OPTIMUM ANALOG RECEIVE FILTERS FOR DETECTION AND INFERENCE UNDER A SAMPLING RATE CONSTRAINT

Size: px
Start display at page:

Download "OPTIMUM ANALOG RECEIVE FILTERS FOR DETECTION AND INFERENCE UNDER A SAMPLING RATE CONSTRAINT"

Transcription

1 04 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) OPTIMUM AALOG RECEIVE FILTERS FOR DETECTIO AD IFERECE UDER A SAMPLIG RATE COSTRAIT Manuel Stein, Andreas Lenz, Amine Mezghani, and Josef A. ossek Institute for Circuit Theory and Signal Processing Technische Universität München, Munich, Germany ABSTRACT The problem of optimum analog receive filtering for digital signal detection and parameter estimation is considered. Here the case of a signal source with bandwidth B t and a receiver with fixed sampling rate f s is discussed under the assumption that B t >f s. We investigate the impact of adjusting the receive bandwidth B r of the analog pre-filter, which is applied prior to the sampler, with respect to the deflection coefficient or the Fisher information measure. This reveals that the design rule B r <f s, known as the sampling theorem, does not necessarily lead to optimum system performance. Studying the two analytical information measures under a fix sampling rate f s and an arbitrary choice of B r, we provide an example where receive setups with B r >f s achieve higher detection and parameter estimation performance. Index Terms analog filtering, detection theory, estimation theory, sub-yquist sampling, satellite-based positioning. ITRODUCTIO The design of future mobile signal processing systems becomes challenging as it asks for high performance under severe cost, power and complexity constraints. In particular analog-to-digital conversion (ADC) turns out to be a bottleneck for the design of energy efficient receive systems []. Especially, when signals of high bandwidth have to be received and processed, the complexity of the ADC has to be taken into consideration. In such cases the well-known sampling theorem [ 4], which provides a sufficient condition for perfect signal reconstruction, guides the engineer s decision to increase the sampling rate along with the bandwidth of the analog pre-filter in order to enhance system performance. While the analog filter is not critical with respect to runtime complexity, the high ADC rate makes this option unattractive. However, many signal processing tasks do not require full signal reconstruction and therefore the sampling theorem is not necessarily the right design rule when heading for an optimum trade-off between system complexity and performance. The authors gratefully acknowledge the German Federal Ministry of Economics and Technology for supporting this work with grant 50A0. Contact authors: {manuel.stein, josef.a.nossek}@tum.de The works concerned with compressed sensing [5 7] show that signal processing is in general possible with random sub- yquist sampling, while [8] explores the sampling strategy which maximizes channel capacity. In contrast the discussion here focuses on performance gains for signal detection and estimation problems which can be attained within the classical sampling framework by shaping signal aliasing through the analog pre-filter. Deriving analytical characterizations of detection and estimation theoretic measures under sub-yquist sampling, we analyze the optimum bandwidth of the analog pre-filter under a fixed sampling rate. The results show that for example satellite-based navigation receivers (GPS, Galileo, etc.) which violate the sampling theorem have the potential to attain higher performance with the same sampling rate as receivers which follow the traditional filter design.. SYSTEM MODEL.. Analog Transmit and Receive Signal For the discussion, we assume a periodic transmitter x(t) R x(t) m b mod (m,m) ğ(t mt c ), () where b {, } M is a sequence of M binary symbols, each of duration T c, mod ( ) is the modulo-operation and ğ(t) is a pulse with one-sided bandwidth B t. The receive sensor y(t) γ x(t τ)+ η(t) () attains a copy of the transmit signal x(t), attenuated by γ R and delayed by τ R. Thermal noise and possible interference are taken into account within the receive model by an additive random signal η(t). During the following pages we will approximate η(t) by a white and wide-sense stationary Gaussian random process with power spectral density 0, i.e. r(t) η(λ) η(λ t)dλ 0 δ(t) t /4/$ IEEE 846

