Lecture 2. Fading Channel

Size: px
Start display at page:

Download "Lecture 2. Fading Channel"

Transcription

1 1 Lecture 2. Fading Channel Characteristics of Fading Channels Modeling of Fading Channels Discrete-time Input/Output Model

2 2 Radio Propagation in Free Space Speed: c = 299,792,458 m/s Isotropic Received power at a particular location decays with distance: P ~ r -2 T Transmitted signal: s() t cos2 ft R Received signal: yt () cos 2 f ( t r/ c) r

3 Radio Propagation in Terrestrial Environment 3 T Distance between transmitter and receiver: r R Transmission Power: P t Pr P t Received Power: P r Fluctuation around the local mean: small-scale fading (fixed r) Fluctuation of the local mean: large-scale fading

4 4 Large-scale Fading Large-scale fading -- Log-normal shadowing Attributed to the random variation of propagation environment. Empirically modeled as a log-normal random variable with mean and variance 2. Mean is determined by the path loss: ~ r -, >2. log( P / P) r t is called path-loss factor, which depends on the propagation environment. The higher the density of obstacles, the larger. log(r)

5 Small-scale Fading 5 Small-scale fading Attributed to 1) multiple arriving paths; and 2) movements of the transmitter and/or receiver.

6 A Simple Two-path Model (1) 6 Reflecting wall, fixed antenna Transmitted signal: s() t cos2 ft T r d R wall Received signal: yt () cos 2 f ( t r/ c) r cos 2 f ( t (2 d r) / c) 2d r The phase difference between the two waves: 2 f (2 d r) 2 fr c c 4 f ( d r) c What happens if changes from to 2? =2k: Constructively add =(2k+1): Destructively add

7 Coherence Bandwidth vs. Delay Spread 7 An appreciable change of received signal will be observed if c the frequency of transmitted signal f changes by: 4( d r ) Coherence Bandwidth W c The difference between the propagation delays along the two signal paths is: 2d r r 2( d r) c c c Delay Spread T d 1 Td ~ W c

8 A Simple Two-path Model (2) 8 Reflecting wall, moving antenna T r rt () rvt 0 d R wall Transmitted signal: s() t cos2 ft Received signal: yt () cos2 f ( t r( t)/ c) cos2 f( t(2 d r( t))/ c) rt () 2 d rt () Doppler Shift: D 1 =-fv/c Doppler Shift: D 2 =fv/c cos 2 f ((1 v/ c) tr0 / c) cos 2 f((1 v/ c) t( r0 2 d) / c) r vt 2d r vt sin2 f ( vt / c ( r0 d)/ c)sin2 f ( t d / c) r vt 0

9 Coherence Time vs. Doppler Spread 9 An appreciable change of received signal will be observed if time t c changes by: 4 fv Coherence Time T c The difference between the Dopper shifts of the two paths is: Tc ~ 1 D s Ds D2 D1 2 fv/ c Doppler Spread D s

10 Modeling of Fading Channels 10 Transmitted signal s(t) Channel Received signal y(t) A fading channel can be modeled as a Linear Time-Varying system. yt () h(,) t s( t ) d Suppose that h(,t) is a deterministic function of time t and delay. Time-variant transfer function: Delay Doppler function: Doppler-variant transfer function: () denotes Fourier transform. H( f, t) ( h(, t)) S(, ) ( h(, t)) t D( f, ) ( S(, )) t ( H( f, t))

11 Modeling of Fading Channels 11 Transmitted signal s(t) Channel Received signal y(t) A fading channel can be modeled as a Linear Time-Varying system. yt () h(,) t s( t ) d Suppose that h(,t) is a WSS process with uncorrelated scatterers: The autocorrelation function * R ( h, 1 t, 1, 2 t ) 2 E[ h(, t ) h (, t )] R (, t) Time-variant transfer function: Delay Doppler function: R ( f, t) ( R (, t)) R (, ) ( R (, t)) S t h Doppler-variant transfer function: R ( f, ) ( R (, )) ( R ( f, t)) H D S h t h H

