Transport de chaleur. Samy Merabia ILM CNRS and Université Lyon 1. Ecole d'été «GDR Modmat» July 20-24th, Istres

Size: px
Start display at page:

Download "Transport de chaleur. Samy Merabia ILM CNRS and Université Lyon 1. Ecole d'été «GDR Modmat» July 20-24th, Istres"

Transcription

1 Transport de chaleur Samy Merabia ILM CNRS and Université Lyon 1 Ecole d'été «GDR Modmat» July 0-4th, Istres

2 Outline Introduction - motivations Vibrations Thermal conductivity Phonon spectroscopy Phonon scattering at interfaces

3 Nanoscale heat transfer 1950's 000's

4 Materials for thermoelectricity Electricity The ideal thermoelectric material is a good electronic conductor, but a poor thermal conductor

5 Thermoelectricity and thermal conductivity Figure of merit S σ Z= λ ph +λ e S Coefficient Seebeck σ Electronic conductivity λ Thermal conductivity

6 Thermoelectricity and thermal conductivity Figure of merit S σ Z= λ ph +λ e

7 Nanoscale heat transfer Nanostructured materials T J = λ K : Λ>300 nm Fourier

8 Fourier law Heat flux Th Tc L 0 Fourier law : T h T c T q= λ =λ x L ( ) x

9 Fourier law in anisotropic materials Superlattices isotropic anisotropic T J = λ λ J α = λ α,β β T λ IP λ IP λ CP λ IP In-plane conductivity λ CP Cross-plane conductivity The flux is not always parallel to the temperature gradient!

10 Thermal conductivity Y. Touloukian, Thermophysical properties of matter

11 Thermal conductivity Y. Touloukian, Thermophysical properties of matter

12 Energy carriers Crystalline phases Metals : electrons Less extent phonons Semi-conductors : mainly phonons Other excitations : magnons etc not discussed Disordered phases Phonons and diffusons

13 Electronic thermal conductivity Thermal conductivity λ=λ e +λ ph phononic electronic λe Wiedemann Franz law =L σt L0 = Lorenz number π k B 3 e 8 L0 = V K

14 Lorenz number 8 L0= V K Tritt, thermal conductivity

15 What is a phonon? Vibrations

16 Vibrations : assumptions -adiabatic assumption -harmonic approximation -quasi-classical treatment

17 Dynamics of a monoatomic chain C Equations of motion : m Solutions : dt =C (un+1 +u n 1 u n ) u n (t)=q k exp(i(kna ω(k)t)) Dispersion relation : 4C ω(k )= m d un 1/ ( ) ka sin ( ) k= π p ( p integer) N

18 Dynamics of a monoatomic chain Dispersion relation 1/ 4C ω(k )= m ( ) sin ka ( ) Phase velocity 1/ 4C v ϕ (k)= m ( ) ka sin /k ( ) Group velocity C v g (k)= m 1/ () a cos ka ( )

19 Dynamics of a monoatomic chain Dispersion relation 1/ 4C ω(k )= m ka sin ( ) ( ) Phase velocity 1 / 4C v ϕ (k )= m ka /k ( ) ( ) sin Group velocity C v g (k)= m 1 / ( ) Vibrational density of states g(ω)= ka a cos dn 1 1 d ω v g (ω) (ω max ω )1 / ( )

20 Dynamics of a monoatomic chain Dispersion relation 1/ 4C ω(k )= m ka sin ( ) ( ) Phase velocity 1 / 4C v ϕ (k )= m ka /k ( ) ( ) sin Group velocity C v g (k)= m 1 / ( ) Vibrational density of states Acoustic limit : g(ω)= ka a cos dn 1 1 d ω v g (ω) (ω max ω )1 / C k 0 v ϕ (k) v g ( k) v s k v s= m 1/ () a ( )

21 Dynamics of a diatomic chain C c Equations of motion : M m d U n dt d un dt = C (U n u n ) c (U n un 1 ) = c (un U n+1) C (un U n ) Solutions : U n (t)=q k exp(i(kna ω(k)t )) 1 u n (t)=qk exp(i(k (n+ )a ω(k )t)) Dispersion relation : π p k= ( p integer) N (C+c) (( M +m) (C+c) 16MmCc sin (ka/))1/ ω (k )=( M +m) ± Mm Mm

22 Dynamics of a diatomic chain Case C=c ( ( M +m) C Mm 1/ ) C m 1/ ( ) C M 1/ ( )

23 Optical vs acoustic modes

24 Three dimensional dispersion curve Harmonic Hamiltonian : H =H αβ α β Φ ij u i u j i, j α,β x, y, z Harmonic force constants α Equations of motion : mi Solution : d ui dt α i u = = j Φαij,β uβj Q k mi e α ( k)exp(i( k r i ω t)) Polarisation vector D α,β ( k) eβ ( k)=ω ( k)e α ( k) Dynamic matrix : 1 α,β αβ Dij = Φij mi m j αβ D α β ( k)= j D ij exp(i k ( r j r i))

25 Dynamic matrix and dispersion relations Dynamic matrix : D α,β ij 1 αβ = Φij mi m j αβ D α β ( k)= j D ij exp(i k ( r j r i)) D α,β ( k)eβ ( k)=ω ( k)e α ( k) α,β β,α α,β ij α,β ji Properties : D ij =D ji D =D Dα β ( k )=D*β α ( k ) Dαβ ( k )=D*αβ ( k ) αβ i, j D ij =0 D α β ( k = 0 )=0 (Taylor) (inversion symmetry) (acoustic rule)

26 Phonon dispersion in gold Transverse modes Displacement perpendicular to k Longitudinal mode Displacement parallel to k A. Alkurdi, C. Adessi et al.