2 .. Analog Pre-Filtering and Sampling For further processing the receive signal is band-limited by an ideal analog low-pass filter h(t; B r ) with one-sided bandwidth B r, i.e. if ω πb r H(ω; B r ) 0 else, where H(ω; B r ) F{h(t; B r )} with F{ } being the Fourier-transform. Consequently, the analog sampler input is y(t) y(t) h(t; B r )γx(t τ)+η(t). (3) For one signal period MT c the analog signal is sampled at a rate of f s T s, resulting in a digital block signal model with To T s samples, where y γx(τ)+η, x(τ) x( τ) x(t s τ)... x(( )T s τ) T R η η(0) η(t s )... η(( )T s ) T R y y(0) y(t s )... y(( )T s ) T R..3. oise Properties The filtered noise process η(t) is in general no longer white as the autocorrelation function is given by r(t) B r 0 sinc(b r t), such that the entries of the filtered noise covariance matrix R E ηη T are given by R ij B r 0 sinc(b r T s i j ). 3. DETECTIO AD ESTIMATIO PROBLEMS With the defined system model we consider two basic problems of statistical signal processing, summarized here briefly. of the maximum-likelihood detector which decides for H if p(y H ) >p(y H 0 ), is given by [9] P e Q γ x T (τ)r x(τ) Q D(τ,Br ), where D(τ,B r ) is referred to as deflection coefficient. With the Q-function Q( ) being a monotonically decreasing function, the optimum receiver setup B D r (τ) minimizing the errorprobability P e is 3.. Estimation Problem B D r (τ) arg max B r R + D(τ,B r). Estimation is concerned with the inference of an unknown signal parameter from a noisy receive signal, like for example the time-delay τ. Under the assumption that γ is a constant and τ is unknown but deterministic, the optimum unbiased estimator is the maximum likelihood estimator [0] ˆτ ML (y) arg max p(y; τ). τ R As this estimator is asymptotically efficient for the considered system model, its performance with sufficiently large is equal to the Cramér-Rao lower bound (CRLB) [0] Var ˆτ ML (y) CRLB(τ,B r ) F (τ,b r ), where the Fisher information measure is defined by F (τ,b r ) Y ln p(y; τ) p(y; τ) dτ γ xt (τ) R x(τ). The receiver setup B E r (τ) minimizing Var ˆτ ML (y) is 3.. Detection Problem Given the digital receive signal y, detection is concerned with distinguishing between two possible receive situations H 0 : H : y η y γx(τ)+η, i.e. to determine if the signal source x(t) is active or inactive while the parameters γ and τ are known constants. Under the assumption that both receive situations occur with equal probability, i.e. P (H 0 )P (H )0.5, the error-probability P e P (H 0 H )P (H )+P (H H 0 )P (H 0 ) B E r (τ) arg max B r R + F (τ,b r). 4. COMPACT AALYTIC PERFORMACE CHARACTERIZATIO To attain compact analytical expressions without inversion of large matrices, frequency domain characterizations of the information measures D(τ,B r ) and F (τ,b r ) are derived. Using the fact that x(t) is periodic with ω 0 π, x(t) k Xe j kω0t k x k e j kω0t, 847

3 where and X(ω) x(t)e j ωt dt (4) the sampled signal derivative is given by x[n] j(kω 0 lω s ) k l x k X, with X being the Fourier transform (4) of the signal x(t) evaluated at the discrete frequency point kω 0. ote that due to the signal model (), () and (3) XBĞ(kω 0)H(kω 0 ; B r ), with B being the coefficients of the discrete Fourier transform of the binary sequence b. Defining the spectrum of the sampled signal X (kω 0 ; τ) l X(kω 0 lω s )e j(kω0 lωs)τ, with ω s π T s, the signal samples with delay can be written x[n] k k k Xe j kω0(nts τ) Xe j kω0τ e j kn π l X(kω 0 lω s )e j(kω0 lωs)τ e j kn π x k(τ)e j kn π, (5) where k ψ k (τ) Ψ(kω 0 ; τ) X(kω 0 lω s )e j(kω0 lωs)τ e j kn π j kω 0 x k(τ)+ ψ k (τ) l e j kn π, j lω s X(kω 0 lω s )e j(kω0 lωs)τ. Then, with the diagonal matrix Σ kk j ω 0 +k and the vector ψ(τ) ψ (τ) ψ +(τ)... ψ (τ) T C, the signal derivative in vector notation can be written x(τ) W Σ x (τ)+ ψ(τ). ote that for large the noise covariance matrix [] R W ΩW H, where the entries of the diagonal eigenvalue matrix are Ω kk R T s +k ω 0, k where it was used that ω 0 T s πts πω0 ω s π and e j kn π e j(k l)n π, l Z. A modified version of the inverse discrete Fourier transformation matrix W nk e jπ n +k, with k, n,..., and (5) allows to write x(τ) W x (τ), where the Fourier coefficient vector is defined x (τ) x (τ) x +(τ)... T x (τ) C. Accordingly, with ψ k (τ) l j lω s X(kω 0 lω s )e j(kω0 lωs)τ, with the sampled noise power spectral density R(kω 0 lω s ). l This allows to write the deflection coefficient D(τ,B r )γ W x (τ) H W Ω W H W x (τ) γ k X (kω 0 ; τ) and the Fisher information measure F (τ,b r )γ Σ x (τ)+ ψ(τ) H Ω Σ x (τ)+ ψ(τ) γ k X (kω 0 ; τ) (6) + Ψ(kω 0; τ) R kω 0 Im {X (kω 0 ; τ)ψ(kω 0 ; τ)} R. (7) 848

