Tilman Plehn. Mainz, July 2015

Size: px
Start display at page:

Download "Tilman Plehn. Mainz, July 2015"

Transcription

1 Testing the Universität Heidelberg Mainz, July 2015

2 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2

3 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution

4 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution

5 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution 1966: original Higgs phenomenology

6 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution 1966: original Higgs phenomenology

7 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution 1966: original Higgs phenomenology

8 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution 1966: original Higgs phenomenology lots of collider phenomenology starting in 1976

9 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem 2: massive gauge theories massive gauge bosons have 3 polarizations, and 3 2 Higgs-related papers [also Brout & Englert; Guralnik, Hagen, Kibble] 1964: combining two problems to one predictive solution 1966: original Higgs phenomenology lots of collider phenomenology starting in 1976 Adding in Glashow Weinberg Salam t Hooft Veltman massive, minimal Standard Model complete renormalizability unique for particle physics [and cosmology] Higgs sector the perfect way to test structure [remember LEP for gauge structure] bias: no strongly interacting Higgs sector!

10 Questions for Run 2+x 1. What is the Higgs Lagrangian? psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected ask Stephie and Uli [Cabibbo Maksymowicz Dell Aquila Nelson angles]

11 Questions for Run 2+x 1. What is the Higgs Lagrangian? psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected ask Stephie and Uli [Cabibbo Maksymowicz Dell Aquila Nelson angles] 2. What is the Lagrangian? naive-but-useful: set of couplings given Lagrangian bottom-up: Higgs effective theory top-down: modified Higgs sectors

12 Questions for Run 2+x 1. What is the Higgs Lagrangian? psychologically: looked for Higgs, so found a Higgs CP-even spin-0 scalar expected, which operators? spin-1 vector unlikely spin-2 graviton unexpected ask Stephie and Uli [Cabibbo Maksymowicz Dell Aquila Nelson angles] 2. What is the Lagrangian? naive-but-useful: set of couplings given Lagrangian bottom-up: Higgs effective theory top-down: modified Higgs sectors 3. What does all this tell us? strongly interacting models? weakly interacting extensions? TeV-scale new physics? hierarchy problem, vacuum stability, Higgs inflation, etc

13 t W,Z Standard Model operators assume: narrow CP-even scalar Standard Model operators couplings proportional to masses? Lagrangian L = L SM + W gm W H W µ W µ + Z + gf G H v GµνGµν + γf A 2nd generation Yukawas µ,c,s? [ask MatthiasN] g f m f v H ( fr f L + h.c. ) m Z H Z µ Z µ 2c w τ,b,t H v AµνAµν + invisible + unobservable b,t W,Z

14 t W,Z Standard Model operators assume: narrow CP-even scalar Standard Model operators couplings proportional to masses? Lagrangian L = L SM + W gm W H W µ W µ + Z + gf G H v GµνGµν + γf A 2nd generation Yukawas µ,c,s? [ask MatthiasN] g f m f v H ( fr f L + h.c. ) m Z H Z µ Z µ 2c w τ,b,t H v AµνAµν + invisible + unobservable b,t W,Z total rates only [on-shell and off-shell, Keith or Kirill around?] electroweak renormalizability through some UV completion QCD renormalizability not an issue gg H qq qqh gg t th qq VH g HXX = g SM HXX (1 + X ) H ZZ H WW H b b H τ + τ H γγ

15 Higgs Portal Higgs portal to new physics [dark matter, etc] all-renormalizable extended potential [with or without VEV] V (Φ, S) =µ 2 1 (Φ Φ) + λ 1 Φ Φ 2 + µ 2 2 S 2 + λ 2 S 4 + λ 3 Φ Φ S 2 mixing to the observed Higgs mass eigenstate visible and invisible decays H 1 = cos χ H Φ + sin χ S Γ 1 = cos 2 χ Γ SM 1 + sin 2 χ Γ hid 1 sin 2 χ Γ hid 1 BR inv = cos 2 χ Γ SM 1 + sin 2 χ Γ hid 1 event rate (σ BR) H1 cos 2 χ = (σ BR) SM H tan 2 χ Γhid 1 Γ SM 1 collider reach

