QCD Structure of Hadronic Matter

Size: px
Start display at page:

Download "QCD Structure of Hadronic Matter"

Transcription

1 QCD Structure of Hadronic Matter Hadron Nucleus Neutron star r ~1 [fm] r ~10 [fm] r ~10 [km] Light Quarks m u ~ 2 MeV m d ~ 5 MeV m s ~ 90 MeV I II III Heavy Quarks m c ~ 1.3 GeV m b ~ 4.2 GeV m t ~ 171 GeV T. Hatsuda (U. Tokyo/RIKEN) Feb.6 (2012) at Yukawa Symposium

2 Modern challenges in Hadron Physics Primordial form of matter quark-gluon plasma Origin of heavy elements in explosive astrophysical phenomena Super dense matter neutron star, exotic matter, New physics search dark matter,

3 Contents [1] Introduction [2] Precision Lattice QCD [3] Hot QCD [4] Dense QCD [5] Nuclear Force from QCD [6] Dense QCD and Ultra-cold Atoms [7] Summary

4 Quantum Chromo Dynamics Nambu (1966) Running masses: m q (Q) Running coupling: α s (Q)=g 2 /4π quark masses (from lattice QCD) [MeV] 2GeV) m u 2.19(15) m d 4.67(20) m s 94(3) FLAG working group, arxiv: [hep-lat] Bethke, Eur. Phys. J C(2009)64:689

5 ~0.2 GeV Schematic QCD phase diagram Quark-Gluon Plasma Chiral Superfluid Nuclear Superfluid Color Superconductivity ~1 GeV

6 Symmetry realization in massless QCD(N c =3, N f =3) Cabibbo and Parisi, PLB 59 (1975); Collins & Perry, PRL 34 (1975) QGP : SU C ( 3) [ SU L(3) SU R(3)] UB(1) QGP Fermi csf : qq 0 SU (3) SU (3) U (1) C L R B CSC : SU C L R qq 0 (3) Z(2) Dirac Nambu, PRL 4 (1960) Dirac mass Alford, Rajagopal & Wilczek, NP B537 (1999) Majorana mass

7 ~0.2 GeV Schematic QCD phase diagram Quark-Gluon Plasma Chiral Superfluid Asakawa-Yazaki NPA (1989) Nuclear Superfluid ~1 GeV Color Superconductivity

8 QCD phase 2011 K. Fukushima and T. Hatsuda, The Phase Diagram of Dense QCD Rep. Prog. Phys. 74 (2011) High T critical point: Asakawa & Yazaki, NPA (1989) Low T critical point: Kitazawa, Koide, Kunihiro & Nemoto, PTP (2002) Hatsuda, Tachibana, Yamamto & Baym, PRL (2006)

9 space Lattice QCD Color SU(3) gauge theory for strong interaction (Nambu 1966) Asymptotic freedom (Gross & Wilczek, Politzer 1973) Lattice gauge theory (Wilson 1974) Typically sites x x L a quarks q(n) Euclidean time gluons U μ (n) O well defined statistical system (finite a and L) gauge invariant fully non-perturbative Monte Carlo simulations (Creutz 1980)

10 V(R) - 2m HL [lattice unit] Quark Confinement Q Heavy Q-Qbar potential Q after before 0.5fm 1fm 1.5fm R [lattice unit] SESAM Coll., Phys.Rev.D71 ( 05) Bali et al., Nucl.Phys.Proc.Suppl. 153 ( 06)

11 Precision Lattice QCD

12 Three limits L -1 L -1 0 (thermodynamics limit) : finite size scaling a 0 (continuum limit) : asymptotic freedom m 0 (chiral limit) : chiral pert. theory X a Techniques m ud Fermions: Staggered, Wilson, Domain-wall, Overlap different ways of handling chiral symmetry Improved actions: stout, HEX, asktad, HISQ, clover,. different ways of reducing the discretization error Advanced algorithms: RHMC, DDHMC, LMA,. techniques to make the simulations fast and reliable 3-flavor (2+1)-flavor (1+1+1)-flavor

