Effects of electric static and laser fields on cold collisions of polar molecules. Roman Krems University of British Columbia

Size: px
Start display at page:

Download "Effects of electric static and laser fields on cold collisions of polar molecules. Roman Krems University of British Columbia"

Transcription

1 Effects of electric static and laser fields on cold collisions of polar molecules Roman Krems University of British Columbia

2 UBC group: Zhiying Li Timur Tscherbul Erik Abrahamsson Sergey Alyabishev Chris Hemming Collaborations: Alexei Buchachenko - Moscow Grzegorz Chalasinski - Warsaw Alex Dalgarno - Harvard John Doyle - Harvard Gerrit Groenenboom - Nijmegen Sture Nordholm - Sweden Maria Szczesniak - Michigan

3 Outline Introduction What's interesting about cold molecules? Methods to produce cold molecules Electric-eld-control of molecular collisions How electric elds can help cool molecules Collisions of molecules in a microwave cavity Threshold laws for collisions in 2D Outlook: Collision physics and ultra-cold molecules

4 Applications of cold molecules Tunable interactions Quantum computation High-precision spectroscopy Controlled chemistry The dipole-dipole interaction A. Micheli, G. K. Brennen, and P. Zoller, Nature Phys. 2, 341 (2006)

5 Tunable interactions Cold molecules Orientation and alignment Controlled chemistry

6

7 v=0, j=0 3 Σ 3 Π $ 0!"#$&%(' "*)+', -.&/"102-'354--3"% ;: ;--9<7-"===+> D(@5@E GF '3 "H/I8J!KJC"LM'-NO3"P+.CKJ35-G"02-'354--3" === >?@ BA C@ C, 5@ Q % 6AV@ %(-' Ẅ IK&"1) XKJYZIK&"[IJIKJ7-"\5KJ'&];KJ'^`_" ===+> b Q a %, k295l5`;"\5kj'&]mkj'^`_"502!kj78_;dc^`_"1=== > q v Ẅ (jn2@ ob, 0 b p#$.& ; "[IJIKJ7-" ===+> E+ 2$% EV,@rJ, 5@ sd b p#$&%(' "=== > tu@5 % sd b k295l5`;"502!kj78_;dc^`_"1=== > Q v h, bwa 5,,%xD y%, Z %(-' IK&"=== > Cjz&A 2z 5,,%x Z C P+_C3*];IK&"=== >

8 Experimental methods for cooling molecules

9 Magnetic trap

10 ) ) r A r B R $ #$% % %! "! & & & '(*),+ + +

11 Trap loss...

12 How do electric fields affect spin relaxation? Induce couplings between the rotational levels ( N = 1) Increase the energy gap between the rotational levels R. V. Krems, A.Dalgarno, N.Balakrishnan, and G.C. Groenenboom, PRA 67, (R) (2003)

13 Theory of collisions in external fields Coupled equations

14 Spin relaxation is suppressed

15 Enhancement of spin relaxation First-order Stark effect T. V. Tscherbul and R.V. Krems, PRL 97, (2006)

16 Enhancement of spin relaxation (a 3D view)

17 q q p q p q triplet state A + BC singlet state B + AC

18 Trap loss...

19 Microwave traps for polar molecules D. DeMille et al.: Microwave traps for cold polar molecules 379 Fig. 2. Energies of dressed states vs. applied microwave electric field strength. State labels are zero-field basis states ψ Jmn, DeMille, Glenn, and Petricka, Eur. J. Phys. D 31, 375 (2004)

20 Energy levels of a diatomic molecule in a microwave field 60 Energy (in units of rotational constant) µ ε 0 ( in units of rotational constant)

21 Energy levels of a diatomic molecules in a microwave field Energy (in units of rotational constant) µ ε 0 (in units of rotational constant)

22 Energy levels of a diatomic molecules in a microwave field Energy (in units of rotational constant) (N=0, n=q) (N=0, n=q-1) µ ε 0 (in units of rotational constant)

23 Collisions of molecules in a microwave cavity Molecular Hamiltonian: H mol = BN 2 Field Hamiltonian: H f = ω(aa n) Molecule - Field Hamiltonian: H mol,f = µ ω 2ɛ 0 V cos θ ( a + a ) Basis set: NM N n The matrix elements of of the molecule - eld Hamiltonian: n NM N H mol,f N M N n NM N cos θ N M N ( ) δ n,n +1 + δ n,n 1 NM N cos θ N M N δ M N,M N ( ) δ N,N +1 + δ N,N 1

