Fermionic DM Higgs Portal! An EFT approach

Size: px
Start display at page:

Download "Fermionic DM Higgs Portal! An EFT approach"

Transcription

1 Fermionic DM Higgs Portal An EFT approach Michael A. Fedderke University of Chicago Based on [hep-ph] (MF, Chen, Kolb, Wang) Unlocking the Higgs Portal ACFI, UMass, Amherst May 014

2 01 discovery of (a) ~15GeV Higgs boson natural motivation for exploring Higgs Portal (HP) couplings L H H O New One avenue for particle DM to couple to SM This talk Bottom-up EFT analysis of the allowed parameter space for the lowest dimension scalar and pseudoscalar HP couplings of fermionic WIMP DM in light of recent experimental limits. (See also results in Xiao-Gang He s talk yesterday for scalar DM case) Previous similar work [Djouadi, et al.] [Lopez-Honorez, Schwetz, Zupan] [Greljo, et al.] [De Simone, Giudice, Strumia]

3 Dimension 5 fermionic DM (WIMP) Higgs portal with scalar (CP-even) and pseudoscalar (CP-odd) couplings L = L SM + (i/@ M 0 ) + H H Singlet fermion 1 (Majorana: ) p (1, 1, 0) c c 5 5 i 5 Convenient re-parametrisation L = L SM + (i/@ M 0 ) + 1 H H (cos +sin i 5 ) Good for numerical parameter scan Mixes up suppression scales (NB for judging unitarity bounds) 3

4 Standard lore for WIMP direct detection bounds The `pseudoscalar (C)P-odd H H i 5 coupling is momentum-transfer suppressed = velocity suppressed ( ) for elastic scattering. Only the scalar (C)P-even H H coupling is relevant. Direct detection bounds strong. v 10 6 Pseudoscalar coupling strongly favoured ( / ) However 4

5 after EWSB, L i/@ + 1 apple M 0 hvi Chiral rotation to real-mass basis. Modifies the couplings and mass. cos +sin i 5 cos +sin i 5 hvih + 1 h L i/@ M + 1 hvih + 1 h applecos +sin i 5,. Scalar cos = M 0 M apple cos hvi sin = M Pseudoscalar 0 M 0 M sin M = s M 0 hvi hvi cos + sin 5

6 after EWSB, L i/@ + 1 apple M 0 hvi Chiral rotation to real-mass basis. Modifies the couplings and mass. cos +sin i 5 cos +sin i 5 hvih + 1 h L i/@ M + 1 hvih + 1 h applecos +sin i 5,. Scalar cos = M 0 M apple cos hvi sin = M Pseudoscalar 0 M 0 M sin M = s M 0 hvi hvi cos + sin 6

7 Motivates a parameter scan of the low energy Lagrangian considering both couplings: L i/@ M + 1 hvih + 1 h applecos +sin i 5 For the purposes of low energy phenomenology, need not explicitly account for the rotation: so long as the WIMP DM freezes out after the EW phase transition ( ) don t need to compute relevant observables above EWSB scale. M/T F 0 It is however still important in relating low energy limits to the gauge-invariant EFT operators, and the EFT to some renormalizable model of the HP. 7

8 Motivates a parameter scan of the low energy Lagrangian considering both couplings: L i/@ M + 1 hvih + 1 h applecos +sin i 5 Analysis: WIMP freeze-out used to fix (M, ) parameter space constrained by Invisible Higgs width LUX direct detection bounds 8

9 Annihilation cross-sections Only look at -body decays; 3- and 4-body decays phase-space suppressed. Only tree level. Channels: χ h(k) χ hh h(k) χ f f f(k) + k k h (P ) [hhh] h (P ) [hf f] h(k ) v h(k ) χ v f(k ) χ χ χ ZZ Z ν (k) O( 1 ) χ W + W W ν (k) h (P ) [hzz] µν h (P ) [hw W ] µν χ v Z µ (k ) χ v W +µ (k ) 9

10 Also have O( ) contributions to hh via t- and u- channel diagrams Higher order χ v h(k) - effects are generally small +k k - expect other corrections at same order from neglected operators χ h(k ) We ignore these. (see backup) v In the NR limit ( ) s 4M + M v relevant for freeze-out away from thresholds BR( χχ ab) hh W + W Z 0 Z 0 f f f and resonances. 10

11 Most of the annihilation (except contact) through s- channel Higgs. Scale as h 1 m h/s +(m h h /s) i 1 DM contribution to the Higgs width very important for : M <m h h = MeV Huge compared to SM width s 1TeV 1 Will return to this for constraints 4M m h apple 1 4M m h cos (for ; halved for Majorana) 11