13 QCD running coupling world average (exp. only) α s (M z )=0.1186(11) world average (lattice only) α s (M z )=0.1189(5) Summary by Shintani (Lattice2011)

14 N f =2+1 N f =2 N f =0 ssbar content of the proton Takeda [JLQCD Coll.], PRD 83 (2011) Giedt, Thomas, Young PRL103(2009)

15 σ SI [pb] WIMP Nucleon Interaction Giedt, Thomas, Young Phys. Rev. Lett. 103 (2009) Σ πn [MeV] XENON100 Coll.: Phys.Rev.Lett. 105 (2010)

16 Hadron 2009 PACS-CS Collaboration, Phys.Rev.D79(2009) (2+1)-flavor, Wilson L =2.9 fm, a =0.09 fm m π (min) =156 MeV BMW Collaboration, Science 322 (2008) 1224 (2+1)-flavor, Wilson L =( ) fm, a =0.065, 0.085, fm m π (min) =190 MeV 3% accuracy of light hadron masses

17 Hadron 2011 Physical point simulations in (2+1)-flavor QCD PACS-CS Coll. (2010) X a=0.09 fm BMW Coll. (2011) a=0.054 fm a=0.065 fm a=0.077 fm a=0.093 fm a=0.116 fm X X X X 135 PACS-CS Coll.: Phys. Rev.D81 (2010) BMW Coll.: Phys. Lett. B701 (2011) 265

18 Toward large-scale Physical-point simulations 10PFlops K computer (RIKEN) First LQCD Simulation Now original plot by A. Ukawa

19 Advanced Institute for Computational Science (AICS) 10 Pflops supercomputer KEI 京 (full operation in 2012) Five strategic programs (FY ) 1. Life and Medicine 2. New Materials 3. Environment 4. Engineering 5. Particle, Nuclear and Astrophysics

20 Hot QCD LHC RHIC

21 Thermal QCD transition Order of QCD Transition Wuppertal-Budapest s LQCD EOS JHEP 1011 (2010) 77 2 nd order (u,d; m=0) 1 st order (u,d,s; m=0) crossover (real world) Critical Temperature Stefan-Boltzmann limit SB deff T T c : ~ 160 MeV ~ [K] Critical Energy Density ε c : ~ 2 GeV/fm 3 SPS@CERN RHIC@BNL LHC@CERN ~ 10 ε nm

22 Order of the QCD transition (T 0, μ=0) Finite size scaling 1/T L Budapest group, Nature 443 (2006) 675 Staggered, (2+1)-flavor, physical mass

23 Condensate fraction Pseudo-critical temperature HotQCD (HISQ/tree) Petreczky, HIS Wuppertal-Budapest (stout) JHEP 1009 (2010) 073 Fodor, Chiral susceptibility peak T pc = MeV

24 200 GeV/A PHOBOS 3 km BRAHMS PHENIX STAR LHC@CERN 5.6 TeV/A 27 km 5.5 TeV/A CMS LHC-B ALICE ATLAS X. N. Wang s talk

25 Dense QCD Sign problem (Complex Action)

26 Nuclear force: a brief history One-pion exchange Yukawa (1935) r Multi-pion Taketani et al. (1951) Repulsive core Jastrow (1951) Nambu (1957) repulsive core 2, 3,... EFT Weinberg (1990) high precision NN force (90 s-) parameters 5000 phase shift data

27 So I got up in the question period and I said, Maybe the reason is that inside the nuclear force of attraction, which holds nuclei together, there's a very strong short-range force of repulsion, like a little hard sphere inside this attractive Jell-O. I'll never forget, Oppenheimer got up, he liked to needle the young fellows and he said, very dryly, "Thank you so much for, we are grateful for every tiny scrap of help we can get. But I ignored his needle and pursued my idea, and actually calculated the scattering of neutrons by protons. I showed that it fit the data very well. Oppenheimer read my paper for the Physical Review and took back his criticisms. This work became a permanent element of the literature of physics.

