of mathematics. But it is also a very importat practical law. Nothig ca help uderstad complicated
More informationCentral Limit Theorem the Meaning and the Usage
Cetral Limit Theorem the Meaig ad the Usage Covetio about otatio. N, We are usig otatio X is variable with mea ad stadard deviatio. i lieu of sayig that X is a ormal radom Assume a sample of measuremets
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationIntroduction to Machine Learning DIS10
CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig
More informationSampling, Sampling Distribution and Normality
4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig
More informationWHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT
WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still
More information1 Lesson 6: Measure of Variation
1 Lesso 6: Measure of Variatio 1.1 The rage As we have see, there are several viable coteders for the best measure of the cetral tedecy of data. The mea, the mode ad the media each have certai advatages
More informationInstructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?
CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter
More informationNotes on iteration and Newton s method. Iteration
Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f
More informationStat 400, section 5.4 supplement: The Central Limit Theorem
Stat, sectio 5. supplemet: The Cetral Limit Theorem otes by Tim Pilachowski Table of Cotets 1. Backgroud 1. Theoretical. Practical. The Cetral Limit Theorem 5. Homework Exercises 7 1. Backgroud Gatherig
More informationA sequence of numbers is a function whose domain is the positive integers. We can see that the sequence
Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as
More informationStudy on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm
Joural of ad Eergy Egieerig, 05, 3, 43437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based
More informationChapter 4  Summarizing Numerical Data
Chapter 4  Summarizig Numerical Data 15.075 Cythia Rudi Here are some ways we ca summarize data umerically. Sample Mea: i=1 x i x :=. Note: i this class we will work with both the populatio mea µ ad the
More informationJoint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationDiscrete probability distributions
Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop
More information1 Constructing and Interpreting a Confidence Interval
Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew CraeDroesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad
More information1036: Probability & Statistics
036: Probability & Statistics Lecture 0 Oe ad TwoSample Tests of Hypotheses 0 Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso
More information3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.
3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear
More informationExam 2 Instructions not multiple versions
Exam 2 Istructios Remove this sheet of istructios from your exam. You may use the back of this sheet for scratch work. This is a closed book, closed otes exam. You are ot allowed to use ay materials other
More informationZeros of Polynomials
Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree
More informationA Two Control Limits Double Sampling Control Chart by Optimizing Producer and Customer Risks
ITB J. Eg. Sci., Vol. 4 No.,, 6578 65 A Two Cotrol Limits Double Samplig Cotrol Chart by Optimizig Producer ad Customer Risks Dradjad Iriato & Ai Juliai Maufacturig Systems Research Group FTI, Istitute
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More informationBHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13
BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the
More information5.1 Review of Singular Value Decomposition (SVD)
MGMT 69000: Topics i Highdimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of
More informationEcon 371 Exam #1. Multiple Choice (5 points each): For each of the following, select the single most appropriate option to complete the statement.
Eco 371 Exam #1 Multiple Choice (5 poits each): For each of the followig, select the sigle most appropriate optio to complete the statemet 1) The probability of a outcome a) is the umber of times that
More informationModeling and Performance Analysis with DiscreteEvent Simulation
Simulatio Modelig ad Performace Aalysis with DiscreteEvet Simulatio Chapter 5 Statistical Models i Simulatio Cotets Basic Probability Theory Cocepts Useful Statistical Models Discrete Distributios Cotiuous
More informationTHE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.
THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (RegulaFalsi) Fied poit iteratio Newto Raphso Secat The root of
More informationRecall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and nonusers, x  y.
Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad ousers, x  y. Such studies are sometimes viewed
More informationSINGLECHANNEL QUEUING PROBLEMS APPROACH
SINGLECHANNEL QUEUING ROBLEMS AROACH Abdurrzzag TAMTAM, Doctoral Degree rogramme () Dept. of Telecommuicatios, FEEC, BUT Email: xtamta@stud.feec.vutbr.cz Supervised by: Dr. Karol Molár ABSTRACT The paper
More informationProbability and statistics: basic terms
Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample
More informationClosed book and notes. No calculators. 60 minutes, but essentially unlimited time.
IE 230 Seat # Closed book ad otes. No calculators. 60 miutes, but essetially ulimited time. Cover page, four pages of exam, ad Pages 8 ad 12 of the Cocise Notes. This test covers through Sectio 4.7 of
More informationLecture 1 Probability and Statistics
Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark
More informationEcon 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chisquare Distribution, Student s t distribution 1.
Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chisquare Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio
More informationA PROBABILITY PRIMER
CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically
More informationTHE SYSTEMATIC AND THE RANDOM. ERRORS  DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS
R775 Philips Res. Repts 26,414423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS  DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated
More informationStatisticians use the word population to refer the total number of (potential) observations under consideration
6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space
More informationThe variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.
SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample
More informationConfidence Level We want to estimate the true mean of a random variable X economically and with confidence.
Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio
More informationElement sampling: Part 2
Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig
More informationREGRESSION WITH QUADRATIC LOSS
REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d
More informationMath 140 Introductory Statistics
8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These
More informationIntermittent demand forecasting by using Neural Network with simulated data
Proceedigs of the 011 Iteratioal Coferece o Idustrial Egieerig ad Operatios Maagemet Kuala Lumpur, Malaysia, Jauary 4, 011 Itermittet demad forecastig by usig Neural Network with simulated data Nguye Khoa
More informationThe standard deviation of the mean
Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider
More informationSection 14. Simple linear regression.
Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo
More informationMA131  Analysis 1. Workbook 2 Sequences I
MA3  Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................
More informationLecture 4. Random variable and distribution of probability
Itroductio to theory of probability ad statistics Lecture. Radom variable ad distributio of probability dr hab.iż. Katarzya Zarzewsa, prof.agh Katedra Eletroii, AGH email: za@agh.edu.pl http://home.agh.edu.pl/~za
More informationAssessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions
Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the
More informationRecurrence Relations
Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial()); } Let t be the umber of multiplicatios eeded to calculate factorial(). The
More informationStandard BAL0010a Real Power Balancing Control Performance
A. Itroductio. Title: Real Power Balacig Cotrol Performace 2. Number: BAL000a 3. Purpose: To maitai Itercoectio steadystate frequecy withi defied limits by balacig real power demad ad supply i realtime.
More informationNumber of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day
LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the
More informationSequences I. Chapter Introduction
Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which
More information17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)
7 Phoos ad coductio electros i solids Hiroshi Matsuoa I this chapter we will discuss a miimal microscopic model for phoos i a solid ad a miimal microscopic model for coductio electros i a simple metal.
More informationOutput Analysis and RunLength Control
IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad RuLegth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%
More informationSTAT 203 Chapter 18 Sampling Distribution Models
STAT 203 Chapter 18 Samplig Distributio Models Populatio vs. sample, parameter vs. statistic Recall that a populatio cotais the etire collectio of idividuals that oe wats to study, ad a sample is a subset
More information(all terms are scalars).the minimization is clearer in sum notation:
7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1
More informationBasis for simulation techniques
Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios
More informationControl Charts. Introduction. Purpose and benefit: UCL (upper control limit) UWL (upper warning limit) Quality feature
Qality featre Cotrol Charts Itrodctio A Cotrol Chart shows the time corse of a process characteristic. For this prpose, data ca be take cotiosly or i periodic samples. The prereqisite is that the process
More informationPractice Test Problems for Test IV, with Solutions
Practice Test Problems for Test IV, with Solutios Dr. Holmes May, 2008 The exam will cover sectios 8.2 (revisited) to 8.8. The Taylor remaider formula from 8.9 will ot be o this test. The fact that sums,
More informationFIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing  J.Schesser
FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded
More informationTopic 18: Composite Hypotheses
Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:
More informationConfidence Intervals QMET103
Cofidece Itervals QMET103 Library, Teachig ad Learig CONFIDENCE INTERVALS provide a iterval estimate of the ukow populatio parameter. What is a cofidece iterval? Statisticias have a habit of hedgig their
More informationNYU Center for Data Science: DSGA 1003 Machine Learning and Computational Statistics (Spring 2018)
NYU Ceter for Data Sciece: DSGA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we
More informationGeneral IxJ Contingency Tables
page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad crosssectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test
More informationInfinite Sequences and Series
Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet
More informationPaired Data and Linear Correlation
Paired Data ad Liear Correlatio Example. A group of calculus studets has take two quizzes. These are their scores: Studet st Quiz Score ( data) d Quiz Score ( data) 7 5 5 0 3 0 3 4 0 5 5 5 5 6 0 8 7 0
More informationSimple Linear Regression
Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio
More informationDotting The Dot Map, Revisited. A. Jon Kimerling Dept. of Geosciences Oregon State University
Dottig The Dot Map, Revisited A. Jo Kimerlig Dept. of Geoscieces Orego State Uiversity Dot maps show the geographic distributio of features i a area by placig dots represetig a certai quatity of features
More informationAdvanced Engineering Mathematics Exercises on Module 4: Probability and Statistics
Advaced Egieerig Mathematics Eercises o Module 4: Probability ad Statistics. A survey of people i give regio showed that 5% drak regularly. The probability of death due to liver disease, give that a perso
More informationMarkov Decision Processes
Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes
More informationImportant Concepts not on the AP Statistics Formula Sheet
Part I: IQR = Q 3 Q 1 Test for a outlier: 1.5(IQR) above Q 3 or below Q 1 The calculator will ru the test for you as log as you choose the boplot with the oulier o it i STATPLOT Importat Cocepts ot o the
More informationMath 106 Fall 2014 Exam 3.2 December 10, 2014
Math 06 Fall 04 Exam 3 December 0, 04 Determie if the series is coverget or diverget by makig a compariso (DCT or LCT) with a suitable b Fill i the blaks with your aswer For Coverget or Diverget write
More informationDESCRIPTION OF THE SYSTEM
SychroousSerial Iterface for absolute Ecoders SSI 1060 BE 10 / 01 DESCRIPTION OF THE SYSTEM TWKELEKTRONIK GmbH D001 Düsseldorf PB 1006 Heirichstr. Tel +9/11/6067 Fax +9/11/6770 email: ifo@twk.de Page
More informationChapter 4 Tests of Hypothesis
Dr. Moa Elwakeel [ 5 TAT] Chapter 4 Tests of Hypothesis 4. statistical hypothesis more. A statistical hypothesis is a statemet cocerig oe populatio or 4.. The Null ad The Alterative Hypothesis: The structure
More informationf x x c x c x c... x c...
CALCULUS BC WORKSHEET ON POWER SERIES. Derive the Taylor series formula by fillig i the blaks below. 4 5 Let f a a c a c a c a4 c a5 c a c What happes to this series if we let = c? f c so a Now differetiate
More information