27 Dispersion relations for complex crystals Eigenmodes : u ( b)= α i Q k mi eα ( k, b)exp(i( k r i ( b) ωt )) vector defining the position in the primitive cell Eigenvalues : b ω ( k )e α ( k, b)= b ' D αβ ( k ; b, b ')eβ ( k, b ') ω s ( k ); eα, s ( k, b) Three dimensional crystal : index s Total = 3*p branches with p = number of atoms in the primitive cell

28 Phonon dispersion in Si Landry, phd thesis 009

29 Phonon dispersion in graphene D material g(ω)= ω v ϕ (ω) v g (ω) Bending modes dominant at low q E. Pop, V. Varshney and A.K. Roy, MRS Bull., 37 (01) 173

30 Molecular dynamics Molecular dynamics : m d r i Φ = r i dt Interatomic potential : Φ= i< j V ( r ij )+ i< j<k V 3 ( r i, r j, r k ) Stilinger-Weber potential (Si) : + thermal bath

31 Dispersion from molecular dynamics We use the property : 1 Φ α,β ( k )=k B T G α, β ( k ) Harmonic force constants F=-Hu u Φα,β ( k )= j Φα,β (i, j) exp(i k ( r i r j )) cc G α,β ( k )= u α ( k)u β ( k) cc cc G α,β ( k )= r α ( k) rβ ( k) r α ( k) rβ ( k ) Atomic displacement Green's function Equipartition : H= kbt u 1 D α,β ( k)= Φα, β ( k) m u α ( k)= i u α, i exp(i k r i)

32 FCC Cu Implemented in LAMMPS «fix phonon«command

33 Vibrational density of states Definition Identity 1 g(ω)= V k δ(ω ωk ) + g(ω) 0 C vv (t )exp(i ω t )d ω C vv (t)= v i (t) v i (0) See Dove «Introduction to lattice dynamics»

34 Silicon crystalline and amorphous A. France-Lanord et al., J.Phys. Cond. Mat., 014

35 Thermal conductivity

36 Thermal conductivity Essentially, two methods : 1. the «direct» method Apply a temperature gradient or energy flux and calculate the conductivity with Fourier law. equilibrium method Probe the fluctuations around equilibrium of the energy flux vector

37 1. Thermal conductivity : the direct method Steady state temperature profile Heat source Example Si/Ge L Heat sink Fourier law : J = λ ΔT L

38 Thermal conductivity : the direct method Finite size effect analysis «Bulk» thermal conductivity

39 Thermal conductivity : direct method Advantages : - relatively easy to implement using open sources codes (LAMMPS) -may be used also to compute the thermal boundary resistance Inconvenients : -need to check if we are in the linear regime => analyze different heat fluxes -severe finite size effects! => analyze different system sizes to properly extrapolate a «bulk» conductivity

40 Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : + 1 λ α,β= J α (t)j β (0) dt 0 V kbt Heat flux vector : J = d ( i E i r i ) dt J = E i v i + 1 F ij ( v i + v j ) i i j In practice, run in NVE ensemble

41 Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : + 1 λ α,β= J α (t)j β (0) dt 0 V kbt Example amorphous Si 300 K t 1 λ xx (t )= J x (t ')J x (0) dt ' 0 V kbt Jx (t) Jx (0)

42 Thermal conductivity : Green-Kubo equilibrium simulations Green-Kubo formula : Example amorphous Si 300 K + 1 λ α,β= J α (t)j β (0) dt 0 V kbt t 1 λ xx (t )= J x (t ')J x (0) dt ' 0 V kbt t 1 λ yy (t)= J y (t ')J y (0) dt ' 0 V kb T Where is the plateau?

43 Optical modes λ (ω)= 1 0 J (t)j (0) exp(i ω t) dt V kb T Termentzidis, SM, Chantrenne IJHMT 011

44 Thermal conductivity : Green-Kubo equilibrium simulations Advantages : - less severe finite size effects - access to the full thermal conductivity tensor in a single simulation (anisotropic materials, superlattices) Inconvenients : -need to run several independent simulations (usually 10 to 0) -the plateau is sometimes difficult to identity (in principle, in a finite system the Green-Kubo formula should give a vanishing conductivity...)

45 Thermal anisotropy K A.F. Lannord, SM, T. Albaret, D. Lacroix, K. Termentzidis, 014

46 Thermal conductivity 1 k c v v g Λ k 3 Kinetic formula : λ= Phonon lifetime τ(ω) Mean Free path Λ(ω)=v g τ(ω) v g λ (ω) Λ(ω)

47 Thermal conductivity Local phonon occupation number : n n( k, s, r,t) n= n Boltzmann transport equation : n + v g t ( t ) coll (n n eq ) n Single relaxation time approximation : + v g n= t τ( k, s) Thermal conductivity : ρ ω λ= 0 g(ω)c v (ω)v g (ω) τ(ω)d ω 3 max λ= Mean free path 1 k c v v g Λ k 3 Λ(ω)=v g τ(ω)

48 Relaxation times : phonon-phonon scattering Three phonons Umklapp processes : τ 1 (ω,t )= A ω T exp( B /T ) k B T ω Klemens formula τ (ω,t )=γ Mv ω D 1 P.G. Klemens, «Solid State Physics» Academic Press New-York 1958