16 Higgs Portal Higgs portal to new physics [dark matter, etc] all-renormalizable extended potential [with or without VEV] V (Φ, S) =µ 2 1 (Φ Φ) + λ 1 Φ Φ 2 + µ 2 2 S 2 + λ 2 S 4 + λ 3 Φ Φ S 2 mixing to the observed Higgs mass eigenstate visible and invisible decays H 1 = cos χ H Φ + sin χ S Γ 1 = cos 2 χ Γ SM 1 + sin 2 χ Γ hid 1 sin 2 χ Γ hid 1 BR inv = cos 2 χ Γ SM 1 + sin 2 χ Γ hid 1 event rate (σ BR) H1 cos 2 χ = (σ BR) SM H tan 2 χ Γhid 1 Γ SM 1 invisible Higgs the key

17 Two Higgs doublets Two doublets [no flavor, CP, custodial troubles] angle β = atan(v 2 /v 1 ) angle α defining h and H gauge boson coupling g W,Z = sin(β α)gw SM,Z type-i: all fermions with φ 2 type-ii: up-type fermions with φ 2 lepton-specific: type-i quarks and type-ii leptons flipped: type-ii quarks and type-i leptons single hierarchy m h m H,A,H ± [custodial symmetry]

18 Two Higgs doublets Two doublets [no flavor, CP, custodial troubles] angle β = atan(v 2 /v 1 ) angle α defining h and H gauge boson coupling g W,Z = sin(β α)gw SM,Z type-i: all fermions with φ 2 type-ii: up-type fermions with φ 2 lepton-specific: type-i quarks and type-ii leptons flipped: type-ii quarks and type-i leptons single hierarchy m h m H,A,H ± [custodial symmetry] Facing data decoupling regime sin 2 α 1/(1 + tan 2 β) 2HDMs good fit with decoupling heavy Higgs type-i type-ii lepton specific flipped

19 Two Higgs doublets Two doublets [no flavor, CP, custodial troubles] angle β = atan(v 2 /v 1 ) angle α defining h and H gauge boson coupling g W,Z = sin(β α)gw SM,Z type-i: all fermions with φ 2 type-ii: up-type fermions with φ 2 lepton-specific: type-i quarks and type-ii leptons flipped: type-ii quarks and type-i leptons single hierarchy m h m H,A,H ± [custodial symmetry] Yukawa-aligned 2HDM V (β α) b,t,τ {β, γ b,τ } γ m H ± g not free parameter, add top partner custodial symmetry at tree level V < direct fit direct fit ( V <0) aligned 2HDM measured data realistic model not yet in reach 0.4 aligned 2HDM (constr.) V t b τ γ

20 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V

21 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1

22 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1 mixing singlet [no anomalous decays] 1 + x = cos θ = 1 ξ 2 µ p,d = 1 ξ 2 + O(ξ 3 ) < 1

23 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1 mixing singlet [no anomalous decays] composite Higgs ξ = v f 1 + x = cos θ = 1 ξ 2 µ p,d = 1 ξ 2 + O(ξ 3 ) < 1 µ WBF,d µ GF,d = (1 ξ 2 ) 2 (1 2ξ 2 ) 2 = 1 + 2ξ 2 + O(ξ 3 ) > 1

24 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1 mixing singlet [no anomalous decays] composite Higgs ξ = v f 1 + x = cos θ = 1 ξ 2 µ p,d = 1 ξ 2 + O(ξ 3 ) < 1 µ WBF,d µ GF,d = additional doublet [type-x fermion sector] 1 + V = sin(β α) = 1 ξ 2 (1 ξ 2 ) 2 (1 2ξ 2 ) 2 = 1 + 2ξ 2 + O(ξ 3 ) > 1