24 Energy levels of a diatomic molecules in a microwave field Energy (in units of rotational constant) a(n=0, n=q) + b(n=1,n=q-1) + c(n=1,n=q+1) a(n=0, n=q-1) + b(n=1, n=q) + c(n=1,n=q-2) µ ε 0 (in units of rotational constant)

25 Superposition states of molecules in a microwave eld Ψ ground = a N = 0, n = N +b N = 1, n = N 1 + c N = 1, n = N + 1 +d N = 0, n = N 2 + e N = 0, n = N + 2 N is the average number of photons O-resonant light: w = 0.01B. µɛ 0 = 0.1B µɛ 0 = 0.3B µɛ 0 = 0.5B a = a = a = b = a = a = c = c = c = d = a = a = e = a = a = 0.448

26 Collisionally induced transitions between field-dressed states elastic scattering 10 3 ω = 1.9 B Cross section (Å 2 ) ω = 1.1 B ω = 0.01 B Collision energy: 0.3 cm µε 0 (in units of rotational constant)

27 Cross section for elastic scattering (Å 2 ) Change of a shape resonance in the presence of microwave radiation no field ω=1.9 B; µε 0 =0.5 B Collision energy (cm -1 )

28 Threshold laws for collisions in 2D

29 Threshold laws for collisions in 2D In 3D, we have Wigner's threshold laws for elastic scattering: collision cross section v 2l+2l In 2D, there is no l. The Hamiltonian is H = 1 d 2µρdρ ρ d dρ + l2 z 2µρ 2 + H as + V (ρ), The role of l is played by m, the projection quantum number. How are the Wigner's threshold laws modied, if we conne the system in 2D?

30 Let's look at low-energy scattering: In 3D, the Schrödinger's equation is [ 1 2µR 2 d dr R2 d dr ] l(l + 1) + 2µV (R) ψ(k, R) = k 2 ψ(k, R) 2µR2 Consider rst the solution to this equation with V = 0 and k = 0: [ 1 2µR 2 d dr R2 d dr ] l(l + 1) + 2µR 2 ψ(k, R) = 0 Let's look for the solution in the form ψ(r, k = 0) = constr s The derivative: 1 2µR 2 d dr R2 d dr Rs = s(s + 1)R s Hence, s(s + 1) = l(l + 1) or s = l and s = (l + 1).

31 A general solution at k = 0 is therefore ψ(k = 0, R) = A 1 R l + A 2 R (l+1) Now, for k 0, we have a Bessel equation and the general solution ψ(k, R) = Aj l (kr) + Bη l (kr) which can be re-written at small k as ψ(k, R) = (kr) l + tan δ l (kr) (l+1) For smooth and continuous matching to k = 0, we must require tan δ l k 2l+1 which gives after some manipulation: elastic scattering cross section k 4l

32 Repeating this derivation for 2D, we get cross secion 1 k ln 2 k, when m = 0 Using the formalism of Wigner, it is also possible to get the odiagonal cross sections: and cross secion for m = 0 m transitions k 2 m 1 1 ln 2 k cross secion for m > 0 m > 0 transitions k 2 m +2 m 1

33 Threshold collision laws Transition 3D 2D s-wave elastic σ = const σ 1 k ln 2 k s-wave to non-s-wave σ k 2l σ k 2 m 1 1 ln 2 k non-s-wave to non-s-wave σ k 2l+2l σ k 2 m +2 m 1 Why is this interesting?

34 Consider ultracold collisions of molecules in 2D. Angular momentum transfer of molecules - such as spin relaxation - must be accompanied by changes of m, if the magnetic eld axis is directed perpendicularly to the plane of connement If the magnetic eld axis is tilted, collisions do not have to conserve the total angular momentum projection Inelastic angular momentum transfer - such as spin relaxation - will then be much more ecient if the axis of the external eld is not perpendicular to the plane of connement.

35 B Suppressed collisional spin relaxation B Enhanced collisional spin relaxation

36 Conclusions Electric elds may suppress collisional loss from a magnetic trap Evaporative cooling in a microwave trap might be dicult (??) Microwave elds modify interactions of cold molecules Elastic and Inelastic Two-Body Collisions are modied in 2D

37 Outlook: Collision Physics and Ultracold Molecules Experiments with cold molecules may conrm or disprove Wigner's threshold laws more insight into long-range interactions elucidate rates for chemical reactions at ultracold Ts ultracold chemistry lots of applications demonstrate the possibility of controlling chemical reactions controlled chemistry lots of applications make coherent control of bimolecular reactions possible controlled chemistry provide new testground for statistical theories of molecules new reaction rate theories