49 Other relaxation mechanisms v τ = Boundary scattering b L L

50 Other relaxation mechanisms L v τ = Boundary scattering b L m mi m ω 4 Point defects τ =V 3 m 4πv 1 m ( ) mi

51 Other relaxation mechanisms L v τ = Boundary scattering b L m mi m 1 Point defects τm =V m ( ) 4 ω 4 π v3 1 τ =N b ω d Dislocations d number of dislocation lines per unit area mi

52 Other relaxation mechanisms L v τ = Boundary scattering b L m mi m ω 4 Point defects τ =V 3 m 4πv 1 m 1 ( ) mi Dislocations τ d =N d b ω number of dislocation lines per unit area v Grain boundaries τ g d d

53 Thermal conductivity Matthiessen's rule = + τ τ 3 ph τ b + τ m + τ d + τ g k ' k k ' '

54 Phonon-phonon scattering :Perturbation theory Ef Hamiltonian : H =H 0 + H ' Pif = π i H ' f ρ(e i )δ (E f E i ) h Ei E. Fermi Initial state Final state Initial state Final state

55 Thermal conductivity : perturbation Hamiltonian Reference Hamiltonian : (harmonic crystal) operator a + 1 α,β H 0 = i, j, α,β Φij ui, α u j, β 1 H 0 = k, s ℏ ω( k, s) a + ( k, s) a ( k, s)+ ( operator a )

56 Thermal conductivity : perturbation Hamiltonian Reference Hamiltonian : (harmonic crystal) Perturbation Hamiltonian : 1 α,β H 0 = i, j, α,β Φij ui, α u j, β 1 H 0 = k, s ℏ ω( k, s) a + ( k, s) a ( k, s)+ ( H '= ) 1 α,β, γ Χ u i, α u j,β u k, γ ijk i, j, k, α,β, γ 6 H ' = k, s, k ', s ', k ' ', s' ' δg, k + k ' + k ' ' V ( k, s, k ', s ', k ' ', s ' ') ( a ( k, s) a ( k, s))( a ( k ', s ') a ( k ', s '))( a ( k ' ', s ' ') a ( k ' ', s ' ')) : G Reciprocal lattice vector

57 Momentum (non) conservation Normal processes k= k ' + k k ' k k ' + k ' ' k ' '

58 Momentum (non) conservation Normal processes k= k ' + k k ' k k ' + k ' ' k ' ' Umklapp processes k= k ' + k ' ' + G k ' k G k ' + k ' ' k ' '

59 Three phonon processes a ( k) a ( k ') a ( k ' ') k ' ' Simultaneous creation of three phonons k k ' a + ( k ) a + ( k ') a ( k ' ' ) k ' Destruction of two phonons and creation of one phonon k ' ' k a + ( k ) a ( k ') a ( k ' ') Destruction of one phonon and creation of two phonons k k ' ' k ' a ( k) a ( k ' ) a ( k ' ' ) Simultaneous destruction of three phonons k ' k k ' '

60 Three phonon processes a + ( k ) a + ( k ') a ( k ' ' ) k ' Destruction of two phonons and creation of one phonon k ' ' k a + ( k ) a ( k ') a ( k ' ') Destruction of one phonon and creation of two phonons k k ' ' k ' Only these processses do not violate energy conservation!!

61 Single relaxation time Class 1 events : (n' ' eq +1) 1 G = k ', k ' ' γ n' eq δ(ω+ω' ω ' ') (neq +1) τ( k)

62 Single relaxation time Class 1 events : (n' ' eq +1) 1 G = k ', k ' ' γ n' eq δ(ω+ω' ω ' ') (neq +1) τ( k) kbt High temperature regime : n ' eq ℏ ω' kbt n eq +1 ℏ ω' 1 G =k B T k ', k ' ' γ ω δ(ω+ω ' ω' ') ω'ω'' τ( k) Difficult to estimate because Dispersion : ω ' ω ' ( k ' ) Crystal anisotropy : ω ' ω ' ( k ' ) Polarisation : k ' ( k ', s)

63 Some references Isotropic crystal, no polarisation P.G. Klemens, «Solid State Physics» Academic Press New-York 1958 J. Callaway, «Model for lattice thermal conductivity at low temperatures», Phys. Rev Effect of the crystal anisotropy C. Herring, «Role of low-energy phonons in thermal conduction», Phys. Rev Effect of the normal processes : P. Carruthers, «Theory of thermal conductivity of solids at low temperatures» Rev. Mod. Phys Effect of the polarisation M.G. Holland, «Analysis of lattice thermal conductivity», Phys. Rev 'Exact' model for a model crystal A.A. Maradudin and A.E. Fein, «Scattering of neutrons by an anharmonic crystal», Phys. Rev., 196

64 Phonon spectroscopy

65 Phonon lifetimes Thermal conductivity : (single relaxation time approximation) λ= k, ν c v ( k, ν) v g ( k, ν)λ ( k, ν) Phonon mean free path : Λ( k, ν)= v g ( k, ν) τ ( k, ν) Importance to calculate the phonon lifetimes : -understand the physical mechanisms at play in Umklapp and/or normal process -use the phonon lifetimes in a Monte-Carlo simulation based on the solution of Boltzmann's equation : k, ν) f f ( f ( k, ν) eq + v g f ( k, ν)= t τ( k, ν) allows large scale simulations-> nanowires, superlattices...