12 Gondolo and Gelmini, Nucl. Phys. B360 (1991) Srednicki, Watkins and Olive, Nucl. Phys. B310 (1988) 693. Kolb and Turner, The Early Universe (Westview),1994. WIMP relic density from Boltzmann Equation ṅ +3Hn = h v Møller i n n EQ Numerical solution, using full thermal averaging (important near resonances and below thresholds) h v Møller i = 8M 4 TK (M/T ) 1 Z 1 4M (s) (s 4M ) p sk 1 ( p s/t ) ds Defining Y = n/s, = 1 self-conjugate DM non-self-conjugate DM Ms 0 c Y 1 Use DM h to fix. Planck =0.1186(31) Planck Collaboration, [hep-ph] 1

13 EFT suppression scale for correct relic abundance 1.0 < hvi 10 Scalar 4 Majorana Majorana < hvi Λ [GeV] cos ξ Ωh = Ωh = cos ξ 0.4 Λ [GeV] Λ [GeV] 0.6 cos ξ Ωh = = M 103 v Pseudo scalar v v =M Now fix the suppression scale at this value. 13

14 EFT suppression scale for correct relic abundance L 1.0 < hvi 3 hv ih + h O hvi 1 1 (H H ) O 3 10 Scalar 4 Majorana Majorana < hvi Λ [GeV] cos ξ Ωh = Ωh = cos ξ 0.4 Λ [GeV] Λ [GeV] 0.6 cos ξ Ωh = = M 103 v Pseudo scalar v v =M Now fix the suppression scale at this value. 14

15 Invisible width constraint Already noted that invisible width SM width Recent limits on Higgs width - Global fits to Higgs data Belanger et. al., [hep-ph] B inv h SM + h apple 95% confidence for fit with SM couplings fixed (floating). - CMS analysis of on-shell vs. off-shell Higgs production and decay h, tot apple 17.4MeV h ZZ llll, 95% confidence. CMS-PAS-HIG and Caola and Melnikov, [hep-ph] 15

16 Resulting limits on the DM mass M & GeV Invisible BR [Belanger, et al.] Couplings fixed to SM Invisible BR [Belanger, et al.] Couplings floating Direct limit [CMS] Majorana (Practically independent of S/PS nature: larger for PS, but less phase-space suppression) 16

17 Direct detection Agrawal et. al., [hep-ph] Spin-independent Higgs mediated t-channel elastic scattering on nucleons Leads to the SI cross-section N SI L X Nuclear matrix element q m q direct detection Le = 1 f N M N µ N X q=u,d,s m h f (N) Tq hvi h qq + 1 [cos +sin i 5 ] hvi h. fn + 9 f (N) TG X q 1 m h apple m q qq [cos +sin i 5 ]. cos + 1 µ N M e.g. Hill, Solon, [hep-ph] Ellis, Ferstl, Olive, hep-ph/ MN 0.33GeV pion scattering 0.30M N 0.8GeV lattice 0km/s 10 3 c WIMP-nucleon reduced mass 17

18 Direct detection Limits from LUX LUX Collaboration, [astro-ph.co] and DMTools (dmtools.brown.edu) cos ξ < hvi Excluded 95% 90% SI /σlux 95% CL UL σ χn cos ξ < hvi Majorana Majorana Excluded 95% 90% SI /σlux 95% CL UL σ χn Ωh = Ωh = Pion scattering matrix element 18

19 Direct detection Limits from LUX LUX Collaboration, [astro-ph.co] and DMTools (dmtools.brown.edu) cos ξ < hvi Excluded 95% 90% SI /σlux 95% CL UL σ χn cos ξ < hvi Majorana Majorana Excluded 95% 90% SI /σlux 95% CL UL σ χn Ωh = Ωh = Lattice matrix element; limits somewhat weaker 19

20 Combined Limits < hvi <M < hvi Majorana Majorana <M < M < M cos ξ cos ξ Ωh = Direct detection constraints LUX Collaboration, [astro-ph.co] Ωh = Higgs width constraints Belanger, et. al [hep-ph] Pion scattering matrix elements 0

21 Combined Limits < hvi <M < hvi Majorana Majorana <M < M < M cos ξ cos ξ Ωh = Direct detection constraints LUX Collaboration, [astro-ph.co] Ωh = Higgs width constraints Belanger, et. al [hep-ph] Lattice matrix elements 1