38 References Z. Li and R. V. Krems, PRA 75, (2007). R. V. Krems, PRL 96, (2006). T. V. Tscherbul and R. V. Krems, PRL 97, (2006). T. V. Tscherbul and R. V. Krems, JCP 125, (2006). R. V. Krems, PRL 93, (2004). Reviews R. V. Krems, Nature Physics 3, 77 (2007). R. V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005). J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia Ultracold Molecules and Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Zhiying Li Timur Tscherbul ultra-cold cold warm hot 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

More information

Cold Controlled Chemistry. Roman Krems University of British Columbia

Cold Controlled Chemistry. Roman Krems University of British Columbia Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Zhiying Li Timur Tscherbul Outline Cold and ultracold molecules - denitions Chemistry at ultracold temperatures External

More information

Cold Controlled Chemistry. Roman Krems University of British Columbia

Cold Controlled Chemistry. Roman Krems University of British Columbia Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Timur Tscherbul Zhiying Li Outline Cold and ultracold molecules - denitions Chemistry at ultracold temperatures External

More information

Cold Controlled Chemistry. Roman Krems University of British Columbia

Cold Controlled Chemistry. Roman Krems University of British Columbia Cold Controlled Chemistry Roman Krems University of British Columbia Cold Chemistry Group at UBC Sergey Alyabyshev Chris Hemming Felipe Herrera Zhiying Li Timur Tscherbul Erik Abrahamsson UBC Physics Funding:

More information

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice!

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Sergey Alyabyshev Chris Hemming Felipe Herrera Zhiying Li UBC Physics Marina Litinskaya Timur

More information

Tunable crystals of ultracold polar molecules!

Tunable crystals of ultracold polar molecules! Tunable crystals of ultracold polar molecules! Sergey Alyabyshev Chris Hemming Felipe Herrera Jie Cui Marina Li9nskaya Jesus Perez Rios Ping Xiang Roman Krems! University of British Columbia! Zhiying Li,

More information

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia Collective excitations of ultracold molecules trapped on an optical lattice Sergey Alyabyshev

More information

Tunable excitons in ordered arrays! of ultracold polar molecules!

Tunable excitons in ordered arrays! of ultracold polar molecules! Tunable excitons in ordered arrays! of ultracold polar molecules! Sergey Alyabyshev Chris Hemming Felipe Herrera Jie Cui Marina Litinskaya Jesus Perez Rios Ping Xiang Roman Krems! University of British

More information

Roman Krems University of British Columbia

Roman Krems University of British Columbia Rotational Frenkel excitons in optical lattices with polar molecules Roman Krems University of British Columbia felipe-manuscript-comments-nov9.pdf felipe-manuscript-comments-dec9.pdf Ultracold molecules

More information

Cold and ultracold collisions involving open-shell diatomic molecules

Cold and ultracold collisions involving open-shell diatomic molecules Lunteren 2005 p. 1/31 Cold and ultracold collisions involving open-shell diatomic molecules Gerrit C. Groenenboom Institute of Theoretical Chemistry University of Nijmegen The Netherlands Lunteren 2005

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Dynamics of \(OH(^{2}\Pi) He\) Collisions in Combined Electric and Magnetic Fields

Dynamics of \(OH(^{2}\Pi) He\) Collisions in Combined Electric and Magnetic Fields Dynamics of \(OH(^{2}\Pi) He\) Collisions in Combined Electric and Magnetic Fields The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

More information

Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada. Roman Krems

Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada. Roman Krems Applications of Gaussian Process Model in Molecular Dynamics University of British Columbia Vancouver, Canada Roman Krems Gaussian Process Model for Collision Dynamics of Complex Molecules, Jie Cui and

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Ab initio study of Tm-He interactions and dynamics in a magnetic trap

Ab initio study of Tm-He interactions and dynamics in a magnetic trap Ab initio study of Tm-He interactions and dynamics in a magnetic trap A. A. Buchachenko Department of Chemistry, Moscow State University, 119992 Moscow, Russia and Department of Chemistry, Oakland University,

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

The He CaH 2 interaction. II. Collisions at cold and ultracold temperatures

The He CaH 2 interaction. II. Collisions at cold and ultracold temperatures JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 16 22 APRIL 2003 The He CaH 2 interaction. II. Collisions at cold and ultracold temperatures N. Balakrishnan a) Department of Chemistry, University of Nevada

More information

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University Cold Molecules and Controlled Ultracold Chemistry Jeremy Hutson, Durham University QuAMP Swansea, 11 Sept 2013 Experimentally accessible temperatures What is already possible in ultracold chemistry? Take