66 Phonon lifetimes : some elements of history First computation of phonon lifetimes in MD goes back to 1986! Ladd, Moran and Hoover, Phys. Rev. B, 34 (1986) 5058 Small system sizes => limited range of k values, but this idea was there

67 Phonon lifetimes : some elements of history First computation of phonon lifetimes in MD goes back to 1986! Ladd, Moran and Hoover, Phys. Rev. B, 34 (1986) 5058 Small system sizes => limited range of k values, but this idea was there Until almost nothing...! McGaughey, Kaviany, Phys. Rev. B 69 (004) Since then, considerable amount of work to describe : -silicon (Henry and Chen, J. Comp. Theo. Nanores., 008) -alloys (Larkin and Mcgaughey, J. App. Phys. 114 (013) 03507) -amorphous solids (He, Donadio, Galli, App. Phys. Lett., 98 (011) polymers (Henry and Chen, Phys. Rev. B 79 (009) )

68 Phonon lifetimes How to put it in practice? 1. Determine the harmonic frequencies and eigenvectors : ω ( k) e ( k)=d( k) e ( k) dynamic matrix. Run MD simulations and compute the normal coordinates : (1/) m 0 Q( k,t)= i ( i ) exp(i k r i ) e i ( k ) u i (t) N 1 dq dq 3. Calculate the kinetic and potential energies : T ( k,t )= (k ) ( k ) dt dt 1 U ( k,t )= ω ( k )Q ( k )Q( k ) k, t) E ( k,0) E ( E( k, t)=t ( k,t)+ U ( k,t) τ( k)= dt E ( k,t ) But this route doesnot give access to the anharmonic frequencies ω a ( k)!! 0

69 Phonon lifetimes How to extract the phonon lifetime of mode k? T ( k,t)t ( k,0) =cos (ω a ( k )t)exp( t / τ( k)) T ( k,t) Example LJ Argon, 10 K E ( k,t) E( k,0) =exp( t / τ( k )) E ( k,t ) k, t) E ( k,0) E ( τ( k)= dt E ( k,t) 0 Turney, Landry, McGaughey, Amon, Phys. Rev. B, 009

70 Phonon lifetimes Alternative computation : the frequency domain decomposition 3. Calculate the kinetic and potential energies : Expectation value : Parseval theorem : 1 dq dq T ( k,t )= (k ) ( k ) dt dt 1 τ dq dq T ( k, t) =lim τ ( k,t) ( k,t )dt 0 τ0 dt dt 0 0 k, ω) T ( k, ω) =ω Q( τ 1 k,t)exp( i ω t) dt k, ω)=lim τ Q( Q( π Spectral energy density 1/ π τ( k) T ( k, ω) =C ( k ) (ωa ( k ) ω) + (1/4 π τ( k ))

71 Phonon lifetimes Alternative computation : the frequency domain decomposition Spectral energy density 1/ π τ( k) T ( k, ω) =C ( k ) (ωa ( k ) ω) + (1/4 π τ( k )) Example LJ Argon, 10 K Turney, Landry, McGaughey, Amon, Phys. Rev. B, 009

72 Phonon lifetimes Example LJ Argon, 10 K Turney, Landry, McGaughey, Amon, Phys. Rev. B, 009

73 Phonon lifetimes Thermal conductivity λ= k cv ( k ) v g ( k ) τ ( k ) Example LJ Argon, 10 K Towards large scale simulations : Boltzmann transport equation : (n neq ) n + v g n= t τ( k, s)

74 Accumulation function : phonon spectroscopy Crystal Si ω acc (ω)= 0 c v (ω) vg (ω) Λ (ω) d ω Regner et al., Nat. Comm. 013

75 Amorphous materials Amorphous Si λ (ω) v g Λ(ω) phonons phonons Λ>λ He, Donadio and Galli, APL 011

76 Amorphous materials Only localized modes phonons Larkin and McGaughey, PRB 014

77 Phonon scattering at interfaces

78 Heat Transfer at the nanoscale Superlattices Dresselhaus, Chen, Science 01 -Deviations from Fourier's law -Thermal boundary resistance Nanocomposites-nanowires Poulikakos, NanoLetters 011 (dimensions < phonon mean free path)

79 Superlattices as high ZT materials

80 Crystalline/amorphous superlattices Bulk crystalline K λ=148w / K / m Bulk amorphous K λ=0.68 W / K /m 6% amorphised Silicon => 0 fold drop in the thermal conductivity A. France Lanord et al., J. Phys. Cond. Mat. 014

81 Thermal boundary (Kapitza) resistance Thermal boundary conductance G=q/ Δ T G=1/ R= C v (ω) v g (ω) t 1 (ω)d ω Energy transmission coefficient G MW /m / K Equivalent thickness : l=λ /G= nm Hopkins 013

82 Acoustic mismatch model (AMM) W.A. Little (1959) θ Z > Z 1 Phonons treated as plane waves propagating in continuous media acoustic impendance Z i=ρi c i Z1 θ1 θ1 Reflection/refraction at the interface obey laws analogous to Snell's laws sin θ1 sin θ = c1 c 4 Z 1 Z cos θ1 cos θ Transmission coefficient : t 1= (Z cos θ + Z cos θ ) 1 1

83 Diffuse mismatch model (DMM) (Swartz 1989) All the phonons are diffusively scattered by the interface The transmission coefficient is given by detailed balance c g (ω) α1 (ω)= c g (ω)+ c1 g1 (ω) The conductance is related to the overlap between the density of states characterizing the two media