28 E/A (MeV) Nuclear Force and EoS of Dense Matter Akmal, Pandharipande & Ravenhall, PRC58 ( 98) Phenomenological NN forces Neutron stars nuclei Z=0 N=Z ρ(fm -3 ) ρ 0 3ρ 0 5ρ 0 = 0.16 fm -3

29 Nuclear Force and Neutron Star NNN J (ρ max ~ 6ρ 0 ) PSR NN Oppenheimer-Volkov(1939) Pressure balance Fermi pressure Repulsive core gravity

30 Nuclear Force from Lattice QCD Univ. Tsukuba RIKEN Nihon Univ. Tokyo Inst. Tech. Univ. Tokyo S. Aoki, N. Ishii, H. Nemura, K. Sasaki K. Murano, T. Doi, T. Hatsuda T. Inoue Y. Ikeda B. Charron

31 How to define the NN potential from QCD? 1. NN wave function from lattice QCD 1. NN potential from the NN wave function 3. Derivative expansion LO LO NLO NNLO Ishii, Aoki, Hatsuda, Phys.Rev.Lett. 99 (2007) Ishii et al. (HAL QCD Coll.) Potential is a nice tool to calculate observables Potential is volume insensitive (=Lattice Friendly)

32 Key channels in NN scattering ( 2s+1 L J ) LO LO NLO NNLO 1 S 0 Central force nuclear BCS pairing Bohr, Mottelson & Pines, Phys. Rev. 110 (1958) 3 S 1-3 D 1 Tensor force deuteron binding Schwinger, Phys. Rev. 55 (1939), Bethe, ibid.57 (1940) Rarita & Schwinger, ibid. 59 (1941) 3 P 2-3 F 2 LS force neutron superfluidity in neutron stars Tamagaki, Prog. Theor. Phys. 44 (1970) Hoffberg et al., Phys. Rev. Lett. 24 (1970) Density profile of the deuteron with S z =±1 Pandharipande et al., (1998)

33 [Exercise 1] LO potentials : V C (r) & V T (r) quenched QCD quenched E ~ QCD 0 MeV E ~ 0 MeV quenched QCD E ~ 0 MeV Rapid quark-mass dependence of V T (r) Evidence of the one-pion-exchange Aoki, Ishii & Hatsuda, Prog. Theor. Phys. 123 (2010) 89

34 Central potential in (2+1)-flavor QCD HAL QCD Coll., in preparation 1 S 0 PACS-CS gauge config. (Clover + Iwasaki) a= 0.09 fm, L=2.9 fm m π = 700 MeV Physical point simulations (m π =135MeV with L=6fm & 9fm) will be carried out at KEI computer

35 Origin of the short range NN repulsion? Baryon-baryon force in flavor SU(3) x Six independent potentials in the flavor-basis Byproducts Hyperon forces : important for hyper-nuclei & neutron stars Fate of H-dibaryon: exotic 6-quark state (uuddss) Jaffe, PRL 38 ( 77)

36 c.f. Urbaryon models (Otsuku-Yasuno-Tamagaki 1965, Machida & Namiki 1965) Constituent quark model (Oka, Yazaki, Shimizu 1986) Lattice BB wave functions s Iwasaki + clover (CP-PACS/JLQCD config.) L=1.9 fm, a=0.12 fm, 16 3 x32 m π =835 MeV, m B =1752 MeV Inoue et al. (HAL QCD Coll.) Prog. Theor. Phys. 124 (2010) 591 Short range BB int. Quark Pauli principle 1 : allowed, 27 : partially blocked, 8 s : blocked