More information

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York Physics and Chemistry with Diatomic Molecules Near Absolute Zero Tanya Zelevinsky & ZLab Columbia University, New York Pupin Labs @ Columbia E. Fermi I. I. Rabi 10 What is Ultracold? MK kk 7 6 5 4 3 2

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

A few issues on molecular condensates

A few issues on molecular condensates A few issues on molecular condensates Outline Background Atomic dark state and creating ground molecular BEC Superchemistry and coherent atom-trimer conversion Quantum dynamics of a molecular matterwave

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental symmetries. Steven Hoekstra

Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental symmetries. Steven Hoekstra Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental symmetries Steven Hoekstra Deceleration and trapping of heavy diatomic molecules for precision tests of fundamental

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Large spin relaxation rates in trapped submerged-shell atoms

Large spin relaxation rates in trapped submerged-shell atoms Large spin relaxation rates in trapped submerged-shell atoms The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society P R L HYSICAL EVIEW ETTERS Articles published week ending Volume 98, Number 25 Member Subscription Copy Library or Other Institutional Use Prohibited Until 2012 Published by The American Physical Society

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Influence of magnetic fields on cold collisions of polar molecules

Influence of magnetic fields on cold collisions of polar molecules PHYSICAL REVIEW A 71, 022709 2005 Influence of magnetic fields on cold collisions of polar molecules Christopher Ticknor and John L. Bohn JILA, University of Colorado, Boulder, Colorado 80309, USA Received

More information

Noble-gas quenching of rovibrationally excited H 2

Noble-gas quenching of rovibrationally excited H 2 Noble-gas quenching of rovibrationally excited H 2 N. Balakrishnan*, and Bradley C. Hubartt Department of Chemistry, University of Nevada-Las Vegas, Las Vegas, Nevada 89154, USA Luke Ohlinger and Robert

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Cold molecule studies of OH, NH, and metastable CO

Cold molecule studies of OH, NH, and metastable CO ACS, April 2008 p. 1/26 Cold molecule studies of OH, NH, and metastable CO Gerrit C. Groenenboom Theoretical Chemistry Institute for Molecules and Materials Radboud University Nijmegen The Netherlands

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Theoretische Physik III, Universität Stuttgart, Germany Outline Introduction to polar molecules - quantum melting transition

More information

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides Ludovic Pricoupenko Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université Paris IHP - 01 February 2018 Outline Context

More information

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases Okinawa School in Physics 2017 Coherent Quantum Dynamics Cold ydberg gases 1. Basics of ydberg atoms 2. ydberg atoms in external fields. ydberg-ydberg interaction Wenhui Li Centre for Quantum Technologies

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Magnetic relaxation in dysprosium-dysprosium collisions

Magnetic relaxation in dysprosium-dysprosium collisions Magnetic relaxation in dysprosium-dysprosium collisions Bonna K. Newman, 1, 3 Nathan Brahms, 2, 3 Yat Shan Au, 2, 3 Cort Johnson, 1, 3 Colin B. Connolly, 2, 3 John M. Doyle, 2, 3 Daniel Kleppner, 1, 3

More information

Spin-orbit relaxation of Cl 2 P 1/2 and F 2 P 1/2 in a gas of H 2

Spin-orbit relaxation of Cl 2 P 1/2 and F 2 P 1/2 in a gas of H 2 THE JOURNAL OF CHEMICAL PHYSICS 126, 184303 2007 Spin-orbit relaxation of Cl 2 P 1/2 and F 2 P 1/2 in a gas of H 2 Erik Abrahamsson Department of Chemistry, University of British Columbia, Vancouver, British

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Collision between magnetically trapped NH molecules in the N =0,J =1 state

Collision between magnetically trapped NH molecules in the N =0,J =1 state PHYSICAL REVIEW A 74, 03710 006 Collision between magnetically trapped NH molecules in the N =0,J =1 state Masatoshi Kajita National Institute of Information and Communications Technology, 4--1 Nukui-Kitamachi,

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3 D. De Fazio, T. V. Tscherbul, S. Cavalli 3, and V. Aquilanti 3 1 Istituto di Struttura della Materia C.N.R., 00016 Roma, Italy Department of Chemistry, University of Toronto, M5S 3H6, Canada 3 Dipartimento

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

Prospects for a superradiant laser

Prospects for a superradiant laser Prospects for a superradiant laser M. Holland murray.holland@colorado.edu Dominic Meiser Jun Ye Kioloa Workshop D. Meiser, Jun Ye, D. Carlson, and MH, PRL 102, 163601 (2009). D. Meiser and MH, PRA 81,

More information

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

POLAR MOLECULES NEAR QUANTUM DEGENERACY * POLAR MOLECULES NEAR QUANTUM DEGENERACY * JUN YE AND DEBORAH S. JIN JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder,

