The Rise of Effective Lagrangians at the LHC

Size: px
Start display at page:

Download "The Rise of Effective Lagrangians at the LHC"

Transcription

1 The Rise of Effective Lagrangians at the LHC Universität Heidelberg Brookhaven, May 2016

2 750 GeV the finger to particle theory taste not true taste wide X γγ impossible spin-0 actual model X aa 4γ NMSSM narrow m γγ spin-1 2 effective couplings vector quarks Furry not true spin-2 taste not true A 750 GeV elefant in the Higgs room key question: another Higgs scalar? [Dawson & Lewis] largely EFT exercise [problem: large signal rate] dimension-5 operators XG µν G µν and XA µν A µν avoid di-jet constraints gauge invariant XB µν B µν and XW µν W µν avoid VV constraints no clear link to other data great to play with, but only for fun, please

3 Theory in data-driven era Same old theory motivation WIMP dark matter still best choice hierarchy problem (probably) a problem but: data in driving seat

4 Theory in data-driven era Same old theory motivation WIMP dark matter still best choice hierarchy problem (probably) a problem but: data in driving seat Theory tool box Lagrangian language established by Higgs discovery 1- full new physics model [built to solve problems] 2- simplified models [capturing experimental features, theoretically poor] 3- effective field theory [symmetries and particles fixed, non-renormalizable operators] matter of convenience and taste bottom-up EFT simplified models full models agnostic ( ) data-driven ( ) ( ) theory-driven ( )

5 Theory in data-driven era Same old theory motivation WIMP dark matter still best choice hierarchy problem (probably) a problem but: data in driving seat Theory tool box Lagrangian language established by Higgs discovery 1- full new physics model [built to solve problems] 2- simplified models [capturing experimental features, theoretically poor] 3- effective field theory [symmetries and particles fixed, non-renormalizable operators] matter of convenience and taste bottom-up EFT simplified models full models agnostic ( ) pre-lhc data-driven ( ) ( ) theory-driven ( ) pre-lhc

6 Theory in data-driven era Same old theory motivation WIMP dark matter still best choice hierarchy problem (probably) a problem but: data in driving seat Theory tool box Lagrangian language established by Higgs discovery 1- full new physics model [built to solve problems] 2- simplified models [capturing experimental features, theoretically poor] 3- effective field theory [symmetries and particles fixed, non-renormalizable operators] matter of convenience and taste bottom-up EFT simplified models full models agnostic ( ) dishonest pre-lhc data-driven boring ( ) ( ) theory-driven pointless ( ) pre-lhc

7 Agnostic: why super-simple SM-Higgs sector? or: all couplings proportional to masses? assume: narrow CP-even scalar Standard Model operators total production/decay rates only Lagrangian L = L SM + W gm W H W µ W µ + Z + gf G H v GµνGµν + γf A g [SFitter] f m f v H ( fr f L + h.c. ) m Z H Z µ Z µ 2c w τ,b,t H v AµνAµν + invisible + unobservable electroweak renormalizability through some UV completion QCD renormalizability not an issue gg H qq qqh gg t th qq VH g HXX = g SM HXX (1 + X ) t b,t H ZZ H WW H b b H τ + τ H γγ W,Z W,Z

8 Agnostic: why super-simple SM-Higgs sector? or: all couplings proportional to masses? assume: narrow CP-even scalar Standard Model operators total production/decay rates only Lagrangian L = L SM + W gm W H W µ W µ + Z + gf G H v GµνGµν + γf A g [SFitter] f m f v H ( fr f L + h.c. ) m Z H Z µ Z µ 2c w τ,b,t H v AµνAµν + invisible + unobservable t b,t W,Z W,Z Total width coupling extraction impossible without width assumption observed partial widths: N = σ BR g2 p Γtot g 2 d Γtot g 4 g 2 Γ i (g 2 ) g 2 + Γ unobs g 2 0 = 0 gives constraint from Γ i (g 2 ) < Γ tot Γ H min WW WW unitarity: g WWH g SM WWH Γ H max [HiggsSignals] our assumption Γ tot = obs Γ j [plus generation universality]

9 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data H V f W Z t b τ Z/W b/τ b/w

10 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data W Z t b τ γ γ SM+NP Z/W b/τ b/w

11 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops g g vs g t barely possible L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data W Z t b τ γ g b/w b/τ Z/W g SM+NP γ SM+NP

12 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops g g vs g t barely possible including invisible decays Standard Model within 25% L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data W Z t b τ γ g b/w b/τ Z/W g SM+NP γ SM+NP BR inv

13 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops g g vs g t barely possible including invisible decays Standard Model within 25% Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP] L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data g γ τ b t Z W b/τ Z/W g SM+NP γ SM+NP BR inv b/w LHC extrapolations unclear systematic/theory uncertainties large e + e linear collider much better unobserved decays avoided width measured from σ ZH H c c accessible invisible decays hugely improved QCD theory error bars avoided % CL: 3000 fb -1, 14 TeV LHC and 250 fb -1, 250 GeV LC 3000 fb -1, 14 TeV LHC 250 fb -1, 250 GeV LC LHC + LC LHC + LC ( t c ) g x = g x SM (1+ x ) H W Z t c b τ γ g