25 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1 mixing singlet [no anomalous decays] composite Higgs ξ = v f 1 + x = cos θ = 1 ξ 2 µ p,d = 1 ξ 2 + O(ξ 3 ) < 1 µ WBF,d µ GF,d = additional doublet [type-x fermion sector] 1 + V = sin(β α) = 1 ξ 2 MSSM [plus tan β] ξ 2 = m2 h (m2 Z m2 h ) m 2 A (m2 H m2 h ) m4 Z sin2 (2β) m 4 A (1 ξ 2 ) 2 (1 2ξ 2 ) 2 = 1 + 2ξ 2 + O(ξ 3 ) > 1

26 Extended Higgs sectors Decoupling in one dimension [Cranmer, Kreiss, Lopez-Val, TP] decoupling defined through the massive gauge sector dark singlet g V = 1 ξ2 g SM 2 + O(ξ3 ) V = ξ2 2 + O(ξ3 ) V Γ inv = ξ 2 Γ SM µ p,d = Γ SM Γ SM + Γ inv = 1 ξ 2 + O(ξ 3 ) < 1 mixing singlet [no anomalous decays] composite Higgs γγ µ VBF ξ = v f ξ < x = cos θ = 1 ξ 2 µ p,d = 1 ξ 2 + O(ξ 3 ) < 1 ξ = 0.2 MSSM MCHM5 singlet 2HDM I 2HDM II µ WBF,d µ GF,d = VV µ VBF ξ < 0.4 ξ = 0.2 MSSM (1 ξ 2 ) 2 (1 2ξ 2 ) 2 = 1 + 2ξ 2 + O(ξ 3 ) > 1 MCHM5 singlet 2HDM I 2HDM II µ ττ VBF ξ < 0.4 ξ = 0.2 MCHM5 2HDM II singlet MSSM 2HDM I γγ 2 µ GF VV 2 µ GF µ ττ GF

27 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ

28 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Λ O 2 BB + f WW Λ 2 O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2

29 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Higgs couplings to SM particles Λ O 2 BB + f WW Λ 2 L HVV = g g HG a µν Gaµν + g γ HA µνa µν O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2 + g (1) Z Z µνz µ ν H + g (2) HZ Z µνz µν + g (3) HZ Z µz µ ( ) + g (1) W + W µν W µ ν H + h.c. + g (2) W HW + µν W µν + g (3) W HW + µ W µ +

30 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ observable Higgs couplings g g = f GGv Λ 2 g (1) Z g (2) Z = g2 v 2Λ 2 = g2 v 2Λ 2 αs f gv 8π Λ 2 c 2 w f W + s 2 w f B 2c 2 w g (3) Z = M 2 Z ( 2G F ) 1/2 g f = m f v ( s 4 w f BB + c 4 w f WW 2cw 2 ( 1 v 2 1 v 2 2Λ 2 f Φ,2 ) 2Λ f 2 Φ,2 ) + v 2 f f 2Λ 2 g γ = g2 vs 2 w 2Λ 2 g (1) W g (2) W = g2 v 2Λ 2 f W 2 = g2 v 2Λ f 2 WW f BB + f WW 2 g (3) W = M2 W ( 2G F ) 1/2 ( 1 v ) 2 2Λ f 2 Φ,2

31 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter analysis same setup and data as before f/λ 2 [TeV -2 ] L= (7 TeV) (8 TeV) fb -1, ATLAS + CMS O GG O WW O BB O W O B O φ2 Λ/ f f/λ 2 [TeV] [TeV -2 ] Λ/ f [TeV] SM exp. 68% CL SM exp. 95% CL data 68% CL data 95% CL O t O b O τ

32 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter analysis same setup and data as before correlations a problem [diagonalization means 1 + ] f B /Λ 2 40 [TeV -2 ] f W /Λ 2 [TeV -2 ]

33 Higgs Limits in terms of effective field theory in Higgs sector set of Higgs-gauge operators O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ Including distributions some operators momentum-dependent example: p T,V or Φ jj just a start... f B /Λ 2 40 [TeV -2 ] f W /Λ 2 [TeV -2 ]

34 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3

35 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H 1 + f φ,2v 2 Λ 2

36 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H second operator, minimum condition giving v v 2 = µ2 λ f φ,3µ 4 4λ 3 Λ f φ,2v 2 Λ 2