4 4.. Expected Performance Measures The information measures (6) and (7) are dependent on the specific choice of the binary sequence b. Since b is in general a white random sequence, i.e. if i j [b i b j ] (8) 0 else, an average performance characterization, independent of b, is needed. To this end, the expected informations measures D(τ,B r ) [D(τ,B r )] 5. OPTIMUM AALOG FILTER BADWIDTH To visualize the gains with optimized bandwidth B r, we assume M 03, a rectangular pulse ğ(t), f c T c.03 Mhz (GPS C/A L), MT c and τ Tc. The sampling rate is f s.5f c and the filter bandwidth B r α fs with α R +. For each α, the performance is evaluated and normalized to a reference system operating at B r fs, i.e. α. Fig. shows the detection performance with maximum at α.3 and Fig. shows the estimation performance which attains its maximum at α.40. We notice that here the performance hardly depends on the sampling time τ. and γ k F (τ,b r ) [F (τ,b r )] γ k + E b Ψ(kω0 ; τ) R X (kω 0 ; τ) X (kω 0 ; τ) R + kω 0 Im { [X (kω 0 ; τ)ψ(kω 0 ; τ)]} are introduced. From (8) it follows that (9) (0) Tc α)/ D( ; fs ) Tc D( ; fs α Fig.. Detection performance versus filter bandwidth B r [B(kω 0 lω s )B (kω 0 lω s )] M I(l, m), where the indicator function is defined l m if I(l, m) M 0 else. ω s ω 0 Z Therefore, the expected values in (9) and (0) can be written F ( Tc ; fs α)/ F ( Tc ; fs ). X (kω 0 ; τ) M Ψ(kω0 ; τ) M [X (kω 0 ; τ)ψ(kω 0 ; τ)] M with l m l m l m ζ(l, m; τ) lmω sζ(l, m; τ) j lω s ζ(l, m; τ) ζ(l, m; τ) I(l, m)e j(l m)ωsτ G(kω 0 lω s )G (kω 0 mω s ), where G(ω) is the Fourier transform of the band-limited pulse g(t) ğ(t) h(t; B r ) α Fig.. Estimation performance versus filter bandwidth B r 6. COCLUSIO Investigation of the behavior of detection and estimation performance under sub-yquist sampling has shown that the performance of signal processing systems with a sampling rate constraint can be significantly increased by adjusting the analog pre-filter h(t; B r ). Interestingly, if a broadband transmit signal of bandwidth B t is received under a sampling rate constraint B t >f s, the optimum bandwidth of the analog receive filter B r lies above the aliasing-free region B r <f s. 849

5 7. REFERECES [] R. H. Walden, Analog-to-digital converter survey and analysis, IEEE J. Sel. Areas Commun., vol. 7, no. 4, pp , Apr [] H. yquist, Certain topics in telegraph transmission theory, Trans. AIEE, vol. 47, pp , Apr. 98. [3] C. E. Shannon, Communication in the Presence of oise, Proc. IRE, vol. 37, no., pp. 0, 949. [4] H. D. Luke, The origins of the sampling theorem, IEEE Commun. Mag., vol. 37, no. 4, pp.06 08, Apr [5] E. J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, vol. 5, no., pp , Feb [6] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 5, no. 4, pp , Apr [7] M. A. Davenport, P.T. Boufounos, M. B. Wakin, R. G. Baraniuk, Signal Processing With Compressive Measurements, IEEE J. Sel. Topics Signal Process., vol. 4, no., pp , Apr. 00. [8] C. Yuxin, Y.C. Eldar, A. J. Goldsmith, Shannon Meets yquist: Capacity of Sampled Gaussian Channels, IEEE Trans. Inf. Theory, vol. 59, no. 8, pp , Aug. 03 [9] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Upper Saddler River, J: Pretice Hall, 998. [0] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddler River, J: Pretice Hall, 993. [] U. Grenander, G. Szegö, Toeplitz forms and their applications. Berkeley, CA: Univ. of California Press,