37 BB potentials in flavor-basis Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) NPA (2012) to appear Repulsive core in NN channel Attractive core in H channel Growing NN tensor force

38 H-dibaryon from LQCD At physical point: M ΛΛ < M H < M ΞN? Inoue et al. [HAL QCD Coll.], NPA (2012) to appear exp. search at RHIC & J-PARC

39 Hypernuclei at J-PARC Japan(2009-) 3 known 40 known ~3000 known

40 BB potentials in flavor-basis Repulsive core in NN channel Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) NPA (2012) to appear 1 S 0 channel 3 S 1 3 D 1 channel Attractive core in H channel Growing NN tensor force

41 NN phase shifts in the SU(3) symmetric world NN Stronger attraction in the deuteron channel Inoue et al. [HAL QCD Coll.] Phys. Rev. Lett. 106 (2011) NPA (2012) to appear

42 Simulating dense QCD by ultra-cold atoms

43 Ultra-cold atomic Gasses Figure from Pascal Naidon (RIKEN)

44 100 K 10 K 1 K 10-3 K 10-6 K 10-8 K

45 Universe 100 K 10 K 1 K 10-3 K 10-6 K 10-8 K

46 Universe 100 K 10 K 1K 10-3 K 10-6 K 10-8 K At these temperatures, quantum effects appear. Quantum motion is described by waves

47 Bose-Einstein Condensate 1995 Fermi superfluid K QUANTUM FLUIDS (SUPERFLUIDS) Universe 100 K 10 K Superfluid helium 1K 10-3 K 10-6 K atomic Condensation K At these temperatures, 1K quantum effects appear. Superconducting electrons 10 K Quantum motion is described by a single wave K Superfluid nucleons Superconducting quarks 109 K 1010K

48 Neutron Star Structure

49 Quark-Hadron transition in boson-fermion mixture of ultracold atoms Quark-Gluon Plasma qq qq Attractive Bose-Fermi Mixture Nuclear superfluid Fermion+Diquark Quark superfluid Induced superfluid Fermi-Bose mixture Maeda, Baym & Hatsuda, Phys. Rev. Lett. 103 ( 09)

50 Neutron Star Structure

51 π 0 and/or ρ 0 condensation in neutron matter A. B. Migdal, NPA (1972) Takatsuka, Tamagaki & Tatsumi, Prog. Theor. Phys. Suppl. 112 ( 83) 67 Kunihiro, Prog. Theor. Phys. 60 ( 78) 1229

52 Meson condensation in ultracold dipolar atoms Maeda, Hatsuda & Baym, in preparation. Sogo et al., NJP (2009) Fregoso & Fradkin, PRL 103 (2009)

53 Summary 1. New era of Latice QCD arrived massive physical point simulations will start from 2012 (u,d,s-flavor, L ~ 6fm, a ~ 0.05fm, m π =135MeV) 2. LQCD started to provide 1 st principle input for the physics of quark-gluon plasma EoS (P(T), ε(t)), spectral functions, etc RHIC, LHC 3. LQCD provides qualitative pictures on the NN, YN, YY & NNN forces better constraints of the EoS of dense matter physical point simulations will start from Ultracold atomic experiments may provide better understanding of the hadron-quark transition in dense matter

54 Future In a few years, we will hear more on 1. Physical point LQCD results for many observables 2. Simulations with better fermions staggered, Wilson domain wall, overlap 3. BB and BBB interactions better understanding of nuclei and neutron stars from QCD 4. UCA/QCD correspondence RHIC/LHC N obs. Lattice QCD AdS/CFT Ultracold atoms

55 END

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future

Nuclear Force from Lattice QCD. [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Nuclear Force from Lattice QCD [1] Why nuclear force now? [2] NN force from lattice QCD [3] BB and BM forces from lattice QCD [4] Summary and Future Tetsuo Hatsuda (Univ. Tokyo) NFQCD, Feb 17, 2010 The

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] KEK Workshop (Jan. 21, 2014) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Neutron Star and Dense EOS 3.