22 Other limits (I) Indirect detection: fairly weak. Only marginally constraining once (large) astrophysical uncertainties are factored in, and then only for dominantly pseudoscalar coupling. based on Fermi-LAT data Galactic Centre gamma rays.. H H i 5 ~40GeV ~11GeV ~0GeV NFW Einasto =1. NFWc ( ) MF, Kolb, Lin, Wang, [hep-ph]

23 Other limits (II) Direct collider searches via VBF MET (two forward tagging jets and large MET) or mono-x and MET. Have not examined reach in any detail, but expect to be challenging searches due to large SM backgrounds. V h j χ MET q V h χ MET χ V j χ q.. V 3

24 Conclusions Completed a full bottom-up EFT analysis of the scalar and pseudoscalar dimension 5 fermionic Higgs portal EWSB generates a scalar coupling if pure pseudoscalar above EW phase transition NB for direct detection. Scan of low-energy (post-ewsb) parameter space: - All scenarios strongly ruled out by invisible Higgs width (and possibly DD) for DM particles lighter than ~55-56GeV. - Scalar portal always strongly ruled out by direct detection, except near Higgs resonance see also Lopez-Honorez, et. al [hep-ph] - Mostly pseudoscalar portal still allowed by direct detection, with larger scalar admixture for larger mass I.e. the usual lore, but i.t.o. low energy parameters; need to translate into limits on Lagrangian above EW PT Other limits (ID, collider) possible, but expected to be weaker. 4

25

26 BACKUP B1

27 B Annihilation Cross-sections I f (s; M,m 0 )= 1 3 M r 4M s r M s 4M r 1 4m 0 s f (s; M,m 0 ) f (s; M,m 0 ) 1 4 X spins 1 4 Z d M f 8 1 4m Z /s + 1m4 Z /s ZZ = 1 4 s cos 1 4M /s +sin " # 1 m h /s + m h h /s >< >: 1 4m W /s + 1m4 W /s W + W 1 4m f /s 4m f /s f f " 1+m h /s + # m h h /s hh.

28 Annihilation Cross-sections II f (s; M,m 0 )= 1 3 M r 4M s r M s 4M r 1 4m 0 s f (s; M,m 0 ) hh (s; M,m h )= 1 4 s 1+m h /s + 1 m h /s + hm h /s applecos hm h /s 1 4M +sin s + Mhvi cos 3 1 m 1+m h /s h /s + apple m h /s + 8M s cos + m h s hm h /s hm h /s tanh 1 1 m h /s hvi 4 4 apple M s 1 4m h s + hvi4 1 m h 4 1 s tanh 1 + m4 h s 1 apple 1 1 m h /s 4m h s 1 apple 16M 4 s cos 4 + M s + 6m4 h s + 16M s 1 1 m h s 4m h s cos 1 + cos 3M 4 s (s; M,m h ) + 3m4 h s cos 4 q (1 4M /s)(1 4m h /s) B3

29 B4 Effects of the neglected O( ) terms π π ξ 3π 4 π π 4 Ωh = (Λ with H.O.T.) / (Λ without H.O.T.) cos ξ 3π 4 π π 4 Ωh = Without

30 B5 Effects of the neglected O( ) terms π π ξ 3π 4 π π 4 Ωh = (Λ with H.O.T.) / (Λ without H.O.T.) ξ 3π 4 π π 4 Ωh = With

31 Solution for at low mass ( M < M <m h ) Typically get two solutions. 1 h 1 m h/s +(m h h /s) i A + B/ 4 One has (much) smaller than the other. We always take the larger value = more conservative..0 M = 30 GeV ξ = π/ Majorana Ωh / Λ [GeV] B6

32

Beyond Simplified Models

Beyond Simplified Models Pseudoscalar Portal to Dark Matter: Beyond Simplified Models Jose Miguel No King's College London J.M.N. PRD 93 (RC) 031701 (1509.01110) D. Goncalves, P. Machado, J.M.N. 1611.04593 M. Fairbairn, J.M.N.,

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

An update on scalar singlet dark matter

An update on scalar singlet dark matter Pat Scott Department of Physics, McGill University With: Jim Cline, Kimmo Kainulainen & Christoph Weniger (arxiv:1306.4710) Slides available from http://www.physics.mcgill.ca/ patscott What is the scalar

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

FERMION PORTAL DARK MATTER

FERMION PORTAL DARK MATTER FERMION PORTAL DARK MATTER Joshua Berger SLAC UC Davis Theory Seminar! w/ Yang Bai: 1308.0612, 1402.6696 March 10, 2014 1 A HOLE IN THE SM Van Albada et. al. Chandra + Hubble What else can we learn about