12 Coherence Bandwidth vs. Delay Spread 12 Let t 0: R (,0) H f 1 () f R (,0) h () Coherence Bandwidth W c T d ~ 1 W c Delay Spread T d Flat fading: Signal Bandwidth W << Coherence Bandwidth W c Symbol Time T >> Delay Spread T d Frequency-selective fading: Signal Bandwidth W >> Coherence Bandwidth W c Symbol Time T << Delay Spread T d

13 Coherence Time vs. Doppler Spread 13 Let 0: R R (0, ( t) ) h t () t R S( f ) S (0, ) 1 () Coherence Time ~ T T c c D 1s Doppler Spread D s Slow fading: Symbol Time T << Coherence Time T c Signal Bandwidth W >> Doppler Spread D s Fast fading: Symbol Time T >> Coherence Time T c Signal Bandwidth W << Doppler Spread D s

14 Discrete-time Input/Output Model 14 yt () h(,) t s( t ) d s[ n] ai( t) T ( t i( t) nt ) h(,) t a ()( t ()) t i i a i (t): attenuation at time t of path i i (t): propagation delay at time t of path i i n i 0 0 st () sn [ ] ( tnt) n T 0 0 () T t : modulation pulse 0 Sampled output at t=mt 0 : Let l=m-n. y[ m] s[ n] a ( mt ) (( mn) T ( mt )) n i i 0 T 0 i 0 0 h i 0 T0 0 i 0 l[ m ] y[ m] s[ ml] a ( mt ) ( lt ( mt )) l Discrete-time Input/Output Model: ym [ ] hl [ msm ] [ l] z[ m] i l

15 Discrete-time Input/Output Model L-1 ym [ ] hl [ msm ] [ l] z[ m] l=0 15 How many channel filter taps can be obtained (how to determine the value of L)? Delay spread: Sampling rate: W T max d i j i, j Flat fading: L=1 Frequency-selective fading: L>>1 L WT d How fast does the channel filter tap gain h l [m] vary with time in one symbol time T? Depends on the coherence time T c. Slow fading: h l [m] can be regarded as constant in T Fast fading: h l [m] varies with time in T

16 More about h l [m] 16 Without line-of-sight (LOS) paths: h l [m] can be modeled as a zero- 2 mean complex Gaussian random variable (0, ). The magnitude follows Rayleigh distribution. s With one LOS path: h l [m] can be modeled as h m k 1 k1 k1 j 2 l[ ] se (0, s) k: the ratio of the power in the LOS path and that in the scattered paths. The magnitude follows Ricean distribution.

17 More about h l [m] 17 Availability of Channel State Information (CSI) CSIR: CSI is available at the receiver side. available through channel measurement required for coherent detection CSIT: CSI is available at the transmitter side. available through channel measurement and feedback optional Ergodicity indispensable condition to achieve the Shannon capacity may not hold in delay-limited scenarios

18 Summary 18 Fading Channel Large-scale fading Path loss Shadowing Small-scale fading Delay spread (caused by multipath) Doppler spread (caused by mobility) Flat fading Frequency-selective fading Slow fading Fast fading Discrete-time input/output model L 1 y[ m] h[ m] s[ ml] z[ m] l0 l

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

Mobile Radio Communications

Mobile Radio Communications Course 3: Radio wave propagation Session 3, page 1 Propagation mechanisms free space propagation reflection diffraction scattering LARGE SCALE: average attenuation SMALL SCALE: short-term variations in

More information

Chapter 2 Underwater Acoustic Channel Models

Chapter 2 Underwater Acoustic Channel Models Chapter 2 Underwater Acoustic Channel Models In this chapter, we introduce two prevailing UWA channel models, namely, the empirical UWA channel model and the statistical time-varying UWA channel model,

More information

Fading Statistical description of the wireless channel

Fading Statistical description of the wireless channel Channel Modelling ETIM10 Lecture no: 3 Fading Statistical description of the wireless channel Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Channel characterization and modeling 1 September 8, Signal KTH Research Focus Multiple Antennas Channel Characterization and Modeling Mats Bengtsson, Björn Ottersten Channel characterization and modeling 1 September 8, 2005 Signal Processing @ KTH Research Focus Channel modeling