84 Factors affecting the conductance : (a non exhaustive list) «Bonding strength» between the two solids Lattice parameters mismatch Interfacial roughness Defects at the interface (vacancies) Intermixing Electron-phonon coupling

85 Non-equilibrium simulations Amorphous Si/ Crystalline Si Fourier law : J = λ T z Thermal boundary resistance : R=Δ T / J

86 Equilibrium simulations Puech formula + 1 G= q(t) q(0) dt 0 A kbt A interfacial area Analogous to the Green-Kubo formula for the thermal conductivity Interfacial flux : ( v i + v j) q= i 1, j F ij Barrat and Chiaruttini, Mol. Phys. 003 SM and Termentzidis, PRB 01

87 Equilibrium simulations Equivalent formula 1 dc EE G= A k B T dt ( ) t=0 C EE (t)= δ E (t)δ E(0) C EE (t) C EE (0)exp( t / τ) 1 C EE (0) G= τ Ak B T SM and Termentzidis, PRB 01

88 Finite size effects equilibrium non-equilibrium

89 «Approach to equilibrium» Temperature relaxation Finite size effects Δ T (t) exp( t / τ) G=C v /( A τ) E. Lampin et al., APL 01

90 Comparison with the models Thermal boundary resistance G=1/ R= g(ω)c v (ω) v g (ω)t 1 (ω)d ω AMM DMM A. France Lanord et al., J. Phys. Cond. Mat., Z 1 Z cos θ1 cos θ t 1= (Z 1 cos θ1 + Z cos θ) c g (ω) t 1 (ω)= c g (ω)+c 1 g1 (ω)

91 Phonon transmission coefficient crystalline Si/heavy Si interface First paper : Shelling,Keblinski APL 00 Transmission coefficient

92 Phonon transmission coefficient Au/ Si interface extinction Critical angle

93 Electron-phonon couplings Two temperature model + boundary conditions Measurements : Hopkins et al. JAP 009 Theory : Sergeev, PRB 1998 Mahan, PRB

94 Two temperature model σ e =0 Two temperature model Te ce =k e xx T e G(T e T p ) t T p cp =k p xx T p +G(T e T p ) t Ts cs =k s xx T s t Boundary conditions x=h J = k s x T s =σ e (T e T s )+σ p (T p T s) = k e x T e k p x T p J. Lombard et al. J. Phys. Cond. Mat. 015

95 Two temperature model 3 ( ( )) ul h γ ul σe τ 1+ k B e ph ut J. Lombard et al. J. Phys. Cond. Mat. 015

96 Heat transport at solid/liquid interfaces

97 Heat transfer at solid/liquid interfaces Wen, Int. J. Hyperthermia, 009

98 Molecular dynamics results 300 K 0 nw 100 K 600 nw SM et al., PNAS K 400 nw 1000 nw Gold Np in octane

99 Gold nanoparticles in liquid octane

100 Gold nanoparticles in liquid octane

101 Nanobubbles Eau 300 K Vapeur Nanoparticule (NP) Hashimoto et al., J. of Photochemistry and Photobiology C: Photochemistry Reviews (01)

102 Biomedical applications Diagnostic and tumor therapy Lapotko et al., ACS Nano (010 ) Lapotko, Cancer (011)

103 Questions Threshold energy to drive nanobubble generation? Cancer cell What does control nanobubbles size? => hydrodynamic models (phase field) Cancer cell

104 Fluid modeling Ø Conservation equations : mass, momentum and energy Ø Capillary effects : density functional theory f f δ α,β +w α ρ β ρ Pressure tensor : Π αβ = ρ ρ ( )

105 Nanoparticle modeling LASER Liquid/nanoparticle interface : interfacial conductance Vapor/nanoparticle interface : ballistic thermal transport

106 Threshold for explosive boiling 0 ps r(nm) r(nm) 118 ps Water (73K) Hot NP Cold NP Rb Fs pulse r (nm) Minimal laser fluence to observe nanobubbles Nanobubbles No nanobubble s J.Lombard, T. Biben, SM, PRL (014) r (nm) ρ

107 Maximal size of the nanobubbles Ballistic flux J =αρs k 3B 3/ (T p T 3/ l ) m Experimental results : A. Siems et al., New J. Phys. 011

108 Thank you for your attention!

Nanoscale interfacial heat transfer: insights from molecular dynamics

Nanoscale interfacial heat transfer: insights from molecular dynamics Nanoscale interfacial heat transfer: insights from molecular dynamics S. Merabia, A. Alkurdi, T. Albaret ILM CNRS and Université Lyon 1, France K.Termentzidis, D. Lacroix LEMTA, Université Lorraine, France

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Thermal Conductivity in Superlattices

Thermal Conductivity in Superlattices 006, November Thermal Conductivity in Superlattices S. Tamura Department of pplied Physics Hokkaido University Collaborators and references Principal Contributors: K. Imamura Y. Tanaka H. J. Maris B. Daly

More information

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract

Complex superlattice unit cell designs for reduced thermal conductivity. Abstract Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213 M. I. Hussein Department of Aerospace

More information

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012 2371-2 Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries 15-24 October 2012 Atomistic Simulations of Thermal Transport in Nanostructured Semiconductors (Thermal

More information

Complex superlattice unit cell designs for reduced thermal conductivity

Complex superlattice unit cell designs for reduced thermal conductivity Complex superlattice unit cell designs for reduced thermal conductivity E. S. Landry Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA M. I. Hussein