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Baryon-Baryon Forces from Lattice QCD

Baryon-Baryon Forces from Lattice QCD Baryon-Baryon Forces from Lattice QCD quarks nuclei 1 fm neutron stars Tetsuo Hatsuda (Univ. Tokyo) T(r)opical QCD WS @ Cairns, Oct.1, 2010 [1] Why 10 fmbb forces? [2] NN force from lattice QCD [3] YN,

More information

Hadron-Hadron Interactions from Lattice QCD

Hadron-Hadron Interactions from Lattice QCD Hadron-Hadron Interactions from Lattice QCD Sinya AOKI Elba XI Workshop Electron-Nucleus Scattering XI June 21-25,2010, Elba, Italy 1. Introduction Nuclear force is a basis for understanding... structure

More information

Towards lattice QCD baryon forces at the physical point: First results

Towards lattice QCD baryon forces at the physical point: First results Towards lattice QCD baryon forces at the physical point: First results Takumi Doi (Nishina Center, RIKEN) for HAL QCD Collaboration 2015/09/08 HYP 2015 @ Tohoku U. 1 Nuclear- and Astro- physics based on

More information

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions

Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Lattice QCD studies of strangeness S = -2 baryon-baryon interactions Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration S. Aoki

More information

Kenji Sasaki (YITP, Kyoto University) Collaboration

Kenji Sasaki (YITP, Kyoto University) Collaboration Strangeness Strangeness S=- S=- baryon-baryon baryon-baryon interactions interactions from from Lattice Lattice QCD QCD Kenji Sasaki YITP, Kyoto University for HAL QCD Collaboration H HA ALL H Hadrons

More information

Hyperonic lattice QCD potentials and hypernuclear few-body problems

Hyperonic lattice QCD potentials and hypernuclear few-body problems Hyperonic lattice QCD potentials and hypernuclear few-body problems H. Nemura, for HAL QCD Collaboration S. Aoki2, T. Doi3, F. Etminan, S. Gongyo2, T. Hatsuda3, Y. Ikeda3, T. Inoue4, T. Iritani2, N. Ishii5,

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Baryon Interactions from Lattice QCD with physical masses

Baryon Interactions from Lattice QCD with physical masses Baryon Interactions from Lattice QCD with physical masses Takumi Doi (Nishina Center, RIKEN) for HAL QCD Collaboration 2016/01/17 Reimei Workshop @ J-PARC 1 The journey from Quarks to Universe Leinweber

More information

Prospects of the Hadron Physics at J-PARC

Prospects of the Hadron Physics at J-PARC Journal of Physics: Conference Series Prospects of the Hadron Physics at J-PARC To cite this article: Makoto Oka 2011 J. Phys.: Conf. Ser. 302 012052 Related content - Plans for Hadronic Structure Studies

More information

Hyperon interactions & H-dibaryon from recent Lattice QCD Simulation. Takashi Inoue, Nihon Univ. HAL QCD Collaboration

Hyperon interactions & H-dibaryon from recent Lattice QCD Simulation. Takashi Inoue, Nihon Univ. HAL QCD Collaboration Hyperon interactions & H-dibaryon from recent Lattice QCD Simulation Takashi Inoue, Nihon Univ. HAL QCD Collaboration S. Aoki T. Doi T. Hatsuda Y. Ikeda T. Inoue N. Ishii K. Murano H. Nemura K. Sasaki

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Nuclear forces and their impact on structure, reactions and astrophysics

Nuclear forces and their impact on structure, reactions and astrophysics Nuclear forces and their impact on structure, reactions and astrophysics Lectures for Week 2 Dick Furnstahl Ohio State University July, 213 M. Chiral EFT 1 (as); χ-symmetry in NN scattering, QCD 2 (rjf)