More information

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015

CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 CS6956: Wireless and Mobile Networks Lecture Notes: 2/4/2015 [Most of the material for this lecture has been taken from the Wireless Communications & Networks book by Stallings (2 nd edition).] Effective

More information

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood ECE559:WIRELESS COMMUNICATION TECHNOLOGIES LECTURE 16 AND 17 Digital signaling on frequency selective fading channels 1 OUTLINE Notes Prepared by: Abhishek Sood In section 2 we discuss the receiver design

More information

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver

Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver Optimal Transmit Strategies in MIMO Ricean Channels with MMSE Receiver E. A. Jorswieck 1, A. Sezgin 1, H. Boche 1 and E. Costa 2 1 Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut 2

More information

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE

3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3. ESTIMATION OF SIGNALS USING A LEAST SQUARES TECHNIQUE 3.0 INTRODUCTION The purpose of this chapter is to introduce estimators shortly. More elaborated courses on System Identification, which are given

More information

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007 Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT ECE 559 Presentation Hoa Pham Dec 3, 2007 Introduction MIMO systems provide two types of gains Diversity Gain: each path from a transmitter

More information

Outline. 1 Path-Loss, Large-Scale-Fading, Small-Scale Fading. 2 Simplified Models. 3 Multipath Fading Channel

Outline. 1 Path-Loss, Large-Scale-Fading, Small-Scale Fading. 2 Simplified Models. 3 Multipath Fading Channel Outline Digital Communiations Leture 11 Wireless Channels Pierluigi SALVO OSSI Department of Industrial and Information Engineering Seond University of Naples Via oma 29, 81031 Aversa CE), Italy homepage:

More information

Communication Theory Summary of Important Definitions and Results

Communication Theory Summary of Important Definitions and Results Signal and system theory Convolution of signals x(t) h(t) = y(t): Fourier Transform: Communication Theory Summary of Important Definitions and Results X(ω) = X(ω) = y(t) = X(ω) = j x(t) e jωt dt, 0 Properties

More information

A GENERALISED (M, N R ) MIMO RAYLEIGH CHANNEL MODEL FOR NON- ISOTROPIC SCATTERER DISTRIBUTIONS

A GENERALISED (M, N R ) MIMO RAYLEIGH CHANNEL MODEL FOR NON- ISOTROPIC SCATTERER DISTRIBUTIONS A GENERALISED (M, N R MIMO RAYLEIGH CHANNEL MODEL FOR NON- ISOTROPIC SCATTERER DISTRIBUTIONS David B. Smith (1, Thushara D. Abhayapala (2, Tim Aubrey (3 (1 Faculty of Engineering (ICT Group, University

More information

ELEC546 MIMO Channel Capacity

ELEC546 MIMO Channel Capacity ELEC546 MIMO Channel Capacity Vincent Lau Simplified Version.0 //2004 MIMO System Model Transmitter with t antennas & receiver with r antennas. X Transmitted Symbol, received symbol Channel Matrix (Flat

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

2016 Spring: The Final Exam of Digital Communications

2016 Spring: The Final Exam of Digital Communications 2016 Spring: The Final Exam of Digital Communications The total number of points is 131. 1. Image of Transmitter Transmitter L 1 θ v 1 As shown in the figure above, a car is receiving a signal from a remote

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University luca.sanguinetti@iet.unipi.it April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 /

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

EE401: Advanced Communication Theory

EE401: Advanced Communication Theory EE401: Advanced Communication Theory Professor A. Manikas Chair of Communications and Array Processing Imperial College London Multi-Antenna Wireless Communications Part-B: SIMO, MISO and MIMO Prof. A.

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

s o (t) = S(f)H(f; t)e j2πft df,

s o (t) = S(f)H(f; t)e j2πft df, Sample Problems for Midterm. The sample problems for the fourth and fifth quizzes as well as Example on Slide 8-37 and Example on Slides 8-39 4) will also be a key part of the second midterm.. For a causal)

More information

MIMO Capacity of an OFDM-based system under Ricean fading

MIMO Capacity of an OFDM-based system under Ricean fading MIMO Capacity of an OFDM-based system under Ricean fading Laxminarayana S. Pillutla and Sudharman K. Jayaweera Abslract-In this paper we present the multiple-input multiple-output (MIMO) capacity results