37 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 first operator, wave function renormalization O φ,2 = 1 2 µ(φ φ) µ (φ φ)= 1 2 ( H + v) 2 µ H µ H proper normalization of combined kinetic term [LSZ] L kin = 1 ( 2 µ H µ H 1 + f ) φ,2v 2! = 1 Λ 2 2 µh µ H H = H second operator, minimum condition giving v v 2 = µ2 λ f φ,3µ 4 4λ 3 Λ 2 both operators contributing to Higgs mass L mass = µ2 H λv 2 H2 f φ,3 15 Λ 2 24 v 4! H2 = m2 H 2 H2 m 2 H = 2λv 2 ( 1 f φ,2v 2 + f φ,3v 2 Λ 2 2Λ 2 λ ) 1 + f φ,2v 2 Λ 2

38 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H

39 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H alternatively, strong multi-higgs interactions ( H = 1 + f ) φ,2v 2 H + f φ,2v H2 + f φ,2 H3 + O( H 4 ) 2Λ 2 2Λ 2 6Λ 2

40 Exercise: higher-dimensional operators Higgs sector including dimension-6 operators L D6 = 2 i=1 f i Λ 2 O i with O φ,2 = 1 2 µ(φ φ) µ (φ φ), O φ,3 = 1 3 (φ φ) 3 Higgs self couplings momentum dependent [( L self = m2 H 1 f φ,2v 2 + 2f ) φ,3v 4 2v 2Λ 2 3Λ 2 mh 2 H 3 2f ] φ,2v 2 Λ 2 mh 2 H µh µ H [( m2 H 1 f φ,2v 2 + 4f ) φ,3v 4 8v 2 Λ 2 Λ 2 mh 2 H 4 4f ] φ,2v 2 Λ 2 mh 2 H 2 µ H µ H alternatively, strong multi-higgs interactions ( H = 1 + f ) φ,2v 2 H + f φ,2v H2 + f φ,2 H3 + O( H 4 ) 2Λ 2 2Λ 2 6Λ 2 operators and distributions linked to poor UV behavior

41 TeV scale fourth chiral generation excluded strongly interacting models retreating [Goldstone protection] extended Higgs sectors wide open no final verdict on the MSSM hierarchy problem worse than ever [light fundemental scalar discovered] whatever...

42 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q 2 = 1 16π 2 [12λ 2 + 6λλ 2t 3λ 4t 32 ( ) λ 3g g (2g (g2 2 + g2 1 )2)]

43 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H =

44 Exercise: top Higgs renormalization group Running of coupling/mass ratios [Wetterich] Higgs self coupling and top Yukawa with stable zero IR solutions d λ d log Q = 1 ( ) 12λ 2 + 6λy π 2 t 3y 4 d y 2 t t d log Q = π y 4 2 t

45 Exercise: top Higgs renormalization group Running of coupling/mass ratios [Wetterich] Higgs self coupling and top Yukawa with stable zero IR solutions d λ d log Q = 1 ( ) 12λ 2 + 6λy π 2 t 3y 4 d y 2 t t d log Q = π y 4 2 t running ratio R = λ/y 2 t dr d log Q = 3λ 2 32π 2 R ( 8R 2! R 2) = 0 R =

46 Exercise: top Higgs renormalization group Running of coupling/mass ratios [Wetterich] Higgs self coupling and top Yukawa with stable zero IR solutions d λ d log Q = 1 ( ) 12λ 2 + 6λy π 2 t 3y 4 d y 2 t t d log Q = π y 4 2 t running ratio R = λ/y 2 t dr d log Q = 3λ 2 32π 2 R numbers in the far infrared, better for Q v λ yt 2 = m2 H v 2 2v 2 2mt 2 = m2 H 4m 2 = 0.44 IR t IR ( 8R 2! R 2) = 0 R = m H = 1.33 m t IR

47 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H =

48 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H = Vacuum stability [Giudice etal; Eichhorn, Gies, Jaeckel, TP, Scherer, Sondenheimer] RG running of Higgs potential λ < 0 at GeV? [Buttazo etal] 1.0 yt g SM couplings g 2 g y b l m in TeV RGE scale m in GeV