CHANNEL parameter estimation enjoys significant attention

CHANNEL parameter estimation enjoys significant attention 17 5th European Signal Processing Conference (EUSIPCO Analog Transmit Signal Optimization for Undersampled Delay-Doppler Estimation Andreas Lenz, Manuel S. Stein, A. Lee Swindlehurst Institute for Communications

More information

Information-Preserving Transformations for Signal Parameter Estimation

Information-Preserving Transformations for Signal Parameter Estimation 866 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 7, JULY 2014 Information-Preserving Transformations for Signal Parameter Estimation Manuel Stein, Mario Castañeda, Amine Mezghani, and Josef A. Nossek Abstract

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

On the Delay-Doppler Tracking Error for Sub-Nyquist Satellite-Based Synchronization

On the Delay-Doppler Tracking Error for Sub-Nyquist Satellite-Based Synchronization On the Delay-Doppler Tracking Error for Sub-Nyquist Satellite-Based Synchronization Manuel S. Stein, Andreas Lenz, A. Lee Swindlehurst Mathematics Department, Vrije Universiteit Brussel, Belgium Institute

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Optimisation of Pseudolite Pulsing Scheme for Participative & Non-Participative Receivers

Optimisation of Pseudolite Pulsing Scheme for Participative & Non-Participative Receivers Optimisation of Pseudolite Pulsing Scheme for Participative & Non-Participative Receivers Jean-Baptiste Gigant A Thesis submitted for the Degree of Master Degree Institute for Communications and Navigation

More information

Lecture 2. Fading Channel

Lecture 2. Fading Channel 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received

More information

Channel Capacity under General Nonuniform Sampling

Channel Capacity under General Nonuniform Sampling 202 IEEE International Symposium on Information Theory Proceedings Channel Capacity under General Nonuniform Sampling Yuxin Chen EE, Stanford University Email: yxchen@stanford.edu Yonina C. Eldar EE, Technion

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Athina P. Petropulu Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey Acknowledgments Shunqiao

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #46 Prof. Young-Han Kim Thursday, June 5, 04 Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei). Discrete-time Wiener process. Let Z n, n 0 be a discrete time white

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet NAME: December Digital Signal Processing I Final Exam Fall Cover Sheet Test Duration: minutes. Open Book but Closed Notes. Three 8.5 x crib sheets allowed Calculators NOT allowed. This test contains four

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL T F T I G E O R G A I N S T I T U T E O H E O F E A L P R O G R ESS S A N D 1 8 8 5 S E R V L O G Y I C E E C H N O Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak

More information

SIGNALS with sparse representations can be recovered

SIGNALS with sparse representations can be recovered IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1497 Cramér Rao Bound for Sparse Signals Fitting the Low-Rank Model with Small Number of Parameters Mahdi Shaghaghi, Student Member, IEEE,

More information

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D.

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D. COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION Aditya K Jagannatham and Bhaskar D Rao University of California, SanDiego 9500 Gilman Drive, La Jolla, CA 92093-0407

More information

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg FBMC/OQAM transceivers for 5G mobile communication systems François Rottenberg Modulation Wikipedia definition: Process of varying one or more properties of a periodic waveform, called the carrier signal,

More information

Co-Prime Arrays and Difference Set Analysis

Co-Prime Arrays and Difference Set Analysis 7 5th European Signal Processing Conference (EUSIPCO Co-Prime Arrays and Difference Set Analysis Usham V. Dias and Seshan Srirangarajan Department of Electrical Engineering Bharti School of Telecommunication

More information

Cooperative Communication with Feedback via Stochastic Approximation

Cooperative Communication with Feedback via Stochastic Approximation Cooperative Communication with Feedback via Stochastic Approximation Utsaw Kumar J Nicholas Laneman and Vijay Gupta Department of Electrical Engineering University of Notre Dame Email: {ukumar jnl vgupta}@ndedu