More information

Implications of the 125 GeV Higgs for the inert dark matter

Implications of the 125 GeV Higgs for the inert dark matter Implications of the 125 GeV Higgs for the inert dark matter Bogumiła Świeżewska Faculty of Physics, University of Warsaw 26.03.2014 Recontres de Moriond QCD and High Energy Interactions, La Thuile, Italy

More information

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter, March 8, 2017. arxiv:1612.02793, with Anirban Biswas. Aritra Gupta Why Non-Thermal? 1 / 31 The most widely studied

More information

The inert doublet model in light of LHC and XENON

The inert doublet model in light of LHC and XENON The inert doublet model in light of LHC and XENON Sara Rydbeck 24 July 212 Identification of Dark Matter, IDM 212, Chicago 1 The CERN Large Hadron Collider Only discovery so far. If no new strongly interacting

More information

Pseudoscalar-mediated dark matter models: LHC vs cosmology

Pseudoscalar-mediated dark matter models: LHC vs cosmology Pseudoscalar-mediated dark matter models: LHC vs cosmology Based on: S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. G., B. Zaldivar, arxiv:1705.02327 Birmingham, 15/11/2017 LPTHE - Jussieu Outline

More information

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017 Searches for dark matter in ATLAS Shanghai Jiao Tong University Shanghai, 18 May 2017 Dark Matter and Particle Physics Astrophysical evidence for the existence of dark matter! First observed by Fritz Zwicky

More information

arxiv: v1 [hep-ph] 28 Dec 2018

arxiv: v1 [hep-ph] 28 Dec 2018 December 018 arxiv:181.10914v1 [hep-ph] 8 Dec 018 More stringent constraints on the unitarised fermionic dark matter Higgs portal Shyam Balaji and Archil Kobakhidze ARC Centre of xcellence for Particle

More information

Searching for Dark Matter at the LHC

Searching for Dark Matter at the LHC Searching for Dark Matter at the LHC Tongyan Lin KICP/UChicago UCIrvine Seminar February 19, 2014 Dark matter, 2014 WIMP Miracle Weak-scale annihilation cross section gets you in the right ballpark to

More information

Direct Detection Rates of Neutralino WIMP in MSSM

Direct Detection Rates of Neutralino WIMP in MSSM Direct Detection Rates of Neutralino WIMP in MSSM Yeong Gyun Kim a, 1 Takeshi Nihei b, Leszek Roszkowski a, and Roberto Ruiz de Austri c a Department of Physics, Lancaster University, Lancaster LA1 4YB,

More information

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016 Generic Dark Matter Searches @ 13 TeV Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016 Introduction From cosmological observations, 85% of the matter comprised

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Mono-X, Associate Production, and Dijet searches at the LHC

Mono-X, Associate Production, and Dijet searches at the LHC Mono-X, Associate Production, and Dijet searches at the LHC Emily (Millie) McDonald, The University of Melbourne CAASTRO-CoEPP Joint Workshop Melbourne, Australia Jan. 30 - Feb. 1 2017 M. McDonald, University

More information

A realistic model for DM interactions in the neutrino portal paradigm

A realistic model for DM interactions in the neutrino portal paradigm A realistic model for DM interactions in the neutrino portal paradigm José I Illana + Vannia González Macías, José Wudka (UC Riverside) 1 Model 2 Constraints 3 Conclusions JHEP 05 (2016) 171 [160105051]

More information

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Michel H.G. Tytgat Université Libre de Bruxelles Belgium Rencontres de Moriond: EW Interactions and Unified Theories March 2011 There are

More information

Search for Dark Matter in the mono-x* final states with ATLAS

Search for Dark Matter in the mono-x* final states with ATLAS Search for Dark Matter in the mono-x* final states with (on behalf of the Collaboration) Rencontres de Moriond (EW) 08 *: X = jet, Z, W, H Probing Dark Matter (DM) Underlying assumption: DM has also non-gravitational

More information

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab

Collider searches for dark matter. Joachim Kopp. SLAC, October 5, Fermilab Collider searches for dark matter Joachim Kopp SLAC, October 5, 2011 Fermilab based on work done in collaboration with Patrick Fox, Roni Harnik, Yuhsin Tsai Joachim Kopp Collider searches for dark matter

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

THE COANNIHILATION CODEX

THE COANNIHILATION CODEX THE COANNIHILATION CODEX Felix Yu JGU Mainz with Michael Baker, Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, José Zurita (Johannes