More information

Size-dependent model for thin film and nanowire thermal conductivity

Size-dependent model for thin film and nanowire thermal conductivity AIP/23-QED Size-dependent model for thin film and nanowire thermal conductivity Alan J. H. McGaughey,, a) Eric S. Landry,, 2 Daniel P. Sellan, 3 and Cristina H. Amon, 3 ) Department of Mechanical Engineering,

More information

Introduction to phonon transport

Introduction to phonon transport Introduction to phonon transport Ivana Savić Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12,

More information

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics

The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics The Vacancy Effect on Thermal Interface Resistance between Aluminum and Silicon by Molecular Dynamics Journal: 2014 MRS Fall Meeting Manuscript ID: 2035346.R1 Manuscript Type: Symposium NN Date Submitted

More information

K. Termentzidis 1, S. Merabia 2, and P. Chantrenne 1. Konstantinos TERMENTZIDIS

K. Termentzidis 1, S. Merabia 2, and P. Chantrenne 1. Konstantinos TERMENTZIDIS EUROTHERM SEMINAR 91 Microscale Heat Transfer III Poitiers France, August 2011 Kapitza resistance of rough superlattice interfaces, a molecular dynamics study K. Termentzidis 1, S. Merabia 2, and P. Chantrenne

More information

Understanding Phonon Dynamics via 1D Atomic Chains

Understanding Phonon Dynamics via 1D Atomic Chains Understanding Phonon Dynamics via 1D Atomic Chains Timothy S. Fisher Purdue University School of Mechanical Engineering, and Birck Nanotechnology Center tsfisher@purdue.edu Nanotechnology 501 Lecture Series

More information

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY

AJTEC SIZE-DEPENDENT MODEL FOR THIN FILM THERMAL CONDUCTIVITY Proceedings of the ASME/JSME 2 8 th Thermal Engineering Joint Conference AJTEC2 March 3-7, 2, Honolulu, Hawaii, USA AJTEC2-4484 SIZE-DEPENDENT MODE FOR THIN FIM THERMA CONDUCTIVITY Alan J. H. McGaughey

More information

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL

More information

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint

Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Hydrodynamic heat transport regime in bismuth: a theoretical viewpoint Nathalie VAST Laboratoire des Solides Irradiés (LSI), Ecole Polytechnique, CEA, CNRS, Palaiseau LSI: Maxime MARKOV, Jelena SJAKSTE,

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

Quantitatively Analyzing Phonon Spectral Contribution of Thermal. Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation

Quantitatively Analyzing Phonon Spectral Contribution of Thermal. Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation Quantitatively Analyzing Phonon Spectral Contribution of Thermal Conductivity Based on Non-Equilibrium Molecular Dynamics Simulation II: From Time Fourier Transform Yanguang Zhou 1 1, 2, * and Ming Hu

More information

Thermoelectrics: A theoretical approach to the search for better materials

Thermoelectrics: A theoretical approach to the search for better materials Thermoelectrics: A theoretical approach to the search for better materials Jorge O. Sofo Department of Physics, Department of Materials Science and Engineering, and Materials Research Institute Penn State

More information

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES

THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES THERMAL CONDUCTIVITY OF III-V SEMICONDUCTOR SUPERLATTICES Song Mei, Zlatan Aksamija, and Irena Knezevic Electrical and Computer Engineering Department University of Wisconsin-Madison This work was supported

More information

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires

Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires Bull. Mater. Sci., Vol. 4, No. 3, June 217, pp. 599 67 DOI 1.17/s1234-17-1393-1 Indian Academy of Sciences Carrier concentration effect and other structure-related parameters on lattice thermal conductivity

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1 Thermal transport from first-principles DFT calculations Keivan Esfarjani Department of Mechanical Engineering MIT 5/23/2012 Phonon School @ UWM 1 Classical MD simulations use an empirical potential fitted

More information

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems

Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Homework Week 3: Nanoscale and macroscale characterization Thermoelectricity: From Atoms to Systems Je-Hyeong Bahk and Ali Shakouri nanohub-u Fall 2013 Answer the thirteen questions including all the sub-questions

More information

Characterize Individual Phonon Mode Contribution Directly from. Non-equilibrium Molecular Dynamics Simulation

Characterize Individual Phonon Mode Contribution Directly from. Non-equilibrium Molecular Dynamics Simulation Characterize Individual Phonon Mode Contribution Directly from Non-equilibrium Molecular Dynamics Simulation Yanguang Zhou 1, Xiaoliang Zhang 2 1, 2, *, and Ming Hu 1 Aachen Institute for Advanced Study

More information

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Summary: Thermodynamic Potentials and Conditions of Equilibrium Summary: Thermodynamic Potentials and Conditions of Equilibrium Isolated system: E, V, {N} controlled Entropy, S(E,V{N}) = maximum Thermal contact: T, V, {N} controlled Helmholtz free energy, F(T,V,{N})

More information

Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal A. J. H. McGaughey and M. I. Hussein Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 4819-2125

More information

arxiv: v1 [cond-mat.mes-hall] 16 Sep 2012

arxiv: v1 [cond-mat.mes-hall] 16 Sep 2012 Thermal conductance at the interface between crystals using equilibrium and non-equilibrium molecular dynamics Samy Merabia LPMCN, Université de Lyon; UMR 5586 Université Lyon et CNRS, F-69622 Villeurbanne,

More information

Phonon Transport Theories and Simulation

Phonon Transport Theories and Simulation Phonon Transport Theories and Simulation Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 http://web.mit.edu/nanoengineering Annual Review of Heat Transfer,