More information

Hadron Interactions from Lattice QCD and Applications to Exotic Hadrons

Hadron Interactions from Lattice QCD and Applications to Exotic Hadrons Hadron Interactions from Lattice QCD and Applications to Exotic Hadrons Yoichi Ikeda (RCNP, Osaka University) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) S. Aoki, T. Aoyama, T. Miyamoto, K. Sasaki

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Nuclear Force from Lattice QCD

Nuclear Force from Lattice QCD Department of Physics, University of Tokyo, Tokyo 113 0033, JAPAN E-mail: ishii@rarfaxp.riken.jp Sinya AOKI Graduate School of Pure and Applied Science, University of Tsukuba, Tukuba 305 8571, Ibaraki,

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Baryon Interactions from Lattice QCD with physical masses

Baryon Interactions from Lattice QCD with physical masses Baryon Interactions from Lattice QCD with physical masses Takumi Doi (Nishina Center, RIKEN) for HAL QCD Collaboration 2016/04/25 INT Workshop "Nuclear Physics from Lattice QCD" 1 Hadrons to Atomic nuclei

More information

arxiv: v2 [hep-lat] 28 Feb 2017

arxiv: v2 [hep-lat] 28 Feb 2017 Baryon interactions from lattice QCD with physical masses Overview and S=0, 4 sectors arxiv:1702.01600v2 [hep-lat] 28 Feb 2017, a Sinya Aoki, abc Shinya Gongyo, ad Tetsuo Hatsuda, ae Yoichi Ikeda, a f

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

On the structure of Zc(3900) from lattice QCD

On the structure of Zc(3900) from lattice QCD On the structure of Zc(3900) from lattice QCD Yoichi Ikeda (RIKEN, Nishina Center) HAL QCD (Hadrons to Atomic nuclei from Lattice QCD) Sinya Aoki, Shinya Gongyo, Takumi Iritani (YITP, Kyoto Univ.) Takumi

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Maria Paola Lombardo GGI Firenze March 2014

Maria Paola Lombardo GGI Firenze March 2014 Dense matter from lattice QCD (?) Maria Paola Lombardo GGI Firenze March 2014 The phases of strong interactions Andronic et al 2010 Tojo et al 2011 ..and the experimental programs First proposal: Cabibbo

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Crab nebula in X-ray GSI 22 November2016 Compress the sun (radius 700,000 km) down to a radius of 10-12 km Neutron star over

More information

Two- and Three-Baryon Forces from Lattice QCD

Two- and Three-Baryon Forces from Lattice QCD Two- and Three-Baryon Forces from Lattice QCD Takumi Doi (Nishina Center, RIKEN) 2016/10/19 NPCSM 2016 @ YITP 1 Where do we come from? Where are we going? Big Bang 10-5 s 10 min 38x10 4 yrs Phase transition:

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Gordon Baym University of Illinois, Urbana Workshop on Universal Themes of Bose-Einstein Condensation Leiden

More information

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa)

H-dibaryon in Holographic QCD. Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) H-dibaryon in Holographic QCD Kohei Matsumoto (M2, YITP) (in collaboration with Hideo Suganuma, Yuya Nakagawa) 1. Aug. 2016 1 Contents 1. Introduction 2. Chiral Soliton Model 3. Holographic QCD 4. Results

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

H-dibaryon & Hyperon interaction

H-dibaryon & Hyperon interaction H-dibaryon & Hyperon interaction from recent Lattice QCD Simulations Takashi Inoue, Nihon Univ. for HAL QCD Collaboration S. Aoki T. Doi T. Hatsuda Y. Ikeda N. Ishii K. Murano H. Nemura K. Sasaki Univ.