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018)

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018) In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: 1712.07126 Jong-Chul Park 2 nd IBS-KIAS Joint Workshop @ High1 January 08 (2018) (Mainly) focusing on Non-relativistic weakly interacting massive

More information

Dark Forces in the Sky: Signals from Z and the Dark Higgs

Dark Forces in the Sky: Signals from Z and the Dark Higgs Dark Forces in the Sky: Signals from Z and the Dark Higgs Nicole Bell The University of Melbourne with Yi Cai & Rebecca Leane arxiv:1605.09382 (JCAP 2016), arxiv:1610.03063 (JCAP 2017) TEVPA 2017 COLUMBUS

More information

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves

Higgs couplings: effects beyond total rates. Heidelberg Dorival Gonçalves Higgs couplings: effects beyond total rates Heidelberg - 1.11.217!! Outline Off-She Higgs Theoretical ingredients New probe to the Higgs portal coupling at LHC WBF 1 TeV: what can we learn from it? Spin

More information

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München Searching for spectral features in the g-ray sky Alejandro Ibarra Technische Universität München Oslo 5 November 2014 Outline Motivation Indirect dark matter searches with gamma-rays. Overcoming backgrounds

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case A cancellation mechanism for dark matter-nucleon interaction: non-abelian case University of Ioannina 31/3/2018 In collaboration with: Christian Gross, Alexandros Karam, Oleg Lebedev, Kyriakos Tamvakis

More information

Dark matter and LHC: complementarities and limitations

Dark matter and LHC: complementarities and limitations Dark matter and LHC: complementarities and limitations,1,2, F. Mahmoudi 1,2,3, A. Arbey 1,2,3, M. Boudaud 4 1 Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574,

More information

Characterizing dark matter model with Higgs portal at the ILC

Characterizing dark matter model with Higgs portal at the ILC Characterizing dark matter model with Higgs portal at the ILC Jinmian Li Korea Institute for Advanced Study May 8th, 217 Collaboration with T. Kamon and P. Ko Pheno 217, University of Pittsburgh Jinmian

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -017/130 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland 08 May 017 (v3, 11 May 017) Searches for

More information

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects

Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects Dark Matter searches in ATLAS: Run 1 results and Run 2 prospects Lashkar Kashif University of Wisconsin Summer School and Workshop on the Standard Model and Beyond Corfu, Greece, September 8, 2015 Outline

More information

Constraints on the Higgs Width

Constraints on the Higgs Width Constraints on the Higgs Width Andrew Whitbeck (Fermilab) On behalf of the CMS collaboratsion!! Americas Workshop on Linear Colliders May 14, 2014 Results shown are from: CMS-PAS-HIG-14-002 Higgs Properties

More information

Searches for low-mass Higgs and dark bosons at BaBar

Searches for low-mass Higgs and dark bosons at BaBar Searches for low-mass Higgs and dark bosons at BaBar Benjamin Oberhof, INFN & Università di Pisa, on behalf of the BaBar Collaboration QCD 2012, 2-6 July 2012, Montpellier, France Outline The BaBar experiment

More information

Probing Dark Matter at the LHC

Probing Dark Matter at the LHC July 15, 2016 PPC2016 1 Probing Dark Matter at the LHC SM SM DM DM Search for production of DM particles from interacting SM particles Models tested at ATLAS assume DM WIMP Infer DM production through

More information

INDIRECT DARK MATTER DETECTION

INDIRECT DARK MATTER DETECTION INDIRECT DARK MATTER DETECTION http://www.mpi-hd.mpg.de/lin/research_dm.en.html Ivone Freire Mota Albuquerque IFUSP Inνisibles School - Durham - July 2013 Outline Lecture 1 1. DM indirect searches 2. DM

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon)

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon) sub-gev Dark Matter Theory Tien-Tien Yu (University o Oregon) The Magniicent CEvNS University o Chicago Nov 2, 2018 WIMP miracle thermal equilibrium WIMP miracle reeze-out Ωh 2 10 37 cm 2 σ ann v 0.1 P.