14 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops g g vs g t barely possible including invisible decays Standard Model within 25% Future [SFitter; Cranmer, Kreiss, Lopez-Val, TP] L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data g γ τ b t Z W b/w b/τ Z/W g SM+NP γ SM+NP BR inv LHC extrapolations unclear systematic/theory uncertainties large e + e linear collider much better unobserved decays avoided width measured from σ ZH H c c accessible invisible decays hugely improved QCD theory error bars avoided Higgs factory case obvious GeV LC, 250 fb GeV TLEP, 4 exp. 2.5 ab -1 68% CL g x = g x SM (1+ x ) -0.1 H W Z c b τ γ g

15 after Run I Run I legacy [Corbett, Eboli, Goncalves, Gonzalez-Fraile, Lopez-Val, TP, Rauch] assume SM-like [secondary solutions possible] SFitter: correct theory uncertainties g γ with new loops g g vs g t barely possible including invisible decays Standard Model within 25% L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS SM exp. SM g x = g x (1+ x ) data Three major problems with approach W Z t b τ γ g b/w b/τ Z/W g SM+NP γ SM+NP BR inv 1 theory: no electroweak renormalizability 2 experiment: no kinematic distributions 3 phenomenology: no link to other sectors

16 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ

17 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB Λ O 2 BB + f WW Λ 2 O WW + f B Λ 2 O B + f W Λ 2 O W + f φ,2 Λ 2 O φ,2

18 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB Λ O 2 BB + f WW Λ 2 to SM particles [derivatives = momentum, #2 solved] L HVV = g g HG a µν Gaµν + g γ HA µνa µν O WW + f B Λ 2 O B + f W Λ 2 O W + f φ,2 Λ 2 O φ,2 + g (1) Z Z µνz µ ν H + g (2) HZ Z µνz µν + g (3) HZ Z µz µ ( ) + g (1) W + W µν W µ ν H + h.c. + g (2) W HW + µν W µν + g (3) W HW + µ W µ +

19 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB Λ O 2 BB + f WW Λ 2 to SM particles [derivatives = momentum, #2 solved] L HVV = g g HG a µν Gaµν + g γ HA µνa µν O WW + f B Λ 2 O B + f W Λ 2 O W + f φ,2 Λ 2 O φ,2 + g (1) Z Z µνz µ ν H + g (2) HZ Z µνz µν + g (3) HZ Z µz µ ( ) + g (1) W + W µν W µ ν H + h.c. + g (2) W HW + µν W µν + g (3) W HW + µ W µ + plus Yukawa structure f τ,b,t 9 operators for Run I data

20 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ linked to g g = f GGv Λ 2 g (1) Z g (2) Z = g2 v 2Λ 2 = g2 v 2Λ 2 αs f gv 8π Λ 2 c 2 w f W + s 2 w f B 2c 2 w g (3) Z = M 2 Z ( 2G F ) 1/2 g f = m f v ( s 4 w f BB + c 4 w f WW 2cw 2 ( 1 v 2 1 v 2 2Λ 2 f φ,2 ) 2Λ f 2 φ,2 ) + v 2 f f 2Λ 2 g γ = g2 vs 2 w 2Λ 2 g (1) W g (2) W = g2 v 2Λ 2 f W 2 = g2 v 2Λ f 2 WW f BB + f WW 2 g (3) W = M2 W ( 2G F ) 1/2 ( 1 v ) 2 2Λ f 2 φ,2

21 EFT@LHC D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ Run 1 legacy kinematics: p T,V, φ jj [remember #2] Events/bin leptons 10 2 SM (SM Higgs) x 70 (f W /Λ 2 =20TeV -2 ) x p T V(GeV)

22 EFT@LHC D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ Run 1 legacy kinematics: p T,V, φ jj [remember #2] Events/bin 10 2 SM Higgs f WW /Λ 2 =-f BB /Λ 2 =20TeV -2 f WW /Λ 2 =-f BB /Λ 2 =-20TeV -2 γγ jj 10 0 π/3 2π/3 π Φ jj

23 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ Run 1 legacy kinematics: p T,V, φ jj [remember #2] with impact... f B /Λ 2 40 [TeV -2 ] f W /Λ 2 [TeV -2 ]

24 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ Run 1 legacy kinematics: p T,V, φ jj [remember #2] with impact......in last bin f B /Λ 2 40 [TeV -2 ] f W /Λ 2 [TeV -2 ]

25 D6 Higgs operators Higgs sector effective field theory [Eboli, Goncales-Garcia,...] set of Higgs operators [renormalizable, #1 solved] O GG = φ φg a µν Gaµν O WW = φ Ŵ µν Ŵ µν φ O BB = O BW = φ ˆBµν Ŵ µν φ O W = (D µφ) Ŵ µν (D νφ) O B = O φ,1 = (D µφ) φ φ ( D µ φ ) O φ,2 = 1 ( ) ( ) 2 µ φ φ µ φ φ O φ,3 = 1 3 ( φ φ) 3 O φ,4 = (D µφ) ( D µ φ ) ( ) φ φ Run 1 legacy kinematics: p T,V, φ jj [remember #2] with impact......in last bin Run I sensitivity limited L= (7 TeV) (8 TeV) fb -1, 68% CL: ATLAS + CMS f/λ 2 [TeV -2 ] Λ/ f [TeV] f/λ 2 [TeV -2 ] O GG rate only rate+distributions O WW O BB O W O B O φ O t O b O τ Λ/ f [TeV]