More information

Phases of cold nuclear matter and the equation of state of neutron stars

Phases of cold nuclear matter and the equation of state of neutron stars Phases of cold nuclear matter and the equation of state of neutron stars Gordon Baym University of Illinois, Urbana New perspectives on Neutron Star Interiors ECT*, Trento 10 October 2017 Better understanding

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Bedanga Mohanty NaConal InsCtute of Science EducaCon and Research (NISER) Outline: ² Phase diagram of QCD

More information

4. Effects of hyperon mixing on NS-EOS

4. Effects of hyperon mixing on NS-EOS 4. Effects of hyperon mixing on NS-EOS Hyperons in NSs --- Earlier works Suggestion for Y-mixing in NSs A.G.W. Cameron, Astrophys. J., 130 (1959) 884. Attempts for Y-mixing calculation S. Tsuruta and A.G.W.

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

Probing QCD Phase Diagram in Heavy Ion Collisions

Probing QCD Phase Diagram in Heavy Ion Collisions LQCD LHC Probing QCD Phase Diagram in Heavy Ion Collisions QCD Phase Diagram from LQCD Fluctuations of conserved charges as probe of thermalization and QCD phase boundary Linking LQCD results to HIC data

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013 Big Bang to Little Bang ---- Study of Quark-Gluon Plasma Tapan Nayak July 5, 2013 Universe was born through a massive explosion At that moment, all the matter was compressed into a space billions of times

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

Maximum pulsar mass and strange neutron-star cores

Maximum pulsar mass and strange neutron-star cores Maximum pulsar mass and strange neutron-star cores P. Haensel Copernicus Astronomical Center (CAMK) Warszawa, Poland haensel@camk.edu.pl PAC2012 Beijing, China October 19-21, 2012 P. Haensel (CAMK) Maximum

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

arxiv: v1 [hep-lat] 5 Dec 2015

arxiv: v1 [hep-lat] 5 Dec 2015 arxiv:1512.01610v1 [hep-lat] 5 Dec 2015 First results of baryon interactions from lattice QCD with physical masses (1) General overview and two-nucleon forces, a Sinya Aoki, abc Shinya Gongyo, ab Tetsuo

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

NUCLEAR PHYSICS FROM LATTICE QCD

NUCLEAR PHYSICS FROM LATTICE QCD Twelfth Workshop on Non-Perturbative QCD Paris, June 10-14, 2013 NUCLEAR PHYSICS FROM LATTICE QCD Kostas Orginos QCD Hadron structure and spectrum Hadronic Interactions Nuclear physics Figure by W. Nazarewicz

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

Hyperon-Nucleon Scattering

Hyperon-Nucleon Scattering Hyperon-Nucleon Scattering In A Covariant Chiral Effective Field Theory Approach Kai-Wen Li In collaboration with Xiu-Lei Ren, Bing-Wei Long and Li-Sheng Geng @INPC, Adelaide September, 2016 School of

More information

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005 QCD Phase Transition(s) & The Early Universe Axel Maas 6 th of January 2005 RHI Seminar WS 2004/2005 Overview QCD Finite Temperature QCD Unsettled Issues Early Universe - Summary Overview Aspects of QCD

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Recent results in lattice EFT for nuclei

Recent results in lattice EFT for nuclei Recent results in lattice EFT for nuclei Dean Lee (NC State) Nuclear Lattice EFT Collaboration Centro de Ciencias de Benasque Pedro Pascua Bound states and resonances in EFT and Lattice QCD calculations

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The Quark-Gluon plasma in the LHC era

The Quark-Gluon plasma in the LHC era The Quark-Gluon plasma in the LHC era Journées de prospective IN2P3-IRFU, Giens, Avril 2012 t z IPhT, Saclay 1 Quarks and gluons Strong interactions : Quantum Chromo-Dynamics Matter : quarks ; Interaction

More information

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Thermodynamics and Phase Transitions Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad Outline Thermodynamics in QGP What are the phase transitions? Order of the phase transition Where to study

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld

QCD thermodynamics. Frithjof Karsch, BNL/Bielefeld QCD thermodynamics Frithjof Karsch, BNL/Bielefeld Key Questions NSAC Long Range Plan 2007 What are the phases of strongly interacting matter, and what role do they play in the cosmos? What does QCD predict