49 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H = Vacuum stability [Giudice etal; Eichhorn, Gies, Jaeckel, TP, Scherer, Sondenheimer] RG running of Higgs potential λ < 0 at GeV? [Buttazo etal] new physics at GeV? running couplings Λ 4 Λ 6 g 3 y RGE scale k in GeV

50 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H = Vacuum stability [Giudice etal; Eichhorn, Gies, Jaeckel, TP, Scherer, Sondenheimer] RG running of Higgs potential λ < 0 at GeV? [Buttazo etal] new physics at GeV? new physics at GeV? running couplings Λ 4 Λ 6 g 3 y RGE scale k in GeV

51 High scales [Lindner etal, Wetterich etal, Bauer etal] Planck-scale extrapolation d λ d log Q = 1 [ ] 12λ 2 + 6λλ π 2 t 3λ 4 t Landau pole: exploding λ for large Q, small λ t stability issue: sign change in λ for large Q, large λ t IR fixed point for λ/λ 2 t fixing m 2 H /m2 t [with gravity: Shaposhnikov, Wetterich] mt αs m H = Vacuum stability [Giudice etal; Eichhorn, Gies, Jaeckel, TP, Scherer, Sondenheimer] RG running of Higgs potential λ < 0 at GeV? [Buttazo etal] new physics at GeV? new physics at GeV? TeV-scale DM portal? running couplings g 3 y Λ HS 0.0 Λ RG scale k in GeV

52 Questions Big questions is it really the Standard Model Higgs? is there new physics in/outside the Higgs sector? does fundamental theory hold to Planck scale? Practical questions can we define interesting extended models? can we set general limits in effective theories? are there links to other interesting sectors? how can we increase the precision? are there any good ideas out there? Lectures on LHC Physics, Springer, arxiv: updated under plehn/

53

54 Longitudinal WW scattering WW scattering at high energies [Tao etal; Dawson] historically alternative to light Higgs WW scattering at high energies [via Goldstones] g V H ( a L V Lµ V µ L + a T V T µ V µ ) T still useful after Higgs discovery?

55 Longitudinal WW scattering WW scattering at high energies [Tao etal; Dawson] historically alternative to light Higgs WW scattering at high energies [via Goldstones] g V H ( a L V Lµ V µ L + a T V T µ V µ ) T still useful after Higgs discovery? high energy signal reduced by Higgs tagging jets as Higgs pole observables instead

56 Longitudinal WW scattering WW scattering at high energies [Tao etal; Dawson] historically alternative to light Higgs WW scattering at high energies [via Goldstones] g V H ( a L V Lµ V µ L + a T V T µ V µ ) T still useful after Higgs discovery? high energy signal reduced by Higgs tagging jets as Higgs pole observables instead Tagging jet observables [Brehmer, Jäckel, TP] polarization defined in Higgs frame transverse momenta 1 + (1 x)2 P T (x, p T ) x P L (x, p T ) 1 x x p 3 T ((1 x)m 2 W + p2 T )2 2(1 x)m 2 W p T ((1 x)m 2 W + p2 T )2

57 Longitudinal WW scattering WW scattering at high energies [Tao etal; Dawson] historically alternative to light Higgs WW scattering at high energies [via Goldstones] g V H ( a L V Lµ V µ L + a T V T µ V µ ) T still useful after Higgs discovery? high energy signal reduced by Higgs tagging jets as Higgs pole observables instead Tagging jet observables [Brehmer, Jäckel, TP] polarization defined in Higgs frame transverse momenta azimuthal angle A φ = σ( φ jj < π 2 ) σ( φ jj > π 2 ) σ( φ jj < π 2 ) + σ( φ jj > π 2 )

58 Longitudinal WW scattering WW scattering at high energies [Tao etal; Dawson] historically alternative to light Higgs WW scattering at high energies [via Goldstones] g V H ( a L V Lµ V µ L + a T V T µ V µ ) T still useful after Higgs discovery? high energy signal reduced by Higgs tagging jets as Higgs pole observables instead Tagging jet observables [Brehmer, Jäckel, TP] polarization defined in Higgs frame transverse momenta azimuthal angle total rate σ (A L al 2 + A T at 2 ) simple question, clear answer a T Rate Combined p, A T,j φ % CL, 300 fb No systematics a L

59 Hierarchy problem Tuning in Lagrangian [Giudice ] electron Yukawa m e/v 1 a problem? (1) no, it s just a number (2) no, m e = 0 is chiral symmetry

60 Hierarchy problem Tuning in Lagrangian [Giudice ] electron Yukawa m e/v 1 a problem? (1) no, it s just a number (2) no, m e = 0 is chiral symmetry so what about ratio? G F G N c2

61 Hierarchy problem Tuning in Lagrangian [Giudice ] electron Yukawa m e/v 1 a problem? (1) no, it s just a number (2) no, m e = 0 is chiral symmetry so what about ratio? Quantum field theory G F G N c2 stability with respect to quantum corrections G F 1 v 1 2 mh 2 with scale hierarchy unstable effective field theory broken symmetries welcome δm 2 H Λ2

62 Hierarchy problem Tuning in Lagrangian [Giudice ] electron Yukawa m e/v 1 a problem? (1) no, it s just a number (2) no, m e = 0 is chiral symmetry so what about ratio? Quantum field theory G F G N c2 stability with respect to quantum corrections G F 1 v 1 2 mh 2 with scale hierarchy unstable effective field theory broken symmetries welcome δm 2 H Λ2 SUSY little hierarchy quadratic Higgs divergence gone logarithmic dependence left δm 2 H v 2 log m t 1 m t 2 m 2 t

Kinematics in Higgs Fits

Kinematics in Higgs Fits Kinematics in Higgs Fits Universität Heidelberg LHCHXS Meeting, November 2015 Higgs Couplings Standard Model operators [SFitter: Gonzalez-Fraile, Klute, TP, Rauch, Zerwas] Lagrangian [in terms of non-linear

More information

Higgs Physics for the LHC

Higgs Physics for the LHC Higgs Physics for the LHC Universität Heidelberg Brookhaven, 9/2013 Two problems for spontaneous gauge symmetry breaking problem 1: Goldstone s theorem SU(2) L U(1) Y U(1) Q gives 3 massless scalars problem

More information

The Rise of Effective Lagrangians at the LHC

The Rise of Effective Lagrangians at the LHC The Rise of Effective Lagrangians at the LHC Universität Heidelberg Brookhaven, May 2016 750 GeV the finger to particle theory taste not true taste wide X γγ impossible spin-0 actual model X aa 4γ NMSSM

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Effective Higgs Physics at the LHC

Effective Higgs Physics at the LHC Effective Higgs Physics at the LHC Universität Heidelberg Edinburgh, December 2016 Theory in data-driven era Same old theory motivation dark matter still not understood [WIMP still best choice] hierarchy

More information

Effective Higgs-Gauge Analyses

Effective Higgs-Gauge Analyses Effective Higgs-Gauge Analyses Tilman Plehn Universität Heidelberg CERN, July 017 Higgs Couplings t W,Z Standard Model operators assume: narrow CP-even scalar Standard Model operators fundamental physics

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

The Little Channels. Tilman Plehn. Aspen, 3/2013. Little Channels. Tilman Plehn. Results. Channels. Higgs couplings. Bottom Yukawa.

The Little Channels. Tilman Plehn. Aspen, 3/2013. Little Channels. Tilman Plehn. Results. Channels. Higgs couplings. Bottom Yukawa. The Little Universität Heidelberg Aspen, 3/213 Higgs results 212-213 Fundamental questions 1 What is the Higgs Lagrangian? Higgs results 212-213 Fundamental questions 1 What is the Higgs Lagrangian? psychologically:

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

arxiv: v1 [hep-ph] 25 Nov 2015

arxiv: v1 [hep-ph] 25 Nov 2015 The Non-Linear Higgs Legacy of the LHC Run I Tyler Corbett, 1, Oscar J. P. Éboli,3 Dorival Gonçalves, 4 J. Gonzalez Fraile, 5 Tilman Plehn, 5 and Michael Rauch 6 1 C.N. Yang Institute for Theoretical Physics,

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

HIGGS BOSONS AT THE LHC

HIGGS BOSONS AT THE LHC IGGS BOSONS AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany SUSY06 UC Irvine, June 12-17, 2006 Goals of iggs Physics SM Channels MSSM: /A and ± Coupling measurements QCD Corrections VV vertex

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings.