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Copyright license. Exchanging Information with the Stars. The goal. Some challenges

Copyright license. Exchanging Information with the Stars. The goal. Some challenges Copyright license Exchanging Information with the Stars David G Messerschmitt Department of Electrical Engineering and Computer Sciences University of California at Berkeley messer@eecs.berkeley.edu Talk

More information

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Digital Baseband Systems. Reference: Digital Communications John G. Proakis Digital Baseband Systems Reference: Digital Communications John G. Proais Baseband Pulse Transmission Baseband digital signals - signals whose spectrum extend down to or near zero frequency. Model of the

More information

On Coding for Orthogonal Frequency Division Multiplexing Systems

On Coding for Orthogonal Frequency Division Multiplexing Systems On Coding for Orthogonal Frequency Division Multiplexing Systems Alan Clark Department of Electrical and Computer Engineering A thesis presented for the degree of Doctor of Philosophy University of Canterbury

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

EE6604 Personal & Mobile Communications. Week 5. Level Crossing Rate and Average Fade Duration. Statistical Channel Modeling.

EE6604 Personal & Mobile Communications. Week 5. Level Crossing Rate and Average Fade Duration. Statistical Channel Modeling. EE6604 Personal & Mobile Communications Week 5 Level Crossing Rate and Average Fade Duration Statistical Channel Modeling Fading Simulators 1 Level Crossing Rate and Average Fade Duration The level crossing

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

EE Introduction to Digital Communications Homework 8 Solutions

EE Introduction to Digital Communications Homework 8 Solutions EE 2 - Introduction to Digital Communications Homework 8 Solutions May 7, 2008. (a) he error probability is P e = Q( SNR). 0 0 0 2 0 4 0 6 P e 0 8 0 0 0 2 0 4 0 6 0 5 0 5 20 25 30 35 40 SNR (db) (b) SNR

More information

Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β j exp[ 2πifτ j (t)] = exp[2πid j t 2πifτ o j ]

Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β j exp[ 2πifτ j (t)] = exp[2πid j t 2πifτ o j ] Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β exp[ 2πifτ (t)] = exp[2πid t 2πifτ o ] Define D = max D min D ; The fading at f is ĥ(f, t) = 1 T coh = 2D exp[2πi(d

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foundations of Wireless Communications 1 Wednesday, May 11, 2016 9:00-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 1 Overview

More information

Square Root Raised Cosine Filter

Square Root Raised Cosine Filter Wireless Information Transmission System Lab. Square Root Raised Cosine Filter Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal design

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

Flat Rayleigh fading. Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1.

Flat Rayleigh fading. Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1. Flat Rayleigh fading Assume a single tap model with G 0,m = G m. Assume G m is circ. symmetric Gaussian with E[ G m 2 ]=1. The magnitude is Rayleigh with f Gm ( g ) =2 g exp{ g 2 } ; g 0 f( g ) g R(G m

More information

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch 10.1-10.5 2009/2010 Meixia Tao @ SJTU 1 Topics to be Covered

More information

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011 UCSD ECE53 Handout #40 Prof. Young-Han Kim Thursday, May 9, 04 Homework Set #8 Due: Thursday, June 5, 0. Discrete-time Wiener process. Let Z n, n 0 be a discrete time white Gaussian noise (WGN) process,

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

EXPLOITING TRANSMIT CHANNEL SIDE INFORMATION IN MIMO WIRELESS SYSTEMS

EXPLOITING TRANSMIT CHANNEL SIDE INFORMATION IN MIMO WIRELESS SYSTEMS EXPLOITING TRANSMIT CHANNEL SIDE INFORMATION IN MIMO WIRELESS SYSTEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE

ADAPTIVE FILTER ALGORITHMS. Prepared by Deepa.T, Asst.Prof. /TCE ADAPTIVE FILTER ALGORITHMS Prepared by Deepa.T, Asst.Prof. /TCE Equalization Techniques Fig.3 Classification of equalizers Equalizer Techniques Linear transversal equalizer (LTE, made up of tapped delay

More information

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels

Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Optimal Data and Training Symbol Ratio for Communication over Uncertain Channels Ather Gattami Ericsson Research Stockholm, Sweden Email: athergattami@ericssoncom arxiv:50502997v [csit] 2 May 205 Abstract

More information

Estimation of Performance Loss Due to Delay in Channel Feedback in MIMO Systems

Estimation of Performance Loss Due to Delay in Channel Feedback in MIMO Systems MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Estimation of Performance Loss Due to Delay in Channel Feedback in MIMO Systems Jianxuan Du Ye Li Daqing Gu Andreas F. Molisch Jinyun Zhang

More information

Capacity of MIMO Systems in Shallow Water Acoustic Channels

Capacity of MIMO Systems in Shallow Water Acoustic Channels Capacity of MIMO Systems in Shallow Water Acoustic Channels Andreja Radosevic, Dario Fertonani, Tolga M. Duman, John G. Proakis, and Milica Stojanovic University of California, San Diego, Dept. of Electrical

More information

A VECTOR CHANNEL MODEL WITH STOCHASTIC FADING SIMULATION

A VECTOR CHANNEL MODEL WITH STOCHASTIC FADING SIMULATION A VECTOR CHANNEL MODEL WITH STOCHASTIC FADING SIMULATION Jens Jelitto, Matthias Stege, Michael Löhning, Marcus Bronzel, Gerhard Fettweis Mobile Communications Systems Chair, Dresden University of Technology

More information

Shallow Water Fluctuations and Communications

Shallow Water Fluctuations and Communications Shallow Water Fluctuations and Communications H.C. Song Marine Physical Laboratory Scripps Institution of oceanography La Jolla, CA 92093-0238 phone: (858) 534-0954 fax: (858) 534-7641 email: hcsong@mpl.ucsd.edu

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1 Fading : Theoretical Foundations of Wireless Communications 1 Thursday, May 3, 2018 9:30-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 23 Overview

More information

Reduced Complexity Space-Time Optimum Processing

Reduced Complexity Space-Time Optimum Processing Reduced Complexity Space-Time Optimum Processing Jens Jelitto, Marcus Bronzel, Gerhard Fettweis Dresden University of Technology, Germany Abstract New emerging space-time processing technologies promise

More information

Comparative Performance of Three DSSS/Rake Modems Over Mobile UWB Dense Multipath Channels

Comparative Performance of Three DSSS/Rake Modems Over Mobile UWB Dense Multipath Channels MTR 6B5 MITRE TECHNICAL REPORT Comparative Performance of Three DSSS/Rake Modems Over Mobile UWB Dense Multipath Channels June 5 Phillip A. Bello Sponsor: Contract No.: FA871-5-C-1 Dept. No.: E53 Project

More information

7 The Waveform Channel

7 The Waveform Channel 7 The Waveform Channel The waveform transmitted by the digital demodulator will be corrupted by the channel before it reaches the digital demodulator in the receiver. One important part of the channel

More information

Implementation of a Space-Time-Channel-Filter

Implementation of a Space-Time-Channel-Filter Implementation of a Space-Time-Channel-Filter Nadja Lohse, Clemens Michalke, Marcus Bronzel and Gerhard Fettweis Dresden University of Technology Mannesmann Mobilfunk Chair for Mobile Communications Systems

More information

Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks

Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks Cell Switch Off Technique Combined with Coordinated Multi-Point (CoMP) Transmission for Energy Efficiency in Beyond-LTE Cellular Networks Gencer Cili, Halim Yanikomeroglu, and F. Richard Yu Department

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless

Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless Exploiting Partial Channel Knowledge at the Transmitter in MISO and MIMO Wireless SPAWC 2003 Rome, Italy June 18, 2003 E. Yoon, M. Vu and Arogyaswami Paulraj Stanford University Page 1 Outline Introduction

More information

Point-to-Point versus Mobile Wireless Communication Channels

Point-to-Point versus Mobile Wireless Communication Channels Chapter 1 Point-to-Point versus Mobile Wireless Communication Channels PSfrag replacements 1.1 BANDPASS MODEL FOR POINT-TO-POINT COMMUNICATIONS In this section we provide a brief review of the standard

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels

Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels Intercarrier and Intersymbol Interference Analysis of OFDM Systems on Time-Varying channels Van Duc Nguyen, Hans-Peter Kuchenbecker University of Hannover, Institut für Allgemeine Nachrichtentechnik Appelstr.