More information

Search for Dark Ma-er and Large Extra Dimensions in the jets+met Final State in Proton-Proton Collisions at s = 13 TeV

Search for Dark Ma-er and Large Extra Dimensions in the jets+met Final State in Proton-Proton Collisions at s = 13 TeV Search for Dark Ma-er and Large Extra Dimensions in the jets+met Final State in Proton-Proton Collisions at s = 13 TeV Emine Gurpinar (Texas Tech University) on behalf of the CMS Collaboration PPC2017,

More information

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai

Constraining total width of Higgs boson at the LHC. Kajari Mazumdar Tata Institute of Fundamental Research Mumbai Constraining total width of Higgs boson at the LHC Kajari Mazumdar Tata Institute of Fundamental Research Mumbai DAE-BRNS symposium, IIT, Guwahati December 10, 2014 After the discovery in 2012, the principal

More information

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G.

pmssm Dark Matter Searches On Ice! Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. pmssm Dark Matter Searches On Ice! χ ~ 0 1 Randy Cotta (Stanford/SLAC) In collaboration with: K.T.K. Howe (Stanford) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 1104.XXXX (next week or bust.) In case

More information

Search for Invisible Decay of Higgs boson at LHC

Search for Invisible Decay of Higgs boson at LHC Search for Invisible Decay of Higgs boson at LHC Kajari Mazumdar Tata Institute of Fundamental Research Mumbai DHEP seminar, TIFR, Mumbai 22.4.2014 Plan of the talk Preliminaries Status of measurements

More information

Dark matter searches and prospects at the ATLAS experiment

Dark matter searches and prospects at the ATLAS experiment Dark matter searches and prospects at the ATLAS experiment Wendy Taylor (York University) for the ATLAS Collaboration TeVPA 2017 Columbus, Ohio, USA August 7-11, 2017 Dark Matter at ATLAS Use 13 TeV proton-proton

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Two-body currents in WIMP nucleus scattering

Two-body currents in WIMP nucleus scattering Two-body currents in WIMP nucleus scattering Martin Hoferichter Institute for Nuclear Theory University of Washington INT program on Nuclear ab initio Theories and Neutrino Physics Seattle, March 16, 2018

More information

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003 WIMPs and superwimps Jonathan Feng UC Irvine MIT Particle Theory Seminar 17 March 2003 Dark Matter The dawn (mid-morning?) of precision cosmology: Ω DM = 0.23 ± 0.04 Ω total = 1.02 ± 0.02 Ω baryon = 0.044

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

Pseudoscalar portals into the dark sector

Pseudoscalar portals into the dark sector Pseudoscalar portals into the dark sector Felix Kahlhoefer CERN-EPFL-Korea Theory Institute New Physics at the Intensity Frontier 20 February 3 March 2017 CERN Outline > Introduction: Pseudoscalars and

More information

Explore DM Blind Spots with Gravitational Wave

Explore DM Blind Spots with Gravitational Wave Explore DM Blind Spots with Gravitational Wave University of Massachusetts Amherst F. P. Huang, JHY, 1704.0401 BLV 017 May 16, 017 Motivation Higgs & GW discoveries, evidence of Dark Matter, connection

More information

You can hide but you have to run:

You can hide but you have to run: You can hide but you have to run: direct detection with vector mediators Francesco D Eramo CERN Theory Institute - 28 July 2016 LHC vs Direct Detection LHC pp! Energy Scale p j s = 13 TeV Energy scales:

More information

HIGGS-PORTAL DARK MATTER AT THE LHC

HIGGS-PORTAL DARK MATTER AT THE LHC HIGGS-PORTAL DARK MATTER AT THE LHC based on JHEP 159 (215) 15 wit Ayres Freitas and Jure Zupan Susanne Westoff!!!!!! Universität Heideberg ABHM researc group meeting November 25, 215 Universität Bonn

More information

Strongly Coupled Dark Matter at the LHC

Strongly Coupled Dark Matter at the LHC Strongly Coupled Dark Matter at the LHC Graham Kribs University of Oregon Appelquist et al (LSD Collaboration): 1402.6656; 1503.04203; 1503.04205 GK, Adam Martin, Ethan Neil, Bryan Ostdiek, Tom Tong [in

More information

Dark Matter Searches in CMS. Ashok Kumar Delhi University - Delhi

Dark Matter Searches in CMS. Ashok Kumar Delhi University - Delhi Dark Matter Searches in CMS Ashok Kumar Delhi University - Delhi 28th Rencontres de Blois, Particle Physics and Cosmology! May 29 June 03, 2016 Dark Matter at LHC Benchmark Models Results at 8 TeV Mono-photon

More information

arxiv: v1 [hep-ph] 8 Nov 2018

arxiv: v1 [hep-ph] 8 Nov 2018 IPMU18-18 Light Fermionic WIMP Dark Matter with Light Scalar Mediator arxiv:1811.3292v1 [hep-ph] 8 Nov 218 Shigeki Matsumoto (a), Yue-Lin Sming Tsai (b) and Po-Yan Tseng (a) (a) Kavli IPMU (WPI), UTIAS,