More information

Isotope Effects in Complex Scattering Lengths for He Collisions With Molecular Hydrogen

Isotope Effects in Complex Scattering Lengths for He Collisions With Molecular Hydrogen Isotope Effects in Complex Scattering Lengths for He Collisions With Molecular Hydrogen The Harvard community has made this article openly available. Please share how this access benefits you. Your story

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

arxiv: v1 [quant-ph] 21 Apr 2009

arxiv: v1 [quant-ph] 21 Apr 2009 Cold and Ultracold Molecules: Science, Technology, and Applications arxiv:0904.3175v1 [quant-ph] 21 Apr 2009 Lincoln D. Carr Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Quantum billiards and microwave resonators as a model of the compound

More information

Net Polarization of a Molecular Beam by Strong Electrostatic or Radiative Fields

Net Polarization of a Molecular Beam by Strong Electrostatic or Radiative Fields Net Polarization of a Molecular Beam by Strong Electrostatic or Radiative Fields Bretislav Friedrich Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D-495 Berlin, Germany Abstract We present

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Spin-orbit interaction and large inelastic rates in bismuth-helium collisions

Spin-orbit interaction and large inelastic rates in bismuth-helium collisions Spin-orbit interaction and large inelastic rates in bismuth-helium collisions S. E. Maxwell, 1, * M. T. Hummon, 1 Y. Wang, 1 A. A. Buchachenko, 2,3 R. V. Krems, 2 and J. M. Doyle 1 1 Physics Department,

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

Trapping of slow-speed particles in a gas cell by the nonhomogeneous electromagnetic field intensifying with time

Trapping of slow-speed particles in a gas cell by the nonhomogeneous electromagnetic field intensifying with time Trapping of slow-speed particles in a gas cell by the nonhomogeneous electromagnetic field intensifying with time Azad Ch. Izmailov Institute of Physics, Azerbaijan National Academy of Sciences, Javid

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt =

Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = Conservation of Linear Momentum : If a force F is acting on particle of mass m, then according to Newton s second law of motion, we have F = dp /dt = d (mv) /dt where p =mv is linear momentum of particle

More information

A Chromium BEC in strong RF fields

A Chromium BEC in strong RF fields Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal,

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Interaction of NH X 3 with He: Potential energy surface, bound states, and collisional Zeeman relaxation

Interaction of NH X 3 with He: Potential energy surface, bound states, and collisional Zeeman relaxation THE JOURNAL OF CHEMICAL PHYSICS 122, 094307 2005 Interaction of NH X 3 with He: Potential energy surface, bound states, and collisional Zeeman relaxation H. Cybulski Department of Chemistry, University

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

arxiv: v3 [cond-mat.quant-gas] 5 May 2015

arxiv: v3 [cond-mat.quant-gas] 5 May 2015 Quantum walk and Anderson localization of rotational excitations in disordered ensembles of polar molecules T. Xu and R. V. Krems 1 arxiv:151.563v3 [cond-mat.quant-gas] 5 May 215 1 Department of Chemistry,

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT LECTURE II Review of ground-state DFT LECTURE

More information

Cold and Slow Molecular Beam

Cold and Slow Molecular Beam Cold and Slow Molecular Beam Hsin-I Lu, a,b Julia Rasmussen, c,b Matthew J. Wright, c,b Dave Patterson, c,b and John M. Doyle c,b Employing a two-stage cryogenic buffer gas cell, we produce a cold, hydrodynamically

More information

Quantum Control of the Spin-Orbit Interaction Using the Autler-Townes Effect. Abstract

Quantum Control of the Spin-Orbit Interaction Using the Autler-Townes Effect. Abstract APS/123-QED Quantum Control of the Spin-Orbit Interaction Using the Autler-Townes Effect E. H. Ahmed, S. Ingram, O. Salihoglu, Y. Guan, and A. M. Lyyra Department of Physics, Temple University, Philadelphia,

More information

A.4 - Elements of collision theory 181

A.4 - Elements of collision theory 181 A.4 - Elements of collision theory 181 A.4 Elements of collision theory The behavior of a many body system depends crucially on the interactions between particles, as epitomized by the BEC-BCS crossover.

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke Optical Lattice Clock with Spin-1/2 Ytterbium Atoms Nathan D. Lemke number of seconds to gain/lose one second Clocks, past & present 10 18 10 15 one second per billion years one second per million years

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 12 July 2013 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hutson, J.M. and Beyene, M.

More information

Lecture 4: Polarimetry 2. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Lecture 4: Polarimetry 2. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline