Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Size: px
Start display at page:

Download "Carrier frequency estimation. ELEC-E5410 Signal processing for communications"

Transcription

1 Carrier frequency estimation ELEC-E54 Signal processing for communications

2 Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical algorithms 4. on-data-aided DA estimation algorithms Based on U Mengali, A.. D Andrea, Synchronization Techniques for Digital Receivers, Plenum Press,997 Page

3 Example Consider a system operating at GHz. Assume 5 ppm instability in transmit and receive oscillators. Q: What is the maximum frequency difference Δf we can expect in the two oscillators? Q: After how long time can we expect the phase error to be 36 o? Timo I. Laaso and Stefan Werner Page 3

4 Basic system assumptions

5 Basic system assumptions Frequency recovery consists of two tass:. Deriving an estimate of the frequency error offset f In practice, a rough estimate for the carrier frequency is nown beforehand almost always. Compensating for this offset by counter rotating the received signal Assumption: Freq. offset f is much smaller than the symbol rate /T - Timing information can be recovered first and is nown for the frequency estimation algorithm - Phase rotation due to the frequency offset can be assumed constant during a symbol Page 5

6 Basic system assumptions... Typical passband pulse amplitude modulation PAM receiver structure Carrier demod. Free osc. Interpolator control Timing est. Decimator control x Analog filter A/D x Int. filt. MF Dec. x Symbol det&dec Freq. synth. Freq. integr. Freq. err.det. Phase est. Rough corr. Fine corr. Timo I. Laaso and Stefan Werner Page 6

7 Basic system assumptions... Frequency estimation approaches Consider first data-aided DA frequency recovery, assuming that a training signal is available Last, non-data-aided DA techniques are briefly discussed Timo I. Laaso and Stefan Werner Page 7

8 Basic concepts revisited

9 Pulse shaping with root raised cosine waveform bits QAM modulation Transmitter Root ^cos Root ^cos Demodulation Pulse shaping is needed to band limit the transmitted signal waveform h T t in the formulas that follow In simulations of communication systems it is often enough to use directly the raised cosine pulse.

10 Tx and Rx signals with root raised cosine pulse shaping.5 Message data Tx data Rx data.5 Amplitude Time

11 Root raised cosine filter H jω src $ & & % & & ' cos[ π 4r ω ωc for ω ωc r, ω --r] for r + r, ω c for ω ωc + r. ormalized bandwidth is +r, where r is the roll-off factor Root raised cosine filters form a yquist pair such that there is no inter-symbol interference For example, 3G WCDMA specifies roll-off.3 root raised cosine pulse shaping in the transmitter. Max. adjacent channel leaage ratio is -45 db for base stations and -33 db for mobile stations 3//6

12 Raised cosine Convolution of two root raised cosine pulses o inter-symbol interference when sampled at the right time Raised cosine pulse train in time domain 3//6

13 Matched Filter Design of matched filter Maximize signal power i.e. power of g t g t* h t at t T Minimize noise i.e. power of n t w t* h t Given transmitter pulse shape gt of duration T, matched filter is given by h opt t g*t-t for all scalar gains - h opt t is scaled, time-reversed, and shifted version of gt Sampling time nown gt xt ht yt yt Pulse signal wt Matched filter t T

14 DA: ML estimation of carrier frequency

15 DA: ML Estimation of carrier frequency Transmit signal model: xt h T t a δt T a h T t T a data symbols to be transmitted h T t transmitted continuous-time waveform δt Dirac delta function Timo I. Laaso and Stefan Werner Page 5

16 DA: ML Estimation... Received continuous-time signal additive white Gaussian noise AWG channel: r t x t + w t rt received signal waveform wt additive noise The desired estimate for the received signal is of the form ~ j ft+ x π θ t e a h t T τ where f is to be estimated, θ is unnown and τ is assumed nown T Page 6

17 DA: ML Estimation... Consider first the PDF of the discrete-time signal r assuming AWG: Page 7 Continuous-time probability density function PDF: Replace variance by noise power spectral density PSD and sum by integral: / ~ exp, ; x r f p σ πσ θ r ~ exp x r C σ ~ exp, ; T dt t x t r C f p θ r

18 DA: ML Estimation... The continuous-time log-lielihood function LLF is: Λ r; f, θ C T r t ~ x t T T T C r t dt + ~ x t dt Re The first and the second integrals are independent of f and θ > the relevant part of LLF to be optimized is dt r t ~ x * t dt Λ r; f, θ Re T { r t ~ x * t } dt Timo I. Laaso and Stefan Werner Page 8

19 DA: ML Estimation... The integral can be expressed as Timo I. Laaso and Stefan Werner Page 9 where z is the integral sampled at t T + τ and L T T is the observation interval Λ ~ * Re, ; T dt t x t r f θ r Re L j z a e θ Re T ft j j dt T t h e t r a e τ π θ

20 DA: ML Estimation... By denoting L a z Z e jφ the LLF can be expressed as Λ r; f, θ Re Z { j φ θ Z e } cos φ θ and the corresponding LF PDF is p r; f, θ Z C exp cos φ θ Timo I. Laaso and Stefan Werner Page

21 DA: ML Estimation... The phase θ is a nuisance parameter and should be eliminated. That can be accomplished by averaging the PDF over [,π]: Timo I. Laaso and Stefan Werner Page cos exp, ; ; Z CI d Z C d f p f p θ θ φ π θ θ π π π r r where I x is the modified Bessel function of order zero: θ π π θ d e x I x cos

22 DA: ML Estimation Bessel function of first ind, order zero besseli,x in Matlab The function is monotonic for positive values, and it is only necessary to maximize the argument of I x

23 DA: ML Estimation... I x is an even, parabola-lie function and monotonic for positive values. As the argument is positive in our case, we can conclude that f max argmax r f The function to be maximized is thus with see p. 3 z t G f Z { p ; f } argmax{ Z } L a z jπfξ r ξ e ht ξ t dξ f Timo I. Laaso and Stefan Werner Page 3

24 Example of Gf ; fo /; rx expj**pi*fo*[:-]; xx -.5:.:.5; for ii :lengthxx yii absrx * exp- j**pi*xxii*[:-]'; end Frequency offset 4

25 Example of Gf Location of the maximum depends on the sampling grid -.49:.:.49 R.W. 5

26 Example of Gf Estimation from a noisy signal. Shifted max. value R.W. 6

27 DA: ML Estimation... Maximization of Gf: Data symbols must be nown as originally assumed o closed-form solution available in general Use search algorithms instead Problem: several local maxima > Good initial estimate needed Timo I. Laaso and Stefan Werner Page 7

28 DA: Practical algorithms

29 DA: Practical algorithms Let us mae simplifying assumptions:. The Tx and Rx filters e.g. root raised cosine filters -> raised cosine filter form a yquist pulse. Data symbols are from phase shift-eying PSK constellation: a jα π e, α m, m,,,..., M M 3. Frequency offset f is small compared to the symbol rate - Together with. this allows the assumption of zero inter-symbol interference ISI - Typically, uncompensated CFOs of the order of -% of the symbol rate already cause ISI Page 9

30 DA: Practical algorithms... Received signal: r T i Matched filtering: jπft t e + θ aih t it τ + w t y r t ht t T τ dt jθ e a i e where the matched-filtered noise is n w t ht t T τ dt i jπft h T t it τ h T t T τ dt + n Timo I. Laaso and Stefan Werner Page 3

31 DA: Practical algorithms... Because f << /T, we can approximate : Timo I. Laaso and Stefan Werner Page 3 so that the MF output becomes: Data modulation is removed by multiplying y with a * T T τ τ τ π π + it t h e it t h e it f j ft j [ ]. n e a y T f j θ τ π [ ] [ ] ' n e n a e a a y a z T f j T f j θ τ π θ τ π This signal is used for the design of the frequency estimation algorithms that follow

32 DA: Practical algorithms ote: Here T refers to symbol rate and {a } is a nown pilot/ training sequence In case unmodulated pilot tone is available a and T refers to sampling rate 3

33 DA: Algorithm Kay 989 Proposed by S. Kay, A fast and accurate single frequency estimator, IEEE Trans. on ASSP, Dec Rearrange Timo I. Laaso and Stefan Werner Page 33 where For high E s /, the random variables φ are approximately independent, zero-mean and Gaussian [ ] [ ] ' T f j T f j e n e z φ θ τ π θ τ π ρ [ ] θ τ π φ ρ ' T f j j e n e

34 DA: Algorithm Kay 989 Approximation at high SR, i.e. low noise, needed to reach the Gaussian assumption in the previous page R.W. 34

35 DA: Algorithm Kay Consider the product of consecutive samples the other conjugated: z z * ρ ρ e j [ πf T + τ + θ + φ ] j[ πf T + τ + θ + φ ] e ρ ρ e j [ πft+ φ φ ] The argument can be considered as a noisy measurement for frequency: { z z * } πft + φ φ v arg Page 35

36 DA: Algorithm Kay Under the Gaussian assumption, the PDF pv;f can be expressed in closed form and solved for the MLE. The result is L fˆ γ arg{ z z * } πt where γ is a smoothing function: 3 L L γ,,,..., L L L Page 36

37 DA: Algorithm Covariance matrix of vector v is tri-diagonal Probability density function is given by Solving R - gives the weights γ 3//6 37

38 Kay s algorithm applied to Mies signal Uniform weighting simply calculates the mean of the angles Kay s weighting is more stable w.r.t. the number of samples than the uniform weighting although the differences are small CFO Kay's weights Uniform weights #samples 3//6 38

39 DA: Algorithm Fitz 99 Proposed by M. Fitz, Planar filtered techniques for burst mode carrier synchronization, GLOBECOM 9 conference, Phoenix, Arizona, Dec. 99. Define Using L R m z z * m, m L L m z m [ πf T + τ + θ ] j a y e + n' yields R m e j πmft + n'' m where n m is a zero-mean noise component. Timo I. Laaso and Stefan Werner Page 39

40 DA: Algorithm Fitz The frequency estimate could be solved from the above expression as fˆ arg{ R m } πmt However, due to the mod π nature of the arg operation, the result may be erroneous. A better estimate is obtained by averaging. Define { R m } πmft e m arg Timo I. Laaso and Stefan Werner Page 4

41 DA: Algorithm Fitz Timo I. Laaso and Stefan Werner Page 4 Under certain assumptions < / f MAX T where f MAX is the max frequency error, it holds that which yields { } m m m mft m R m e arg π { } arg + ft m R m π { } + m m R T f arg ˆ π

42 DA Algorithm comparison Fundamental difference between Kay and Fitz: Kay operates by first applying the hard arg arctan nonlinearity and then smooths/weights the result Fitz applies smoothing/filtering also before nonlinearity Fitz is less prone to errors and provides more accurate results in low SR conditions c.f. ML estimation of unnown phase of a sinusoid with nown frequency: angle of sample means instead of sample mean of angles Page 4

43 DA Algorithm comparison... Performance comparison QPSK system, α.5 excess bandwidth roll-off factor of root raised cosine pulse, L 3 ormalized Freq. Error Variance log scale Fitz Kay CRB 8 E S / db Figure shows that both algorithms attain the Cramer-Rao bound CRB at high SR For low SR, the performance of Kay s alg. breas down 8 s Timo I. Laaso and Stefan Werner Page 43

44 DA: Algorithm 3 Luise & Regiannini Timo I. Laaso and Stefan Werner Page 44 + m fmt j m m fmt j m e m n e m R " π π Recall ow average Using '' n e m R mft j + π ft j m fmt j e ft ft e sin sin + π π π π

45 DA: Algorithm 3 Luise & Regiannini and the fact that for f /T yields sin πft sin πft > f arg + R m π T m Accuracy degrades slowly as decreases while estimation range gets wider f /T Page 45

46 Fitz and L&R algorithms applied to Mies signal CFO -386 CFO #lags Fitz #lags Luise&Regiannini 46

47 DA Algorithms

48 DA algorithm Proposed by Chuang & Sollenberger 99 When the data modulation cannot be eliminated by using training signals or decision feedbac, other techniques must be used Assume a small enough frequency error f << /T so that the matched filter MF output can again be approximated as y [ πf T + τ + θ ] j a e + n. jα π MPSK signal a e, α m, m,,,..., M M Use unit-magnitude property of MPSK signals to remove data modulation Page 48

49 DA algorithms... For every MPSK symbol it holds that so that y M M [ ] e a j [ πmf T + τ + Mθ ] + n'. ow we can use the same idea as in the DA algorithms: M jπmft [ y y * ] e + n'' where the noise component n is again assumed to be zero-mean Timo I. Laaso and Stefan Werner Page 49

50 DA algorithms... Better estimates are obtained by smoothing: L L M jπmft [ y y* ] e + Setting the averaged noise term to zero and solving for the frequency gives the estimate ice and simple! L fˆ L arg πmt Limitation: f << /MT [ y y* ] L M n'' Timo I. Laaso and Stefan Werner Page 5

51 DA algorithm performance Performance analysis QPSK system, excess bandwidth α.5, L ormalized Freq. Error Variance log scale CRB Chuang et al. 5 E S / db 3 The Cramer-Rao Bound CRB is not close even for high SR Useful for coarse estimation in bad conditions Timo I. Laaso and Stefan Werner Page 5

52 Chuang&Sollenberg with Mies signal Known data uses angle of the autocorrelation with lag QPSK applies yy*- 4 The difference in the estimated value is significant 3//6 5

53 Summary We discussed. Basic system assumptions. DA: ML estimation of carrier frequency 3. DA: Practical algorithms 4. DA estimation algorithms Timo I. Laaso and Stefan Werner Page 53

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Digital Communications

Digital Communications Digital Communications Chapter 9 Digital Communications Through Band-Limited Channels Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications:

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Example: Bipolar NRZ (non-return-to-zero) signaling

Example: Bipolar NRZ (non-return-to-zero) signaling Baseand Data Transmission Data are sent without using a carrier signal Example: Bipolar NRZ (non-return-to-zero signaling is represented y is represented y T A -A T : it duration is represented y BT. Passand

More information

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 08 December 2009 This examination consists of

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems Aids Allowed: 2 8 1/2 X11 crib sheets, calculator DATE: Tuesday

More information

Digital Modulation 1

Digital Modulation 1 Digital Modulation 1 Lecture Notes Ingmar Land and Bernard H. Fleury Navigation and Communications () Department of Electronic Systems Aalborg University, DK Version: February 5, 27 i Contents I Basic

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Parameter Estimation

Parameter Estimation 1 / 44 Parameter Estimation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 25, 2012 Motivation System Model used to Derive

More information

Principles of Communications

Principles of Communications Principles of Communications Chapter V: Representation and Transmission of Baseband Digital Signal Yongchao Wang Email: ychwang@mail.xidian.edu.cn Xidian University State Key Lab. on ISN November 18, 2012

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

Communication Theory Summary of Important Definitions and Results

Communication Theory Summary of Important Definitions and Results Signal and system theory Convolution of signals x(t) h(t) = y(t): Fourier Transform: Communication Theory Summary of Important Definitions and Results X(ω) = X(ω) = y(t) = X(ω) = j x(t) e jωt dt, 0 Properties

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Proc. Biennial Symp. Commun. (Kingston, Ont.), pp. 3-35, June 99 A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra Nader Sheikholeslami Peter Kabal Department of Electrical Engineering

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

EE303: Communication Systems

EE303: Communication Systems EE303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE303: Introductory Concepts

More information

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI

Line Codes and Pulse Shaping Review. Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Codes and Pulse Shaping Review Line codes Pulse width and polarity Power spectral density Intersymbol interference (ISI) Pulse shaping to reduce ISI Embracing ISI Line Code Examples (review) on-off

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

EE 661: Modulation Theory Solutions to Homework 6

EE 661: Modulation Theory Solutions to Homework 6 EE 66: Modulation Theory Solutions to Homework 6. Solution to problem. a) Binary PAM: Since 2W = 4 KHz and β = 0.5, the minimum T is the solution to (+β)/(2t ) = W = 2 0 3 Hz. Thus, we have the maximum

More information

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS ch03.qxd 1/9/03 09:14 AM Page 35 CHAPTER 3 MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS 3.1 INTRODUCTION The study of digital wireless transmission is in large measure the study of (a) the conversion

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE5713 : Advanced Digital Communications Week 12, 13: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Equalization (On Board) 20-May-15 Muhammad

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Solutions to Selected Problems

Solutions to Selected Problems Solutions to Selected Problems from Madhow: Fundamentals of Digital Communication and from Johannesson & Zigangirov: Fundamentals of Convolutional Coding Saif K. Mohammed Department of Electrical Engineering

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrir frquncy stimation ELEC-E54 Signal procssing for communications Contnts. Basic systm assumptions. Data-aidd DA: Maximum-lilihood ML stimation of carrir frquncy 3. Data-aidd: Practical algorithms

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components TUTORIAL ON DIGITAL MODULATIONS Part 3: 4-PSK [2--26] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello Quadrature modulation Consider a 2-D constellation,

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Department of Electrical Engineering, College of Engineering, Basrah University Basrah Iraq,

More information

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg FBMC/OQAM transceivers for 5G mobile communication systems François Rottenberg Modulation Wikipedia definition: Process of varying one or more properties of a periodic waveform, called the carrier signal,

More information

EE4061 Communication Systems

EE4061 Communication Systems EE4061 Communication Systems Week 11 Intersymbol Interference Nyquist Pulse Shaping 0 c 2015, Georgia Institute of Technology (lect10 1) Intersymbol Interference (ISI) Tx filter channel Rx filter a δ(t-nt)

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals

Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals 1 Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals Antonio A. D Amico Abstract In this paper we propose an algorithm for joint carrier phase and timing estimation with OQPSK

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL T F T I G E O R G A I N S T I T U T E O H E O F E A L P R O G R ESS S A N D 1 8 8 5 S E R V L O G Y I C E E C H N O Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness Digital Communications: A Discrete-Time Approach M. Rice Errata Foreword Page xiii, first paragraph, bare witness should be bear witness Page xxi, last paragraph, You know who you. should be You know who

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

5 Analog carrier modulation with noise

5 Analog carrier modulation with noise 5 Analog carrier modulation with noise 5. Noisy receiver model Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel. A noisy receiver model is illustrated in

More information

THE PROBLEM of digital blind feedforward symbol

THE PROBLEM of digital blind feedforward symbol IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 737 Unified Analysis of a Class of Blind Feedforward Symbol Timing Estimators Employing Second-Order Statistics Yi-Chung Wu and Erchin

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information

Carrier Synchronization

Carrier Synchronization Chapter 8 Carrier Synchronization Marvin K. Simon and Jon Hamkins Traditionally, carrier synchronization (sync) techniques have been developed assuming that the modulation format and signal constellation

More information

Data-aided and blind synchronization

Data-aided and blind synchronization PHYDYAS Review Meeting 2009-03-02 Data-aided and blind synchronization Mario Tanda Università di Napoli Federico II Dipartimento di Ingegneria Biomedica, Elettronicae delle Telecomunicazioni Via Claudio

More information

Multi User Detection I

Multi User Detection I January 12, 2005 Outline Overview Multiple Access Communication Motivation: What is MU Detection? Overview of DS/CDMA systems Concept and Codes used in CDMA CDMA Channels Models Synchronous and Asynchronous

More information

Review of Fourier Transform

Review of Fourier Transform Review of Fourier Transform Fourier series works for periodic signals only. What s about aperiodic signals? This is very large & important class of signals Aperiodic signal can be considered as periodic

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Introductory Concepts Prof. A. Manikas (Imperial College) EE.401: Introductory