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings. Higgs Couplings Universität Heidelberg Standard Model@LHC, 4/213 Higgs physics 213-2XX Fundamental questions 1 What is the Higgs Lagrangian? [Maggie s talk] Higgs physics 213-2XX Fundamental questions

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) 中国科学院大学 June 17, 2013 Outline Introduction of SM Higgs Searches at Tevatron, LEP and EW measurements ATLAS Experiment at LHC Higgs Production

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Channels and Challenges: Higgs Search at the LHC

Channels and Challenges: Higgs Search at the LHC Channels and Challenges: Higgs Search at the LHC Tilman Plehn CERN The Puzzle of Mass & the Higgs Boson Standard Model Higgs Boson at the LHC Supersymmetric Higgs Bosons at the LHC Elementary Particles

More information

Measurement of Higgs properties: sensitivity of present and future facilities

Measurement of Higgs properties: sensitivity of present and future facilities EP/TH Faculty Meeting, 1 June 2018 Measurement of Higgs properties: sensitivity of present and future facilities G.F. Giudice Traditionally, Faculty Meetings were reserved to Senior Staff Series of Faculty

More information

Higgs searches in CMS

Higgs searches in CMS Higgs searches in CMS Mario Pelliccioni Istituto Nazionale di Fisica Nucleare Torino Miami 2012 17/12/12 Introduction Why do we even bother to look for the Higgs? An Higgs boson naturally emerges from

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Review of Higgs results at LHC (ATLAS and CMS results)

Review of Higgs results at LHC (ATLAS and CMS results) Review of Higgs results at LHC (ATLAS and CMS results) Università degli Studi di Genova and INFN, Genova, Italy E-mail: andrea.favareto@ge.infn.it The status of Higgs sector studies at the Large Hadron

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev The BEH-Mechanism in the SM Most general renormalizable gauge invariant potential: V(φ) ' µ 2 φ φ+λ(φ φ) 2 µ 2,λ > 0 Condensate v hides symmetry of underlying Langrangian M W = g 2 v m f = λ f 2 v M H

More information

Effective Lagrangians for Higgs Physics

Effective Lagrangians for Higgs Physics Effective Lagrangians for Higgs Physics Tyler Corbett YITP, SUNY Stony Brook arxiv:1311.1823 (JHEP) 1304.1151 (PRL) 1211.4580 (PRD) 1207.1344 (PRD) T.C., O.J.P. Éboli, J. Gonzalez Fraile, M.C. Gonzalez

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU à Nagoya U.) Koji TSUMURA (NTU à Nagoya U.) Toyama mini WS 20-21/2/2012 S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009) Outline The

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

ATLAS Discovery Potential of the Standard Model Higgs Boson

ATLAS Discovery Potential of the Standard Model Higgs Boson ATLAS Discovery Potential of the Standard Model Higgs Boson Christian Weiser University of Freiburg (on behalf of the ATLAS Collaboration) 14th Lomonosov Conference on Elementary Particle Physics Moscow,

More information

HIGGS + 2 JET PRODUCTION AT THE LHC

HIGGS + 2 JET PRODUCTION AT THE LHC IGGS + 2 JET PRODUCTION AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany Seminar at KITP, Santa Barbara, March 13, 2008 LC goals Vector boson fusion Measurement of iggs couplings jj production

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Pseudoscalar Higgs boson signatures at the LHC

Pseudoscalar Higgs boson signatures at the LHC Pseudoscalar Higgs boson signatures at the LHC David Englert in collaboration with Elena Accomando, Matthew Chapman, Stefano Moretti International School of Subnuclear Physics Erice, Sicily 2 June, 216