More information

Electronic thermal transport in nanoscale metal layers

Electronic thermal transport in nanoscale metal layers Electronic thermal transport in nanoscale metal layers David Cahill, Richard Wilson, Wei Wang, Joseph Feser Department of Materials Science and Engineering Materials Research Laboratory University of Illinois

More information

Introduction to a few basic concepts in thermoelectricity

Introduction to a few basic concepts in thermoelectricity Introduction to a few basic concepts in thermoelectricity Giuliano Benenti Center for Nonlinear and Complex Systems Univ. Insubria, Como, Italy 1 Irreversible thermodynamic Irreversible thermodynamics

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Chapter 5 Phonons II Thermal Properties

Chapter 5 Phonons II Thermal Properties Chapter 5 Phonons II Thermal Properties Phonon Heat Capacity < n k,p > is the thermal equilibrium occupancy of phonon wavevector K and polarization p, Total energy at k B T, U = Σ Σ < n k,p > ħ k, p Plank

More information

Semiclassical Phonon Transport in the Presence of Rough Boundaries

Semiclassical Phonon Transport in the Presence of Rough Boundaries Semiclassical Phonon Transport in the Presence of Rough Boundaries Irena Knezevic University of Wisconsin - Madison DOE BES, Award No. DE-SC0008712 NSF ECCS, Award No. 1201311 Phonons in Nanostructures

More information

Phonons II. Thermal Properties

Phonons II. Thermal Properties Chapter 5. Phonons II. Thermal Properties Thermal properties of phonons As mentioned before, we are now going to look at how what we know about phonons will lead us to a description of the heat capacity

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES. Edwin Bosco Ramayya

THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES. Edwin Bosco Ramayya THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES by Edwin Bosco Ramayya A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical

More information

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS

MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY OF NANOCRYSTALLINE COMPOSITE FILMS Proceedings of HT 2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8 12, 2007, Vancouver, British Columbia, Canada HT2007-1520 MOLECULAR DYNAMICS SIMULATION OF THERMAL CONDUCTIVITY

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2016 Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

The Phonon Monte Carlo Simulation. Seung Kyung Yoo. A Thesis Presented in Partial Fulfilment of the Requirements for the Degree Master of Science

The Phonon Monte Carlo Simulation. Seung Kyung Yoo. A Thesis Presented in Partial Fulfilment of the Requirements for the Degree Master of Science The Phonon Monte Carlo Simulation by Seung Kyung Yoo A Thesis Presented in Partial Fulfilment of the Requirements for the Degree Master of Science Approved November 2015 by the Graduate Supervisory Committee:

More information

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen

Thermoelectric materials. Presentation in MENA5010 by Simen Nut Hansen Eliassen Thermoelectric materials Presentation in MENA5010 by Simen Nut Hansen Eliassen Outline Motivation Background Efficiency Thermoelectrics goes nano Summary https://flowcharts.llnl.gov/archive.html Waste

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

Electron and vibrational spectroscopy

Electron and vibrational spectroscopy Electron and vibrational spectroscopy Stéphane Pailhès Institute of Light and Matter, CNRS and UCBLyon 1 Team (Nano)Materials for Energy Phonons definition A phonon (i.e. a lattice wave) is described by

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Violation of Fourier s law and anomalous heat diffusion in silicon nanowires

Violation of Fourier s law and anomalous heat diffusion in silicon nanowires Nano Today (2010) 5, 85 90 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/nanotoday RAPID COMMUNICATION Violation of Fourier s law and anomalous heat diffusion in silicon

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

FYS Vår 2015 (Kondenserte fasers fysikk)

FYS Vår 2015 (Kondenserte fasers fysikk) FYS410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0)

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Thermoelectric transport of ultracold fermions : theory

Thermoelectric transport of ultracold fermions : theory Thermoelectric transport of ultracold fermions : theory Collège de France, December 2013 Theory : Ch. Grenier C. Kollath A. Georges Experiments : J.-P. Brantut J. Meineke D. Stadler S. Krinner T. Esslinger

More information

Relativistic magnetotransport in graphene

Relativistic magnetotransport in graphene Relativistic magnetotransport in graphene Markus Müller in collaboration with Lars Fritz (Harvard) Subir Sachdev (Harvard) Jörg Schmalian (Iowa) Landau Memorial Conference June 6, 008 Outline Relativistic

More information

Thermal characterization of Au-Si multilayer using 3- omega method

Thermal characterization of Au-Si multilayer using 3- omega method Thermal characterization of Au-Si multilayer using 3- omega method Sunmi Shin Materials Science and Engineering Program Abstract As thermal management becomes a serious issue in applications of thermoelectrics,

More information

EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS

EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS Numerical Heat Transfer, Part B, 46: 429 446, 2004 Copyright # Taylor & Francis Inc. ISSN: 1040-7790 print/1521-0626 online DOI: 10.1080=10407790490487514 EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Nonadiabatic dynamics and coherent control of nonequilibrium superconductors Andreas Schnyder Workshop on strongly correlated electron systems Schloss Ringberg, November 13 k F 1 t (ps 3 4 in collaboration

More information

Phonon Transport across Dissimilar Material Interfaces and in Nanostructured Materials

Phonon Transport across Dissimilar Material Interfaces and in Nanostructured Materials University of Colorado, Boulder CU Scholar Mechanical Engineering Graduate Theses & Dissertations Mechanical Engineering Spring 1-1-2012 Phonon Transport across Dissimilar Material Interfaces and in Nanostructured

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

Supplementary Information

Supplementary Information Supplementary Information Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path Mingchao Wang and Shangchao Lin * Department of Mechanical Engineering,

More information

THERMAL CONDUCTIVITY OF SILICON NANOSTRUCTURES CONTAINING IMPURITIES MICHAEL GIBBONS, B.S. A DISSERTATION PHYSICS

THERMAL CONDUCTIVITY OF SILICON NANOSTRUCTURES CONTAINING IMPURITIES MICHAEL GIBBONS, B.S. A DISSERTATION PHYSICS THERMAL CONDUCTIVITY OF SILICON NANOSTRUCTURES CONTAINING IMPURITIES by MICHAEL GIBBONS, B.S. A DISSERTATION IN PHYSICS Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Solid State Physics II Lattice Dynamics and Heat Capacity

Solid State Physics II Lattice Dynamics and Heat Capacity SEOUL NATIONAL UNIVERSITY SCHOOL OF PHYSICS http://phya.snu.ac.kr/ ssphy2/ SPRING SEMESTER 2004 Chapter 3 Solid State Physics II Lattice Dynamics and Heat Capacity Jaejun Yu jyu@snu.ac.kr http://phya.snu.ac.kr/

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems N.A. Roberts and D.G. Walker Department of Mechanical Engineering Vanderbilt University May 30,

More information

Kinetics. Rate of change in response to thermodynamic forces

Kinetics. Rate of change in response to thermodynamic forces Kinetics Rate of change in response to thermodynamic forces Deviation from local equilibrium continuous change T heat flow temperature changes µ atom flow composition changes Deviation from global equilibrium

More information

Observation and description of phonon interactions in molecular dynamics simulations

Observation and description of phonon interactions in molecular dynamics simulations PHYSICAL REVIEW B 71, 184305 2005 Observation and description of phonon interactions in molecular dynamics simulations A. J. H. McGaughey and M. Kaviany* Department of Mechanical Engineering, University

More information

Microscopic-Macroscopic connection. Silvana Botti

Microscopic-Macroscopic connection. Silvana Botti relating experiment and theory European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre for Computational

More information

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri

Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Thermal conductivity: An example of structure-property relations in crystals Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of

More information

Cooling dynamics of glass-embedded metal nanoparticles

Cooling dynamics of glass-embedded metal nanoparticles Cooling dynamics of glass-embedded metal nanoparticles Vincent Juvé, Paolo Maioli, Aurélien Crut, Francesco Banfi,, Damiano Nardi, Claudio Giannetti, Stefano Dal Conte, Natalia Del Fatti and Fabrice Vallée

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

Lecture 11: Coupled Current Equations: and thermoelectric devices

Lecture 11: Coupled Current Equations: and thermoelectric devices ECE-656: Fall 011 Lecture 11: Coupled Current Euations: and thermoelectric devices Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA 9/15/11 1 basic

More information

Supporting Information

Supporting Information Supporting Information Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg (Si,Sn) and Estimation of Optimum Thermoelectric Performance Abdullah S. Tazebay 1,

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 10 The Free Electron Theory of Metals - Electrical Conductivity (Refer Slide Time: 00:20)

More information

Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations

Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations PHYSICAL REVIEW B 79, 064301 2009 Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations J. E. Turney, 1 E. S. Landry, 1

More information

Research Article Isotope Effect on the Thermal Conductivity of Graphene

Research Article Isotope Effect on the Thermal Conductivity of Graphene Nanomaterials Volume 2, Article ID 537657, 5 pages doi:.55/2/537657 Research Article Isotope Effect on the Thermal Conductivity of Graphene Hengji Zhang, Geunsik Lee, Alexandre F. Fonseca, 2 Tammie L.

More information

Microscopic-macroscopic connection

Microscopic-macroscopic connection icroscopic-macroscopic connection Valérie Véniard ETSF France Laboratoire des Solides Irradiés Ecole Polytechniue CEA-DS CNRS 91128 Palaiseau France Outline 1. Introduction: which uantities do we need

More information

Functional properties

Functional properties Functional properties Stéphane Gorsse ICMCB gorsse@icmcb-bordeaux.cnrs.fr Action Nationale de Formation en Métallurgie 22-25/10/2012 - Aussois Functional properties and microstructural features in ceramics

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

introduction of thermal transport

introduction of thermal transport Subgroup meeting 2010.12.07 introduction of thermal transport members: 王虹之. 盧孟珮 introduction of thermal transport Phonon effect Electron effect Lattice vibration phonon Debye model of lattice vibration

More information

Clean Energy: Thermoelectrics and Photovoltaics. Akram Boukai Ph.D.

Clean Energy: Thermoelectrics and Photovoltaics. Akram Boukai Ph.D. Clean Energy: Thermoelectrics and Photovoltaics Akram Boukai Ph.D. Solar Energy Use Hydrocarbons vs. Photons Arabian Oil: 600 years Sun: 1.5 billion years The Sun can Power both Solar Cells and Thermoelectrics

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION I. Experimental Thermal Conductivity Data Extraction Mechanically exfoliated graphene flakes come in different shape and sizes. In order to measure thermal conductivity of the

More information

19 Thermal Transport in Nanostructured Materials

19 Thermal Transport in Nanostructured Materials 19 Thermal Transport in Nanostructured Materials Aleksandr Chernatynskiy University of Florida David R. Clarke Harvard University Simon R. Phillpot University of Florida 19.1 Introduction...545 19.2 Fundamentals

More information