More information

Projects in Wireless Communication Lecture 1

Projects in Wireless Communication Lecture 1 Projects in Wireless Communication Lecture 1 Fredrik Tufvesson/Fredrik Rusek Department of Electrical and Information Technology Lund University, Sweden Lund, Sept 2018 Outline Introduction to the course

More information

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007 Stochastic processes review 3. Data Analysis Techniques in Oceanography OCP668 April, 27 Stochastic processes review Denition Fixed ζ = ζ : Function X (t) = X (t, ζ). Fixed t = t: Random Variable X (ζ)

More information

Particle Filter for Joint Blind Carrier Frequency Offset Estimation and Data Detection

Particle Filter for Joint Blind Carrier Frequency Offset Estimation and Data Detection Particle Filter for Joint Blind Carrier Frequency Offset Estimation and Data Detection Ali A. Nasir, Salman Durrani and Rodney A. Kennedy School of Engineering, CECS, The Australian National University,

More information

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Clemson University TigerPrints All Theses Theses 1-015 The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Allison Manhard Clemson University,

More information

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. School of Engineering Science Simon Fraser University ENSC37 Communications Systems : Fourier Representations School o Engineering Science Simon Fraser University Outline Chap..5: Signal Classiications Fourier Transorm Dirac Delta Function Unit Impulse Fourier

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

Optimal Placement of Training Symbols for Frequency Acquisition: A Cramér-Rao Bound Approach

Optimal Placement of Training Symbols for Frequency Acquisition: A Cramér-Rao Bound Approach 1 Optimal Placement of Training Symbols for Frequency Acquisition: A Cramér-Rao Bound Approach Aravind R. Nayak, Member, IEEE, John R. Barry, Senior Member, IEEE, and Steven W. McLaughlin, Senior Member,

More information

Chapter 10. Timing Recovery. March 12, 2008

Chapter 10. Timing Recovery. March 12, 2008 Chapter 10 Timing Recovery March 12, 2008 b[n] coder bit/ symbol transmit filter, pt(t) Modulator Channel, c(t) noise interference form other users LNA/ AGC Demodulator receive/matched filter, p R(t) sampler

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Sinc Functions. Continuous-Time Rectangular Pulse

Sinc Functions. Continuous-Time Rectangular Pulse Sinc Functions The Cooper Union Department of Electrical Engineering ECE114 Digital Signal Processing Lecture Notes: Sinc Functions and Sampling Theory October 7, 2011 A rectangular pulse in time/frequency

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference TMO Progress Report 4-139 November 15, 1999 Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference M. K. Simon 1 The bit-error probability performance

More information

QPSK and OQPSK in Frequency Nonselective Fading

QPSK and OQPSK in Frequency Nonselective Fading Brigham Young University BYU ScholarsArchive All Faculty Publications 2010-09-17 QPSK and OQPSK in Frequency Nonselective Fading Michael D. Rice mdr@byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

Copyright license. Exchanging Information with the Stars. The goal. Some challenges

Copyright license. Exchanging Information with the Stars. The goal. Some challenges Copyright license Exchanging Information with the Stars David G Messerschmitt Department of Electrical Engineering and Computer Sciences University of California at Berkeley messer@eecs.berkeley.edu Talk

More information

II - Baseband pulse transmission

II - Baseband pulse transmission II - Baseband pulse transmission 1 Introduction We discuss how to transmit digital data symbols, which have to be converted into material form before they are sent or stored. In the sequel, we associate

More information

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero.

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Problem 5.1 : The correlation of the two signals in binary FSK is: ρ = sin(π ft) π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Thus: ϑρ

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

Decision-Point Signal to Noise Ratio (SNR)

Decision-Point Signal to Noise Ratio (SNR) Decision-Point Signal to Noise Ratio (SNR) Receiver Decision ^ SNR E E e y z Matched Filter Bound error signal at input to decision device Performance upper-bound on ISI channels Achieved on memoryless

More information

Chapter 12 Variable Phase Interpolation

Chapter 12 Variable Phase Interpolation Chapter 12 Variable Phase Interpolation Contents Slide 1 Reason for Variable Phase Interpolation Slide 2 Another Need for Interpolation Slide 3 Ideal Impulse Sampling Slide 4 The Sampling Theorem Slide

More information

Tracking of Spread Spectrum Signals

Tracking of Spread Spectrum Signals Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

CONTINUOUS phase modulation (CPM) [1] is a

CONTINUOUS phase modulation (CPM) [1] is a 1 Timing, Carrier, and Frame Synchronization of Burst-Mode CPM Ehsan Hosseini, Student Member, IEEE, and Erik Perrins, Senior Member, IEEE arxiv:131.757v3 [cs.it] 3 Jan 1 Abstract In this paper, we propose

More information

Modulation & Coding for the Gaussian Channel

Modulation & Coding for the Gaussian Channel Modulation & Coding for the Gaussian Channel Trivandrum School on Communication, Coding & Networking January 27 30, 2017 Lakshmi Prasad Natarajan Dept. of Electrical Engineering Indian Institute of Technology

More information

2.1 Basic Concepts Basic operations on signals Classication of signals

2.1 Basic Concepts Basic operations on signals Classication of signals Haberle³me Sistemlerine Giri³ (ELE 361) 9 Eylül 2017 TOBB Ekonomi ve Teknoloji Üniversitesi, Güz 2017-18 Dr. A. Melda Yüksel Turgut & Tolga Girici Lecture Notes Chapter 2 Signals and Linear Systems 2.1

More information

Estimation of the Capacity of Multipath Infrared Channels

Estimation of the Capacity of Multipath Infrared Channels Estimation of the Capacity of Multipath Infrared Channels Jeffrey B. Carruthers Department of Electrical and Computer Engineering Boston University jbc@bu.edu Sachin Padma Department of Electrical and

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

Chapter 2: The Fourier Transform

Chapter 2: The Fourier Transform EEE, EEE Part A : Digital Signal Processing Chapter Chapter : he Fourier ransform he Fourier ransform. Introduction he sampled Fourier transform of a periodic, discrete-time signal is nown as the discrete

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

Electrical Engineering Written PhD Qualifier Exam Spring 2014

Electrical Engineering Written PhD Qualifier Exam Spring 2014 Electrical Engineering Written PhD Qualifier Exam Spring 2014 Friday, February 7 th 2014 Please do not write your name on this page or any other page you submit with your work. Instead use the student

More information

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES

2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2. SPECTRAL ANALYSIS APPLIED TO STOCHASTIC PROCESSES 2.0 THEOREM OF WIENER- KHINTCHINE An important technique in the study of deterministic signals consists in using harmonic functions to gain the spectral

More information

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels Jin Soo Choi, Chang Kyung Sung, Sung Hyun Moon, and Inkyu Lee School of Electrical Engineering Korea University Seoul, Korea Email:jinsoo@wireless.korea.ac.kr,

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

TECHNICAL RESEARCH REPORT

TECHNICAL RESEARCH REPORT TECHNICAL RESEARCH REPORT On the True Cramer-Rao Lower Bound for the DA Joint Estimation of Carrier Phase and Timing Offsets by Y. Jiang, F.W. Sun and John S. Baras CSHCN T.R. 000-14 (ISR T.R. 000-36)

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 5 EE456 Digital Communications Block Diagram of Binary Communication Systems m ( t { b k } b k = s( t b = s ( t k m ˆ ( t { bˆ } k r( t Bits in

More information

TSKS01 Digital Communication Lecture 1

TSKS01 Digital Communication Lecture 1 TSKS01 Digital Communication Lecture 1 Introduction, Repetition, and Noise Modeling Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Emil Björnson Course Director

More information

Sampling Signals of Finite Rate of Innovation*

Sampling Signals of Finite Rate of Innovation* Sampling Signals of Finite Rate of Innovation* Martin Vetterli http://lcavwww.epfl.ch/~vetterli EPFL & UCBerkeley.15.1.1.5.5.5.5.1.1.15.2 128 128 256 384 512 64 768 896 124 1152.15 128 128 256 384 512

More information