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Minimax MMSE Estimator for Sparse System

Minimax MMSE Estimator for Sparse System Proceedings of the World Congress on Engineering and Computer Science 22 Vol I WCE 22, October 24-26, 22, San Francisco, USA Minimax MMSE Estimator for Sparse System Hongqing Liu, Mandar Chitre Abstract

More information

Modulation & Coding for the Gaussian Channel

Modulation & Coding for the Gaussian Channel Modulation & Coding for the Gaussian Channel Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5

Signal and systems. Linear Systems. Luigi Palopoli. Signal and systems p. 1/5 Signal and systems p. 1/5 Signal and systems Linear Systems Luigi Palopoli palopoli@dit.unitn.it Wrap-Up Signal and systems p. 2/5 Signal and systems p. 3/5 Fourier Series We have see that is a signal

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrier frequency estimation ELEC-E54 Signal processing for communications Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Shift-Variance and Nonstationarity of Generalized Sampling-Reconstruction Processes

Shift-Variance and Nonstationarity of Generalized Sampling-Reconstruction Processes Shift-Variance and Nonstationarity of Generalized Sampling-Reconstruction Processes Runyi Yu Eastern Mediterranean University Gazimagusa, North Cyprus Web: faraday.ee.emu.edu.tr/yu Emails: runyi.yu@emu.edu.tr

More information

Spectra (2A) Young Won Lim 11/8/12

Spectra (2A) Young Won Lim 11/8/12 Spectra (A) /8/ Copyright (c) 0 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

Sensors. Chapter Signal Conditioning

Sensors. Chapter Signal Conditioning Chapter 2 Sensors his chapter, yet to be written, gives an overview of sensor technology with emphasis on how to model sensors. 2. Signal Conditioning Sensors convert physical measurements into data. Invariably,

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Projects in Wireless Communication Lecture 1

Projects in Wireless Communication Lecture 1 Projects in Wireless Communication Lecture 1 Fredrik Tufvesson/Fredrik Rusek Department of Electrical and Information Technology Lund University, Sweden Lund, Sept 2018 Outline Introduction to the course

More information

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems Quantization and Compensation in Sampled Interleaved Multi-Channel Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing

Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing Multiplicative and Additive Perturbation Effects on the Recovery of Sparse Signals on the Sphere using Compressed Sensing ibeltal F. Alem, Daniel H. Chae, and Rodney A. Kennedy The Australian National

More information

Copyright license. Exchanging Information with the Stars. The goal. Some challenges

Copyright license. Exchanging Information with the Stars. The goal. Some challenges Copyright license Exchanging Information with the Stars David G Messerschmitt Department of Electrical Engineering and Computer Sciences University of California at Berkeley messer@eecs.berkeley.edu Talk

More information

Multichannel Sampling of Signals with Finite. Rate of Innovation

Multichannel Sampling of Signals with Finite. Rate of Innovation Multichannel Sampling of Signals with Finite 1 Rate of Innovation Hojjat Akhondi Asl, Pier Luigi Dragotti and Loic Baboulaz EDICS: DSP-TFSR, DSP-SAMP. Abstract In this paper we present a possible extension

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Lecture 15: Thu Feb 28, 2019

Lecture 15: Thu Feb 28, 2019 Lecture 15: Thu Feb 28, 2019 Announce: HW5 posted Lecture: The AWGN waveform channel Projecting temporally AWGN leads to spatially AWGN sufficiency of projection: irrelevancy theorem in waveform AWGN:

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Signal Parameter Estimation with 1-bit ADC

Signal Parameter Estimation with 1-bit ADC Institute for Circuit Theory and Signal Processing Technische Universität München Signal Parameter Estimation with 1-bit ADC Performance Bounds, Methods and System Design Manuel S. Stein Vollständiger

More information

Detection & Estimation Lecture 1

Detection & Estimation Lecture 1 Detection & Estimation Lecture 1 Intro, MVUE, CRLB Xiliang Luo General Course Information Textbooks & References Fundamentals of Statistical Signal Processing: Estimation Theory/Detection Theory, Steven

More information

EE 574 Detection and Estimation Theory Lecture Presentation 8

EE 574 Detection and Estimation Theory Lecture Presentation 8 Lecture Presentation 8 Aykut HOCANIN Dept. of Electrical and Electronic Engineering 1/14 Chapter 3: Representation of Random Processes 3.2 Deterministic Functions:Orthogonal Representations For a finite-energy