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves Higgs couplings: effects beyond total rates Heidelberg - 1.11.217!! Outline Off-She Higgs Theoretical ingredients New probe to the Higgs portal coupling at LHC WBF 1 TeV: what can we learn from it? Spin

More information

Exotic W + W Z Signals at the LHC

Exotic W + W Z Signals at the LHC Exotic W + W Z Signals at the LHC Jared Evans jaevans@ucdavis.edu w/ M.Luty and S.Chang Department of Physics University of California - Davis WCLHC Evans (UCD) WWZ at LHC April 14, 011 1 / 11 Premise

More information

The Inert Doublet Matter

The Inert Doublet Matter 55 Zakopane, June. 2015 The Inert Doublet Matter Maria Krawczyk University of Warsaw In coll. with I. Ginzburg, K. Kanishev, D.Sokolowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A.

More information

CMS (Higgs) Results. Begoña de la Cruz (CIEMAT, Madrid) APC IFT/UAM (Oct 21st, 2013) On behalf of CMS Collaboration

CMS (Higgs) Results. Begoña de la Cruz (CIEMAT, Madrid) APC IFT/UAM (Oct 21st, 2013) On behalf of CMS Collaboration CMS (Higgs) Results Begoña de la Cruz (CIEMAT, Madrid) On behalf of CMS Collaboration APC 2013 - IFT/UAM (Oct 21st, 2013) Discovery 2 https://twiki.cern.ch/twiki/pub/cmspublic/physicsresultshig/hzz4l_date_animated.gif

More information

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector (University of Hong Kong) Topical Mini-Workshop of the New Physics at the TeraScale @ Tsung-Dao Lee Institute, SJTU Introduction

More information

Directions for BSM physics from Asymptotic Safety

Directions for BSM physics from Asymptotic Safety Bad Honnef- 21.6.2018 Directions for BSM physics from Asymptotic Safety phenomenology connecting theory to data Gudrun Hiller, TU Dortmund q f e DFG FOR 1873 et 1 Asymptotic Safety pheno for cosmology

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012 Koji TSUMURA (NTU Nagoya U.) @ KEK 16-18/2/2012 Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K.

More information

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring,

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring, The iggs Scalar V (φ) V (φ) φ 1 φ 2 φ 1 φ 2 φ = ( φ + φ 0 ) unitary gauge ( 1 2 0 ν + ) P529 Spring, 2013 1 Interactions of Gauge interactions: ZZ, ZZ 2, W + W, W + W 2 ϕ 1 2 ( 0 ν + ) (unitary gauge)

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Higgs Physics, after July 2012

Higgs Physics, after July 2012 Higgs Physics, after July 2012 C.-P. Yuan Michigan State University, USA July 10, 2013 @ IHEP July 4, 2012 Scientists at CERN say they've found a new particle consistent with the Standard Model Higgs boson

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012 Mass degenerate Higgs Hunters explore the 2HDM Howard E. Haber West Coast LHC Theory Meeting @ UC Riverside December 7, 2012 Outline A boson born on the 4 th of July 2012 Properties of the Higgs boson

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Search for the exotic decays of the Higgs boson

Search for the exotic decays of the Higgs boson Search for the exotic decays of the Higgs boson Jehad Mousa, Panos Razis, Aimilios Ioannou, Eleni Irodotou, Dimitra Tsiakkouri, Ioannis Vasilas University of Cyprus HEP 2018 Recent Developments in High

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

Higgs Boson Physics, Part II

Higgs Boson Physics, Part II Higgs Boson Physics, Part II Laura Reina TASI 004, Boulder Outline of Part II What do we know about the Standard Model Higgs boson? indirect bounds on M H from the theoretical consistency of the Standard

More information

Scale invariance and the electroweak symmetry breaking

Scale invariance and the electroweak symmetry breaking Scale invariance and the electroweak symmetry breaking Archil Kobakhidze School of Physics, University of Melbourne R. Foot, A.K., R.R. Volkas, Phys. Lett. B 655,156-161,2007 R. Foot, A.K., K.L. Mcdonald,

More information