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

Highlights of Higgs Physics at LEP

Highlights of Higgs Physics at LEP hep-ph/43 February 4 Highlights of Higgs Physics at André Sopczak Lancaster University arxiv:hep-ph/43 v Feb 4 Abstract Final results from the combined data of the four experiments AH,, L3 and OPAL on

More information

THE STATUS OF NEUTRALINO DARK MATTER

THE STATUS OF NEUTRALINO DARK MATTER THE STATUS OF NEUTRALINO DARK MATTER BIBHUSHAN SHAKYA CORNELL UNIVERSITY CETUP 2013 Workshop June 25, 2013 Based on hep-ph 1208.0833, 1107.5048 with Maxim Perelstein, hep-ph 1209.2427 The favorite / most

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Right-Handed Neutrinos as the Origin of the Electroweak Scale Right-Handed Neutrinos as the Origin of the Electroweak Scale Hooman Davoudiasl HET Group, Brookhaven National Laboratory Based on: H. D., I. Lewis, arxiv:1404.6260 [hep-ph] Origin of Mass 2014, CP 3 Origins,

More information

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Production mechanisms for kev sterile neutrino dark matter in the Early Universe Production mechanisms for kev sterile neutrino dark matter in the Early Universe based on JCAP06 (2015) 011, JCAP04 (2016) 003 & 1509.01289 in collaboration with J. König, A. Merle and A. Schneider Maximilian

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

The WIMPless Miracle and the DAMA Puzzle

The WIMPless Miracle and the DAMA Puzzle The WIMPless Miracle and the DAMA Puzzle Jason Kumar University of Hawaii w/ Jonathan Feng, John Learned and Louis Strigari (0803.4196,0806.3746,0808.4151) Relic Density matter in early universe in thermal

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

ATLAS Missing Energy Signatures and DM Effective Field Theories

ATLAS Missing Energy Signatures and DM Effective Field Theories ATLAS Missing Energy Signatures and DM Effective Field Theories Theoretical Perspectives on New Physics at the Intensity Frontier, Victoria, Canada James D Pearce, University of Victoria Sept 11, 014 1

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge MSSM scenario Sho IWAMOTO 7 Nov. 2016 HEP phenomenology joint Cavendish DAMTP seminar @ U. Cambridge Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) The

More information

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT Felix Yu Fermilab Americas Workshop on Linear Colliders, Fermilab May 14, 2014 Outline Motivating direct Higgs width measurement CMS implementation of

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

arxiv: v1 [hep-ph] 19 Jan 2015

arxiv: v1 [hep-ph] 19 Jan 2015 Universe in the light of LHC M. Krawczyk, M. Matej, D. Sokołowska, B. Świeżewska Faculty of Physics, University of Warsaw Pasteura 5, 02-093 Warsaw, Poland December 30, 2014 arxiv:1501.04529v1 [hep-ph]

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

Measuring the Higgs Quantum Numbers

Measuring the Higgs Quantum Numbers Measuring the Higgs Quantum Numbers to appear on hep/ph next Wednesday IMPRS seminar 3.. Dorival Gonçalves Netto in collaboration with C. Englert (Durham U.), K. Mawatari (Vrije U. Brussel) & T. Plehn

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

arxiv: v4 [hep-ph] 21 Dec 2016

arxiv: v4 [hep-ph] 21 Dec 2016 Fermionic Dark Matter through a Light Pseudoscalar Portal: Hints from the DAMA Results Kwei-Chou Yang 1, 1 Department of Physics and Center for High Energy Physics, Chung Yuan Christian University, Taoyuan

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Prospects and Blind Spots for Neutralino Dark Matter

Prospects and Blind Spots for Neutralino Dark Matter Prospects and Blind Spots for Neutralino Dark Matter Josh Ruderman October 6 GGI 01 Cliff Cheung, Lawrence Hall, David Pinner, JTR 111.xxxx ] WIMP-Nucleon Cross Section [cm 10 10 10 10 10 10-39 -40-41

More information

The Inert Doublet Matter

The Inert Doublet Matter 55 Zakopane, June. 2015 The Inert Doublet Matter Maria Krawczyk University of Warsaw In coll. with I. Ginzburg, K. Kanishev, D.Sokolowska, B. Świeżewska, G. Gil, P.Chankowski, M. Matej, N. Darvishi, A.