More information

The phase diagram of strongly interacting matter

The phase diagram of strongly interacting matter The phase diagram of strongly interacting matter TIFR Indian Institute of Science, Bangalore November 25, 2011 Introduction 1 Introduction 2 Bulk Strongly Interacting Matter 3 Relativistic Heavy-ion Collisions

More information

Neutron Electric Dipole Moment from Lattice QCD

Neutron Electric Dipole Moment from Lattice QCD Neutron Electric Dipole Moment from Lattice QCD Sinya Aoki (University of Tsukuba) in collaboration with N. Ishizuka,Y. Kikukawa, Y. Kuramashi, E. Shintani for CP-PACS collaboration Exploration of Hadron

More information

The phase diagram of strongly interacting matter

The phase diagram of strongly interacting matter The phase diagram of strongly interacting matter IOP Bhubaneshwar August 8, 2011 Introduction Introduction Bulk Strongly Interacting Matter Relativistic Heavy-ion Collisions Fluctuations of Conserved Quantities

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois BCS everywhere else: from Atoms and Nuclei to the Cosmos Gordon Baym University of Illinois October 13, 2007 Wide applications of BCS beyond laboratory superconductors Pairing of nucleons in nuclei Neutron

More information

New states of quantum matter created in the past decade

New states of quantum matter created in the past decade New states of quantum matter created in the past decade From: Trapped cold atomic systems: Bose-condensed and BCS fermion superfluid states T ~ nanokelvin (traps are the coldest places in the universe!)

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

Nuclear Structure and Reactions using Lattice Effective Field Theory

Nuclear Structure and Reactions using Lattice Effective Field Theory Nuclear Structure and Reactions using Lattice Effective Field Theory Dean Lee North Carolina State University Nuclear Lattice EFT Collaboration Frontiers of Nuclear Physics Kavli Institute for Theoretical

More information

COLOR SUPERCONDUCTIVITY

COLOR SUPERCONDUCTIVITY COLOR SUPERCONDUCTIVITY Massimo Mannarelli INFN-LNGS massimo@lngs.infn.it GGI-Firenze Sept. 2012 Compact Stars in the QCD Phase Diagram, Copenhagen August 2001 Outline Motivations Superconductors Color

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chiral effective field theory on the lattice: Ab initio calculations of nuclei Chiral effective field theory on the lattice: Ab initio calculations of nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State)

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho CNS Summer School, Univ. of Tokyo, at Wako campus of RIKEN, Aug. 18-23, 2005 Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho 1 Nuclear Forces - Overview of all lectures - Lecture 1: History,

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information

Charm baryon spectroscopy from heavy quark symmetry

Charm baryon spectroscopy from heavy quark symmetry Charm baryon spectroscopy from heavy quark symmetry Phys. Rev. D91, 014031 (2015) Tokyo Institute of Technology Shigehiro YASUI Hadrons and Hadron Interaction in QCD (HHIQCD 2015)@YITP, 16 Feb. 20 Mar.

More information

J/ψ-Φ interaction and Y(4140) on the lattice QCD

J/ψ-Φ interaction and Y(4140) on the lattice QCD J/ψ-Φ interaction and Y(4140) on the lattice QCD Sho Ozaki (Univ. of Tokyo) in collaboration with Shoichi Sasaki (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo & Riken) Contents Introduction Charmonium(J/ψ)-Φ

More information

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum Masayuki Asakawa Department of Physics, Osaka University September 2011 @ EMMI Workshop QCD Phase Diagram T LHC RHIC QGP (quark-gluon

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech. Λ(1405) and Negative-Parity Baryons in Lattice QCD Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.) The Λ(1405) Particle Mass: ~1406.5 MeV Width: ~50 MeV I=0,

More information