26 EFT@LHC D6 Higgs-gauge operators Triple gauge couplings one more Higgs-gauge operator [#3 solved] ) O W = (D µφ) Ŵ µν (D νφ) O B = (D µφ) ˆBµν (D νφ) O WWW = Tr (Ŵµν Ŵ νρ Ŵ µ ρ kinematics: p T,l in VV production Events/bin SM WW Background f W /Λ 2 =25TeV -2 f B /Λ 2 =25TeV -2 f WWW /Λ 2 =25TeV -2 Data p T lead(gev)

27 D6 Higgs-gauge operators Triple gauge couplings one more Higgs-gauge operator [#3 solved] ) O W = (D µφ) Ŵ µν (D νφ) O B = (D µφ) ˆBµν (D νφ) O WWW = Tr (Ŵµν Ŵ νρ Ŵ µ ρ kinematics: p T,l in VV production combined LHC channels ] -2 [TeV 2 f B Λ CMS ATLAS 7 WZ 7 semi 8 WW 8 WZ combined f W -2 [TeV ] 2 Λ

28 D6 Higgs-gauge operators Triple gauge couplings one more Higgs-gauge operator [#3 solved] ) O W = (D µφ) Ŵ µν (D νφ) O B = (D µφ) ˆBµν (D νφ) O WWW = Tr (Ŵµν Ŵ νρ Ŵ µ ρ kinematics: p T,l in VV production combined LHC channels affecting correlations ] -2 [TeV 2 f B Λ f W -2 [TeV ] 2 Λ

29 D6 Higgs-gauge operators Triple gauge couplings one more Higgs-gauge operator [#3 solved] ) O W = (D µφ) Ŵ µν (D νφ) O B = (D µφ) ˆBµν (D νφ) O WWW = Tr (Ŵµν Ŵ νρ Ŵ µ ρ kinematics: p T,l in VV production combined LHC channels affecting correlations complete Higgs-gauge analysis f/λ 2 [TeV -2 ] LHC-Higgs, 95% CL LHC-Higgs + LHC-TGV + LEP-TGV, 95% CL Λ/ f [TeV] f/λ 2 [TeV -2 ] Λ/ f [TeV] O GG O WW O BB O W O B O φ2 O WWW O t O b O τ

30 D6 Higgs-gauge operators Triple gauge couplings one more Higgs-gauge operator [#3 solved] ) O W = (D µφ) Ŵ µν (D νφ) O B = (D µφ) ˆBµν (D νφ) O WWW = Tr (Ŵµν Ŵ νρ Ŵ µ ρ kinematics: p T,l in VV production combined LHC channels affecting correlations complete Higgs-gauge analysis LHC vs LEP triple gauge vertices g 1, κ, λ vs operators semileptonic analyses missing for 8 TeV Run I LHC beating LEP ] -2 [TeV 2 f B Λ LHC LHC+LEP 60 LEP f W -2 [TeV ] 2 Λ

31 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3

32 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H 1 + f φ,2v 2 Λ 2

33 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H second operator, minimum condition giving v v 2 = µ2 λ f φ,3µ 4 4λ 3 Λ f φ,2v 2 Λ 2

34 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H second operator, minimum condition giving v v 2 = µ2 λ f φ,3µ 4 4λ 3 Λ 2 both operators contributing to Higgs mass L mass = µ2 H λv 2 H2 f φ,3 15 Λ 2 24 v 4! H2 = m2 H 2 H2 m 2 H = 2λv 2 ( 1 f φ,2v 2 + f φ,3v 2 Λ 2 2Λ 2 λ ) 1 + f φ,2v 2 Λ 2

35 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H

36 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H alternatively, strong multi-higgs interactions ( H = 1 + f ) φ,2v 2 H + f φ,2v H2 + f φ,2 H3 + O( H 4 ) 2Λ 2 2Λ 2 6Λ 2

37 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H alternatively, strong multi-higgs interactions ( H = 1 + f ) φ,2v 2 H + f φ,2v H2 + f φ,2 H3 + O( H 4 ) 2Λ 2 2Λ 2 6Λ 2 operators and distributions linked to poor UV behavior

38 D6 top operators Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits Generic D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = φ φg a µν Gaµν CG C 33 ug individual marginalized C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq Ci = Civ 2 /Λ 2

39 D6 top operators Same for tops [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits Generic D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = φ φg a µν Gaµν CG C 33 ug individual marginalized For theorists: in terms of models axigluon: M A > 1.4 TeV [t t resonance] SM-like W : M W > 1.2 TeV [t-channel,...] models less sensitive to correlations C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq Ci = Civ 2 /Λ 2