More information

Limited Feedback in Wireless Communication Systems

Limited Feedback in Wireless Communication Systems Limited Feedback in Wireless Communication Systems - Summary of An Overview of Limited Feedback in Wireless Communication Systems Gwanmo Ku May 14, 17, and 21, 2013 Outline Transmitter Ant. 1 Channel N

More information

Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation

Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation Efficient Semi-Blind Channel Estimation and Equalization Based on a Parametric Channel Representation Presenter: Kostas Berberidis University of Patras Computer Engineering & Informatics Department Signal

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Multiplexing,

More information

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels

Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Tight Lower Bounds on the Ergodic Capacity of Rayleigh Fading MIMO Channels Özgür Oyman ), Rohit U. Nabar ), Helmut Bölcskei 2), and Arogyaswami J. Paulraj ) ) Information Systems Laboratory, Stanford

More information

ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS

ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS ESTIMATION OF VELOCITY IN UNDERWATER WIRELESS CHANNELS A Thesis Presented to The Academic Faculty by Bryan S. Blankenagel In Partial Fulfillment of the Requirements for the Degree Master of Science in

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Doubly-Selective Channel Estimation and Equalization Using Superimposed. Training and Basis Expansion Models

Doubly-Selective Channel Estimation and Equalization Using Superimposed. Training and Basis Expansion Models Doubly-Selective Channel Estimation and Equalization Using Superimposed Training and Basis Expansion Models Except where reference is made to the work of others, the work described in this dissertation

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

2. Wireless Fading Channels

2. Wireless Fading Channels Fundamentals of Wireless Comm. Andreas Biri, D-ITET.07.7. Introduction Modulation (frequency shift to carrier frequency): - enables multiple (slightly shifted) simultaneous channels - better channel characteristics

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg

FBMC/OQAM transceivers for 5G mobile communication systems. François Rottenberg FBMC/OQAM transceivers for 5G mobile communication systems François Rottenberg Modulation Wikipedia definition: Process of varying one or more properties of a periodic waveform, called the carrier signal,

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

A Wideband Space-Time MIMO Channel Simulator Based on the Geometrical One-Ring Model

A Wideband Space-Time MIMO Channel Simulator Based on the Geometrical One-Ring Model A Wideband Space-Time MIMO Channel Simulator Based on the Geometrical One-Ring Model Matthias Pätzold and Bjørn Olav Hogstad Faculty of Engineering and Science Agder University College 4898 Grimstad, Norway

More information

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY

WIRELESS COMMUNICATIONS AND COGNITIVE RADIO TRANSMISSIONS UNDER QUALITY OF SERVICE CONSTRAINTS AND CHANNEL UNCERTAINTY University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information

Wideband Fading Channel Capacity with Training and Partial Feedback

Wideband Fading Channel Capacity with Training and Partial Feedback Wideband Fading Channel Capacity with Training and Partial Feedback Manish Agarwal, Michael L. Honig ECE Department, Northwestern University 145 Sheridan Road, Evanston, IL 6008 USA {m-agarwal,mh}@northwestern.edu

More information

Improved Detected Data Processing for Decision-Directed Tracking of MIMO Channels

Improved Detected Data Processing for Decision-Directed Tracking of MIMO Channels Improved Detected Data Processing for Decision-Directed Tracking of MIMO Channels Emna Eitel and Joachim Speidel Institute of Telecommunications, University of Stuttgart, Germany Abstract This paper addresses

More information

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 564 Detection and Estimation of Signals in Noise Final Examination 6 December 2006 This examination consists of

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

ON THE SIMULATIONS OF CORRELATED NAKAGAMI-M FADING CHANNELS USING SUM OF-SINUSOIDS METHOD

ON THE SIMULATIONS OF CORRELATED NAKAGAMI-M FADING CHANNELS USING SUM OF-SINUSOIDS METHOD ON THE SIMULATIONS OF CORRELATED NAKAGAMI-M FADING CHANNELS USING SUM OF-SINUSOIDS METHOD A Thesis Presented to the Faculty of Graduate School of University of Missouri-Columbia In Partial Fulfillment

More information

2.3. Large Scale Channel Modeling Shadowing

2.3. Large Scale Channel Modeling Shadowing c B. Chen 2.3. Large Scale Channel Modeling Shadowing Reading assignment 4.9. Multipath Channel Because of the mobility and complex environment, there are two types of channel variations: small scale variation

More information

Chapter 2 Propagation Modeling

Chapter 2 Propagation Modeling Chapter 2 Propagation Modeling The design of spectrally efficient wireless communication systems requires a thorough understanding of the radio propagation channel. The characteristics of the radio channel

More information

Virtual Array Processing for Active Radar and Sonar Sensing

Virtual Array Processing for Active Radar and Sonar Sensing SCHARF AND PEZESHKI: VIRTUAL ARRAY PROCESSING FOR ACTIVE SENSING Virtual Array Processing for Active Radar and Sonar Sensing Louis L. Scharf and Ali Pezeshki Abstract In this paper, we describe how an

More information

On the MIMO Channel Capacity Predicted by Kronecker and Müller Models

On the MIMO Channel Capacity Predicted by Kronecker and Müller Models 1 On the MIMO Channel Capacity Predicted by Kronecker and Müller Models Müge Karaman Çolakoğlu and Mehmet Şafak Abstract This paper presents a comparison between the outage capacity of MIMO channels predicted

More information

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur Module Signal Representation and Baseband Processing Version ECE II, Kharagpur Lesson 8 Response of Linear System to Random Processes Version ECE II, Kharagpur After reading this lesson, you will learn

More information

How long before I regain my signal?

How long before I regain my signal? How long before I regain my signal? Tingting Lu, Pei Liu and Shivendra S. Panwar Polytechnic School of Engineering New York University Brooklyn, New York Email: tl984@nyu.edu, peiliu@gmail.com, panwar@catt.poly.edu

More information

Generalized Clarke Model for Mobile Radio Reception

Generalized Clarke Model for Mobile Radio Reception Generalized Clarke Model for Mobile Radio Reception Rauf Iqbal, Thushara D. Abhayapala and Tharaka A. Lamahewa 1 Abstract Clarke s classical model of mobile radio reception assumes isotropic rich scattering

More information

On the estimation of the K parameter for the Rice fading distribution

On the estimation of the K parameter for the Rice fading distribution On the estimation of the K parameter for the Rice fading distribution Ali Abdi, Student Member, IEEE, Cihan Tepedelenlioglu, Student Member, IEEE, Mostafa Kaveh, Fellow, IEEE, and Georgios Giannakis, Fellow,

More information

DETERMINING the information theoretic capacity of

DETERMINING the information theoretic capacity of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 7, JULY 007 369 Transactions Letters Outage Capacity and Optimal Power Allocation for Multiple Time-Scale Parallel Fading Channels Subhrakanti

More information

ELEC E7210: Communication Theory. Lecture 4: Equalization

ELEC E7210: Communication Theory. Lecture 4: Equalization ELEC E7210: Communication Theory Lecture 4: Equalization Equalization Delay sprea ISI irreucible error floor if the symbol time is on the same orer as the rms elay sprea. DF: Equalization a receiver signal

More information

ECS455: Chapter 5 OFDM. ECS455: Chapter 5 OFDM. OFDM: Overview. OFDM Applications. Dr.Prapun Suksompong prapun.com/ecs455

ECS455: Chapter 5 OFDM. ECS455: Chapter 5 OFDM. OFDM: Overview. OFDM Applications. Dr.Prapun Suksompong prapun.com/ecs455 ECS455: Chapter 5 OFDM OFDM: Overview Let S = (S 1, S 2,, S ) contains the information symbols. S IFFT FFT Inverse fast Fourier transform Fast Fourier transform 1 Dr.Prapun Suksompong prapun.com/ecs455

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 12 Doppler Spectrum and Jakes Model Welcome to

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Clemson University TigerPrints All Theses Theses 1-015 The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Allison Manhard Clemson University,

More information

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University Wireless Information Transmission System Lab. Channel Estimation Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction to Channel Estimation Generic Pilot

More information