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Digital Modulation 1

Digital Modulation 1 Digital Modulation 1 Lecture Notes Ingmar Land and Bernard H. Fleury Navigation and Communications () Department of Electronic Systems Aalborg University, DK Version: February 5, 27 i Contents I Basic

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE. Leon Cohen

GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE. Leon Cohen GENERALIZATION OF CAMPBELL S THEOREM TO NONSTATIONARY NOISE Leon Cohen City University of New York, Hunter College, 695 Park Ave, New York NY 10056, USA ABSTRACT Campbell s theorem is a fundamental result

More information

CHOCS: A Framework for Estimating Compressive Higher Order Cyclostationary Statistics

CHOCS: A Framework for Estimating Compressive Higher Order Cyclostationary Statistics CHOCS: A Framework for Estimating Compressive Higher Order Cyclostationary Statistics Chia Wei Lim and Michael B. Wakin Department of Electrical Engineering and Computer Science, Colorado School of Mines

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness Digital Communications: A Discrete-Time Approach M. Rice Errata Foreword Page xiii, first paragraph, bare witness should be bear witness Page xxi, last paragraph, You know who you. should be You know who

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Source Coding for Compression

Source Coding for Compression Source Coding for Compression Types of data compression: 1. Lossless -. Lossy removes redundancies (reversible) removes less important information (irreversible) Lec 16b.6-1 M1 Lossless Entropy Coding,

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Support recovery in compressive sensing for estimation of Direction-Of-Arrival

Support recovery in compressive sensing for estimation of Direction-Of-Arrival Support recovery in compressive sensing for estimation of Direction-Of-Arrival Zhiyuan Weng and Xin Wang Department of Electrical and Computer Engineering Stony Brook University Abstract In the estimation

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018 Frame # 1 Slide # 1 A. Antoniou

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Communication Theory Summary of Important Definitions and Results

Communication Theory Summary of Important Definitions and Results Signal and system theory Convolution of signals x(t) h(t) = y(t): Fourier Transform: Communication Theory Summary of Important Definitions and Results X(ω) = X(ω) = y(t) = X(ω) = j x(t) e jωt dt, 0 Properties

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information

Random Processes Handout IV

Random Processes Handout IV RP-IV.1 Random Processes Handout IV CALCULATION OF MEAN AND AUTOCORRELATION FUNCTIONS FOR WSS RPS IN LTI SYSTEMS In the last classes, we calculated R Y (τ) using an intermediate function f(τ) (h h)(τ)

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

ChannelEstimationwithPilot-SymbolsoverWSSUSChannels

ChannelEstimationwithPilot-SymbolsoverWSSUSChannels > = ; ChannelEstimationwithPilot-SymbolsoverWSSUSChannels Ivan Periša, Jochem Egle, and Jürgen Lindner Univ of Ulm - Dept of Information Technology - Albert-Einstein-Allee 43-90 Ulm - ermany Ph +49 3 0

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING

CODING SAMPLE DIFFERENCES ATTEMPT 1: NAIVE DIFFERENTIAL CODING 5 0 DPCM (Differential Pulse Code Modulation) Making scalar quantization work for a correlated source -- a sequential approach. Consider quantizing a slowly varying source (AR, Gauss, ρ =.95, σ 2 = 3.2).

More information

Signal processing Frequency analysis

Signal processing Frequency analysis Signal processing Frequency analysis Jean-Hugh Thomas (jean-hugh.thomas@univ-lemans.r) Fourier series and Fourier transorm (h30 lecture+h30 practical work) 2 Sampling (h30+h30) 3 Power spectrum estimation

More information

Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations

Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations Dian Mo Department of Electrical and Computer Engineering University of Massachusetts Amherst, MA 3 mo@umass.edu Marco F.

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition Seema Sud 1 1 The Aerospace Corporation, 4851 Stonecroft Blvd. Chantilly, VA 20151 Abstract

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing Forty-Ninth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 28-30, 20 A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

On the Convergence of the Inverses of Toeplitz Matrices and Its Applications

On the Convergence of the Inverses of Toeplitz Matrices and Its Applications 180 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003 On the Convergence of the Inverses of Toeplitz Matrices Its Applications Feng-Wen Sun, Member, IEEE, Yimin Jiang, Member, IEEE,

More information