40 D6 dark matter operators Combining direct, indirect, collider results for WIMPs [Tait etal] choose dark matter candidate [Majorana/Dirac fermion, scalar, dark photon] consider D6 scattering process χχ SM SM relic density from annihilation [mχ/t 30] indirect detection even later direct detection non-relativistic [E 10 MeV] LHC tricky: single scale m χ m mediator? example: scalar dark matter LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave

41 D6 dark matter operators Relic density plus Hooperon default input: relic density scalar dark matter LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave profile likelihood [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger] flat prior on log λ i [prior 1/λ i ] Dirichlet prior prefering similar-sized Wilson coefficients

42 D6 dark matter operators Relic density plus Hooperon default input: relic density scalar dark matter LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave profile likelihood [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger] flat prior on log λ i [prior 1/λ i ] Dirichlet prior prefering similar-sized Wilson coefficients Fermi: GCE plus dwarf galaxies with data, the method hardly matters...

43 (Simplified) scalar/gauge extensions Higgs singlet/doublet extensions [Higgs portal] one or more new (pseudo-) scalars mixing with SM-like Higgs

44 (Simplified) scalar/gauge extensions Higgs singlet/doublet extensions [Higgs portal] one or more new (pseudo-) scalars mixing with SM-like Higgs Scalar top partners, non-higgs [simplfied supersymmetry] Lagrangian with scalar top partner, singlet plus doublet µ L (D µ ) (D Q) + (Dµ t R ) (D µ t R ) Q M 2 Q M2 t R t R κ LL (φ Q) (φ Q) [ κ RR ( t R t R )(φ φ) κ LR M t R (φ Q) ] + h.c. contribution through loops all over Higgs-gauge sector

45 (Simplified) scalar/gauge extensions Higgs singlet/doublet extensions [Higgs portal] one or more new (pseudo-) scalars mixing with SM-like Higgs Scalar top partners, non-higgs [simplfied supersymmetry] Lagrangian with scalar top partner, singlet plus doublet µ L (D µ ) (D Q) + (Dµ t R ) (D µ t R ) Q M 2 Q M2 t R t R κ LL (φ Q) (φ Q) [ κ RR ( t R t R )(φ φ) κ LR M t R (φ Q) ] + h.c. contribution through loops all over Higgs-gauge sector Triplet gauge extension [whatever that becomes in the UV] additional vector triplet field V µ L 1 Ṽ a 4 µνṽµνa + M2 Ṽ Ṽ a 2 µṽ µa + i g [ V 2 c H Ṽ a µ φ σ a ] D µ φ + g2 w Ṽ a µ c F F L γ µ σ a F L 2g V fermions + g V 2 c VVV ɛ abc Ṽ a µṽ b ν D[µ Ṽ ν]c + g 2 V c VVHH Ṽ a µṽ µa (φ φ) gw 2 c VVW ɛ abc W µν Ṽ b µṽ c ν new states, mixing with W ± and Z weak gauge coupling to W, Z mass eigenstates

46 Higgs D6 breakdown D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP] phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT vs full model differences appear?

47 Higgs D6 breakdown D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP] phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT vs full model differences appear? push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)] σ BR 1 (σ BR) SM = g2 m 2 h 10% Λ 2 Λ 400 GeV no scale hierarchy for testable models?!

48 Higgs D6 breakdown D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP] phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT vs full model differences appear? push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)] σ BR 1 (σ BR) SM = g2 m 2 h 10% Λ 400 GeV Λ 2 no scale hierarchy for testable models?! construct and match D6-Lagrangian to model coupling modifications v 2 /Λ 2 vs new kinematics /Λ? matching conditions with v Λ, v-improved matching

49 Higgs D6 breakdown D6-Lagrangian breakdown [Brehmer, Freitas, Lopez-Val, TP] phenomenology: does D6 capture all model features at LHC? theory: how do D6 vs EFT vs full model differences appear? push (simplified) models to visible deviations at 13 TeV Higgs portal, 2HDM, stops, vector triplet [weakly interacting, Eq.(2)] σ BR 1 (σ BR) SM = g2 m 2 h 10% Λ 400 GeV Λ 2 no scale hierarchy for testable models?! construct and match D6-Lagrangian to model coupling modifications v 2 /Λ 2 vs new kinematics /Λ? matching conditions with v Λ, v-improved matching LHC simulations: D6-Lagrangian vs full model production: WBF, VH, HH decays: H γγ, 4l check where differences appear at 13 TeV kinematic distributions like p T,j or m VH? resonance peaks of new states?

50 Higgs D6 breakdown Higgs portal testable benchmarks for LHC Singlet EFT EFT (v-improved) m H sin α v s/v singlet x Λ c H EFT x c H EFT x effects in WBF and hh + - miss u d u d l l E T (S5) p p h h (S4) σ [fb/bin] SM full σ [fb/bin] 1.5 SM 1 σ EFT - σ full σ full EFT 0 EFT error m T [GeV] σ EFT - σ full σ full full (no H) EFT error full EFT m hh [GeV]

51 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC 2HDM EFT Type tan β α/π m 12 m H 0 m A 0 m H ± Λ [GeV] c u c d,l I II II I

52 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC 2HDM EFT Type tan β α/π m 12 m H 0 m A 0 m H ± Λ [GeV] c u c d,l I II II I effects in H γγ σ [fb/bin] EFT 0 p p h γ γ (D1) SM full σ EFT - σ full σ full 1 0 EFT error m γγ [GeV]

53 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC Scalar top-partner model EFT M κ LL κ RR κ LR m t 1 m t 2 c H c W c HW

54 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC Scalar top-partner model EFT p p V h (P2) M κ LL κ RR κ LR m t 1 m t c H c W c HW 2 80 SM EFT full effects in WBF and Vh σ [fb/bin] σ EFT - σ full σ full EFT error m Vh [GeV]

55 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC effects in WBF and Vh Vector triplet [Brehmer, Biekötter, Krämer, TP] testable benchmarks for LHC Triplet model EFT M V g V c H c F c VVHH m ξ c W c H c 6 c f

56 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC effects in WBF and Vh Vector triplet [Brehmer, Biekötter, Krämer, TP] testable benchmarks for LHC Triplet model M V g V c H c F c VVHH m ξ c W c H c 6 c f EFT full (no ξ) SM effects in Vh and WBF σ [fb/bin] σ EFT - σ full σ full EFT EFT error p p V h (T4) full [GeV] m Vh

57 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC effects in WBF and Vh Vector triplet [Brehmer, Biekötter, Krämer, TP] testable benchmarks for LHC Triplet model M V g V c H c F c VVHH m ξ c W c H c 6 full c f 1 EFT full (no ξ) SM EFT error m Vh [GeV] effects in Vh and WBF σ [fb/bin] σ EFT - σ full σ full EFT p p V h (T4')

58 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC effects in WBF and Vh Vector triplet [Brehmer, Biekötter, Krämer, TP] testable benchmarks for LHC Triplet model EFT 1 M V g V c H c F c VVHH m ξ c W c H c 6 c f effects in Vh and WBF σ [fb/bin] u d u d h (T5) SM EFT full (no ξ) full EFT error σ EFT - σ full σ full p [GeV] T,j1

59 Higgs D6 breakdown Higgs portal testable benchmarks for LHC effects in WBF and hh 2HDM testable benchmarks for LHC effects in H γγ Top partners testable benchmarks for LHC effects in WBF and Vh Vector triplet [Brehmer, Biekötter, Krämer, TP] testable benchmarks for LHC Triplet model EFT 1 M V g V c H c F c VVHH m ξ c W c H c 6 c f SM EFT full (no ξ) full EFT error effects in Vh and WBF σ [fb/bin] σ EFT - σ full σ full u d u d h (T5') p [GeV] T,j1

60 Higgs D6 breakdown Reasons for D6-breakdown in Higgs sector at LHC Model Process EFT failure resonance kinematics matching singlet on-shell h 4l, WBF, Vh,... off-shell WBF,... ( ) hh 2HDM on-shell h 4l, WBF, Vh,... off-shell H γγ,... ( ) hh top partner WBF, Vh vector triplet WBF ( ) Vh ( )

61 Higgs D6 breakdown Reasons for D6-breakdown in Higgs sector at LHC Model Process EFT failure resonance kinematics matching singlet on-shell h 4l, WBF, Vh,... off-shell WBF,... ( ) hh 2HDM on-shell h 4l, WBF, Vh,... off-shell H γγ,... ( ) hh top partner WBF, Vh vector triplet WBF ( ) Vh ( ) Lessons from Higgs sector start with D6 description [data-driven era of particle physics] EFT expansion in E/Λ known to be dodgy test D6 in comparison to (simplified) models all relevant effect at tree level resonance peaks the key feature

62 Questions Questions waiting to be answered is it really the Standard Model Higgs? [No] is there WIMP dark matter? [Yes] is there TeV-scale physics beyond the Standard Model? [Yes] are EFT analyses boring? [Yes] will we stop EFT analyses once we find new states [Hopefully] welcome to a data-driven era! Lectures on LHC Physics and dark matter updated under plehn/ Much of this work was funded by the BMBF Theorie-Verbund which is ideal for relevant LHC work

63

Kinematics in Higgs Fits

Kinematics in Higgs Fits Kinematics in Higgs Fits Universität Heidelberg LHCHXS Meeting, November 2015 Higgs Couplings Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas] Lagrangian [in terms of non-linear

More information

Effective Higgs Physics at the LHC

Effective Higgs Physics at the LHC Effective Higgs Physics at the LHC Universität Heidelberg Edinburgh, December 2016 Theory in data-driven era Same old theory motivation dark matter still not understood [WIMP still best choice] hierarchy

More information

Effective Higgs-Gauge Analyses

Effective Higgs-Gauge Analyses Effective Higgs-Gauge Analyses Tilman Plehn Universität Heidelberg CERN, July 017 Higgs Couplings t W,Z Standard Model operators assume: narrow CP-even scalar Standard Model operators fundamental physics

More information

Tilman Plehn. Mainz, July 2015

Tilman Plehn. Mainz, July 2015 Testing the Universität Heidelberg Mainz, July 2015 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive

More information

Higgs Physics for the LHC

Higgs Physics for the LHC Higgs Physics for the LHC Universität Heidelberg Brookhaven, 9/2013 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem

More information

arxiv: v1 [hep-ph] 25 Nov 2015

arxiv: v1 [hep-ph] 25 Nov 2015 The Non-Linear Higgs Legacy of the LHC Run I Tyler Corbett, 1, Oscar J. P. Éboli,3 Dorival Gonçalves, 4 J. Gonzalez Fraile, 5 Tilman Plehn, 5 and Michael Rauch 6 1 C.N. Yang Institute for Theoretical Physics,

More information

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective Tyler Corbett Melbourne Node arxiv:1705.02551, with Aniket Joglekar (Chicago), Hao-Lin Li (Amherst), Jiang-Hao Yu (Amherst).

More information

Gauge-Higgs couplings at the LHC

Gauge-Higgs couplings at the LHC Gaue-His couplins at the LHC Juan González Fraile Universität Heidelber Juan González Fraile (Heidelber) 637.WEH-Seminar: Understandin the LHC Bad Honnef, February 17 1 / 5 Gaue-His couplins at the LHC

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings.

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings. Higgs Couplings Universität Heidelberg Standard Model@LHC, 4/213 Higgs physics 213-2XX Fundamental questions 1 What is the Higgs Lagrangian? [Maggie s talk] Higgs physics 213-2XX Fundamental questions

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Effective Lagrangians for Higgs Physics

Effective Lagrangians for Higgs Physics Effective Lagrangians for Higgs Physics Tyler Corbett YITP, SUNY Stony Brook arxiv:1311.1823 (JHEP) 1304.1151 (PRL) 1211.4580 (PRD) 1207.1344 (PRD) T.C., O.J.P. Éboli, J. Gonzalez Fraile, M.C. Gonzalez

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

HIGGS BOSONS AT THE LHC

HIGGS BOSONS AT THE LHC IGGS BOSONS AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany SUSY06 UC Irvine, June 12-17, 2006 Goals of iggs Physics SM Channels MSSM: /A and ± Coupling measurements QCD Corrections VV vertex

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev The BEH-Mechanism in the SM Most general renormalizable gauge invariant potential: V(φ) ' µ 2 φ φ+λ(φ φ) 2 µ 2,λ > 0 Condensate v hides symmetry of underlying Langrangian M W = g 2 v m f = λ f 2 v M H

More information

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) 中国科学院大学 June 17, 2013 Outline Introduction of SM Higgs Searches at Tevatron, LEP and EW measurements ATLAS Experiment at LHC Higgs Production

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

The Little Channels. Tilman Plehn. Aspen, 3/2013. Little Channels. Tilman Plehn. Results. Channels. Higgs couplings. Bottom Yukawa.

The Little Channels. Tilman Plehn. Aspen, 3/2013. Little Channels. Tilman Plehn. Results. Channels. Higgs couplings. Bottom Yukawa. The Little Universität Heidelberg Aspen, 3/213 Higgs results 212-213 Fundamental questions 1 What is the Higgs Lagrangian? Higgs results 212-213 Fundamental questions 1 What is the Higgs Lagrangian? psychologically:

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

arxiv: v2 [hep-ph] 27 Jan 2016

arxiv: v2 [hep-ph] 27 Jan 2016 Pushing Higgs Effective Theory to its Limits Johann Brehmer, 1 Ayres Freitas, David López-Val, 3 and Tilman Plehn 1 1 Institut für Theoretische Physik, Universität Heidelberg, Germany PITT-PACC, Department

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

An update on scalar singlet dark matter

An update on scalar singlet dark matter Pat Scott Department of Physics, McGill University With: Jim Cline, Kimmo Kainulainen & Christoph Weniger (arxiv:1306.4710) Slides available from http://www.physics.mcgill.ca/ patscott What is the scalar

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Exotic W + W Z Signals at the LHC

Exotic W + W Z Signals at the LHC Exotic W + W Z Signals at the LHC Jared Evans jaevans@ucdavis.edu w/ M.Luty and S.Chang Department of Physics University of California - Davis WCLHC Evans (UCD) WWZ at LHC April 14, 011 1 / 11 Premise

More information

Searching for Dark Matter at the LHC

Searching for Dark Matter at the LHC Searching for Dark Matter at the LHC Tongyan Lin KICP/UChicago UCIrvine Seminar February 19, 2014 Dark matter, 2014 WIMP Miracle Weak-scale annihilation cross section gets you in the right ballpark to

More information

Fermionic DM Higgs Portal! An EFT approach

Fermionic DM Higgs Portal! An EFT approach Fermionic DM Higgs Portal An EFT approach Michael A. Fedderke University of Chicago Based on 1404.83 [hep-ph] (MF, Chen, Kolb, Wang) Unlocking the Higgs Portal ACFI, UMass, Amherst May 014 01 discovery

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

Looking through the Higgs portal with exotic Higgs decays

Looking through the Higgs portal with exotic Higgs decays Looking through the Higgs portal with exotic Higgs decays Jessie Shelton University of Illinois, Urbana-Champaign Unlocking the Higgs Portal (U. Mass. Amherst) May 1, 2014 A light SM-like Higgs is narrow

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

Channels and Challenges: Higgs Search at the LHC

Channels and Challenges: Higgs Search at the LHC Channels and Challenges: Higgs Search at the LHC Tilman Plehn CERN The Puzzle of Mass & the Higgs Boson Standard Model Higgs Boson at the LHC Supersymmetric Higgs Bosons at the LHC Elementary Particles

More information

arxiv: v1 [hep-ph] 29 Nov 2016

arxiv: v1 [hep-ph] 29 Nov 2016 On the Validity of Dark Matter Effective Theory arxiv:6.09908v [hep-ph] 9 Nov 06 Martin Bauer, Anja Butter, Nishita Desai, J. Gonzalez-Fraile, and Tilman Plehn Institut für Theoretische Physik, Universität

More information

Introducing SModelS - with an application to light neutralino DM

Introducing SModelS - with an application to light neutralino DM Hi! Introducing SModelS - with an application to light neutralino DM Suchita Kulkarni (LPSC, Grenoble) based on: 1) work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml 2)

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Beyond Simplified Models

Beyond Simplified Models Pseudoscalar Portal to Dark Matter: Beyond Simplified Models Jose Miguel No King's College London J.M.N. PRD 93 (RC) 031701 (1509.01110) D. Goncalves, P. Machado, J.M.N. 1611.04593 M. Fairbairn, J.M.N.,

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

ATLAS and CMS Higgs Mass and Spin/CP Measurement

ATLAS and CMS Higgs Mass and Spin/CP Measurement ATLAS and CMS Higgs Mass and Spin/CP Measurement These proceedings summarize the ATLAS and CMS collaboration measurement of Higgs properties. The properties discussed include mass, spin, parity and the

More information

Higgs searches in CMS

Higgs searches in CMS Higgs searches in CMS Mario Pelliccioni Istituto Nazionale di Fisica Nucleare Torino Miami 2012 17/12/12 Introduction Why do we even bother to look for the Higgs? An Higgs boson naturally emerges from

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

HUNTING FOR THE HIGGS

HUNTING FOR THE HIGGS Univ. of Sci. and Tech. of China Dec. 16th, 2011 HUNTING FOR THE HIGGS Tao Liu UC@ Santa Barbara Why Higgs Mechanism? Two mysteries in the Electroweak (EW) theory : The cause of the EW symmetry breaking

More information

Triple Gauge Couplings and Quartic Gauge Couplings

Triple Gauge Couplings and Quartic Gauge Couplings Triple Gauge Couplings and Quartic Gauge Couplings Particle Physics at the LHC Gernot Knippen Faculty of Mathematics and Physics University of Freiburg June 17, 2014 Gernot Knippen TGC and QGC June 17,

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -08/036 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH GENEVA 3, Switzerland 30 April 08 (v4, 08 May 08) Measurement of the

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Higgs Physics after the Discovery

Higgs Physics after the Discovery Physics rates Physics after the Universität Heidelberg MPI-K, 7/22 Physics rates discovery Best of ATLAS and CMS [together over subchannels] silver channel H γγ local significance 4.5σ (ATLAS), 4.σ (CMS)

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

Measurement of Higgs properties: sensitivity of present and future facilities

Measurement of Higgs properties: sensitivity of present and future facilities EP/TH Faculty Meeting, 1 June 2018 Measurement of Higgs properties: sensitivity of present and future facilities G.F. Giudice Traditionally, Faculty Meetings were reserved to Senior Staff Series of Faculty

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration Higgs couplings and mass measurements with ATLAS CERN On behalf of the ATLAS Collaboration July observation: qualitative picture A single state observed around ~125 GeV Qualitatively all observations consistent

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Mono-X, Associate Production, and Dijet searches at the LHC

Mono-X, Associate Production, and Dijet searches at the LHC Mono-X, Associate Production, and Dijet searches at the LHC Emily (Millie) McDonald, The University of Melbourne CAASTRO-CoEPP Joint Workshop Melbourne, Australia Jan. 30 - Feb. 1 2017 M. McDonald, University

More information

HIGGS + 2 JET PRODUCTION AT THE LHC

HIGGS + 2 JET PRODUCTION AT THE LHC IGGS + 2 JET PRODUCTION AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany Seminar at KITP, Santa Barbara, March 13, 2008 LC goals Vector boson fusion Measurement of iggs couplings jj production

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Search for Invisible Decay of Higgs boson at LHC

Search for Invisible Decay of Higgs boson at LHC Search for Invisible Decay of Higgs boson at LHC Kajari Mazumdar Tata Institute of Fundamental Research Mumbai DHEP seminar, TIFR, Mumbai 22.4.2014 Plan of the talk Preliminaries Status of measurements

More information

Probing Dark Matter at the LHC

Probing Dark Matter at the LHC July 15, 2016 PPC2016 1 Probing Dark Matter at the LHC SM SM DM DM Search for production of DM particles from interacting SM particles Models tested at ATLAS assume DM WIMP Infer DM production through

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

CMS Higgs Results Adi Bornheim Caltech

CMS Higgs Results Adi Bornheim Caltech CMS Higgs Results Adi Bornheim Caltech 06.04.2014 1 A brief history of recent times W & Z Boson t-quark H Boson 1964 1974 1984 1994 2004 2014 Peter Higgs This talk : Summary of 29 CMS publications and

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Review of Higgs results at LHC (ATLAS and CMS results)

Review of Higgs results at LHC (ATLAS and CMS results) Review of Higgs results at LHC (ATLAS and CMS results) Università degli Studi di Genova and INFN, Genova, Italy E-mail: andrea.favareto@ge.infn.it The status of Higgs sector studies at the Large Hadron

More information

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects Lashkar Kashif University of Wisconsin Summer School and Workshop on the Standard Model and Beyond Corfu, Greece, September 8, 2015 Outline

More information

Reinterpretations of non-resonant searches for Higgs boson pairs

Reinterpretations of non-resonant searches for Higgs boson pairs Reinterpretations of non-resonant searches for Higgs boson pairs HH Workshop, Fermilab Alexandra Carvalho, Florian Goertz, Ken Mimasu, Maxime Gouzevitch, Anamika Aggarwal arxiv:1710.08261v1 (on preparation

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

The inert doublet model in light of LHC and XENON

The inert doublet model in light of LHC and XENON The inert doublet model in light of LHC and XENON Sara Rydbeck 24 July 212 Identification of Dark Matter, IDM 212, Chicago 1 The CERN Large Hadron Collider Only discovery so far. If no new strongly interacting

More information

Measurements of the Higgs Boson at the LHC and Tevatron

Measurements of the Higgs Boson at the LHC and Tevatron Measurements of the Higgs Boson at the LHC and Tevatron Somnath Choudhury (for the ATLAS, CMS, DØ and CDF collaborations) 44 th International Symposium on Multiparticle Dynamics 8 12 September 2014, Bologna

More information

What the Higgs is going on? (beyond the SM)

What the Higgs is going on? (beyond the SM) What the Higgs is going on? (beyond the SM) Cédric Delaunay LAPTH Annecy-le-vieux, France enigmass@lpsc.fr November 8th 2013 ~Menu~ a SM Higgs discovery: good and bad news new physics in Higgs phenomenology

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

FERMION PORTAL DARK MATTER

FERMION PORTAL DARK MATTER FERMION PORTAL DARK MATTER Joshua Berger SLAC UC Davis Theory Seminar! w/ Yang Bai: 1308.0612, 1402.6696 March 10, 2014 1 A HOLE IN THE SM Van Albada et. al. Chandra + Hubble What else can we learn about

More information

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM Giovanni Marco Pruna IKTP TU Dresden charged 2012, Uppsala University, 10th of October Outline Motivation Standard Model: a solid

More information

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves Higgs couplings: effects beyond total rates Heidelberg - 1.11.217!! Outline Off-She Higgs Theoretical ingredients New probe to the Higgs portal coupling at LHC WBF 1 TeV: what can we learn from it? Spin

More information

Theory with and for the LHC

Theory with and for the LHC Theory Theory with and for the Universität Heidelberg Bergen, 6/2017 Theory The Theory The Theory The Einstein: beam energy to particle mass E = mc 2 smash 6.5 TeV protons onto 6.5 TeV protons [energy

More information

Di-photon at 750 GeV! (A first read)

Di-photon at 750 GeV! (A first read) Di-photon at 750 GeV! (A first read) LianTao Wang ( )! U. Chicago Jan. 1, IAS HKUST Excess around 750 GeV?! Events / 40 GeV 4 3 1 ATLAS Preliminary Data Background-only fit -1 s = 13 TeV, 3. fb Events

More information

CMS (Higgs) Results. Begoña de la Cruz (CIEMAT, Madrid) APC IFT/UAM (Oct 21st, 2013) On behalf of CMS Collaboration

CMS (Higgs) Results. Begoña de la Cruz (CIEMAT, Madrid) APC IFT/UAM (Oct 21st, 2013) On behalf of CMS Collaboration CMS (Higgs) Results Begoña de la Cruz (CIEMAT, Madrid) On behalf of CMS Collaboration APC 2013 - IFT/UAM (Oct 21st, 2013) Discovery 2 https://twiki.cern.ch/twiki/pub/cmspublic/physicsresultshig/hzz4l_date_animated.gif

More information

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Status of low energy SUSY models confronted with the 125 GeV Higgs data Status of low energy SUSY models confronted with the 5 GeV Higgs data Junjie Cao On behalf of my collaborators J. M. Yang, et al Based on our works arxiv: 7.3698, 6.3865, 3.3694,.58,.439 junjiec@itp.ac.cn

More information

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012 Mass degenerate Higgs Hunters explore the 2HDM Howard E. Haber West Coast LHC Theory Meeting @ UC Riverside December 7, 2012 Outline A boson born on the 4 th of July 2012 Properties of the Higgs boson

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information