More information

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) MSSM scenario Sho IWAMOTO 15 Sep. 2016 Seminar @ Osaka University Based on [1608.00283] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine) The Standard Model of Particle Physics

More information

Natural explanation for 130 GeV photon line within vector boson dark matter model

Natural explanation for 130 GeV photon line within vector boson dark matter model Natural explanation for 130 GeV photon line within vector boson dark matter model Yasaman Farzan IPM, TEHRAN Plan of talk Direct and indirect dark matter searches 130 or 135 GeV line in FermiLAT data Challenges

More information

Dark Matter in ATLAS

Dark Matter in ATLAS Dark Matter in ATLAS Silvia Resconi INFN Milano (on behalf of the ATLAS Collaboration) Ordinary Matter Dark Matter Dark Energy Rencontre de Moriond: QCD and High Energy Interactions 21st March 2016 Outline

More information

Mass Reconstruction Techniques for Resonances in W ± W ± Scattering

Mass Reconstruction Techniques for Resonances in W ± W ± Scattering Mass Reconstruction Techniques for Resonances in W ± W ± Scattering Stefanie Todt (stefanie.todt@tu-dresden.de) Institut fuer Kern- und Teilchenphysik, TU Dresden DPG Wuppertal March 11, 2015 bluu Vector

More information

CMS Higgs Results Adi Bornheim Caltech

CMS Higgs Results Adi Bornheim Caltech CMS Higgs Results Adi Bornheim Caltech 06.04.2014 1 A brief history of recent times W & Z Boson t-quark H Boson 1964 1974 1984 1994 2004 2014 Peter Higgs This talk : Summary of 29 CMS publications and

More information

SEARCH FOR INVISIBLE DECAY MODES OF THE HIGGS BOSON WITH THE ATLAS DETECTOR

SEARCH FOR INVISIBLE DECAY MODES OF THE HIGGS BOSON WITH THE ATLAS DETECTOR SEARCH FOR INVISIBLE DECAY MODES OF THE HIGGS BOSON WITH THE ATLAS DETECTOR Monica Trovatelli (University of Victoria) on behalf of the ATLAS Collaboration HIGGS INVISIBLE DECAY SEARCHES: WHY? Standard

More information

Constraints on Darkon Scalar Dark Matter From Direct Experimental Searches

Constraints on Darkon Scalar Dark Matter From Direct Experimental Searches Constraints on arkon Scalar ark Matter From irect Experimental Searches Based on PhysRev.79.023521 (arxiv:0811.0658 [hep-ph]) Ho-Chin Tsai National Taiwan University in collaboration with Xiao-Gang He,

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Measurements of the Higgs Boson at the LHC and Tevatron

Measurements of the Higgs Boson at the LHC and Tevatron Measurements of the Higgs Boson at the LHC and Tevatron Somnath Choudhury (for the ATLAS, CMS, DØ and CDF collaborations) 44 th International Symposium on Multiparticle Dynamics 8 12 September 2014, Bologna

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Gauged U(1) clockwork

Gauged U(1) clockwork Gauged U(1) clockwork Hyun Min Lee Chung-Ang University, Korea Based on arxiv: 1708.03564 Workshop on the Standard Model and Beyond Corfu, Greece, Sept 2-10, 2017. Outline Introduction & motivation Gauged

More information

Introducing SModelS - with an application to light neutralino DM

Introducing SModelS - with an application to light neutralino DM Hi! Introducing SModelS - with an application to light neutralino DM Suchita Kulkarni (LPSC, Grenoble) based on: 1) work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml 2)

More information

Searches for dark matter at CMS and ATLAS

Searches for dark matter at CMS and ATLAS Searches for dark matter at CMS and ATLAS K. Bierwagen Johannes Gutenberg University Mainz On behalf of the ATLAS and CMS Collaboration March 20, 2018 Introduction Astrophysical observations point to the

More information

Discovery searches for light new physics with BaBar

Discovery searches for light new physics with BaBar SLAC-PUB-1548 Discovery searches for light new physics with BaBar Neus Lopez-March BABAR Collaboration E-mail: neus.lopezmarch@epfl.ch The BABAR experiment collected large samples of events during the

More information

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting DarkSUSY Joakim Edsjö edsjo@fysik.su.se With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda APS Meeting 160830 Ways to search for dark matter Accelerator searches LHC Rare

More information

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015 UCRHEP-T555 July 015 Stable or Unstable Light Dark Matter arxiv:1507.07609v1 [hep-ph] 7 Jul 015 Ernest Ma 1, M. V. N. Murthy, and G. Rajasekaran,3 1 Department of Physics and Astronomy, University of California,

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information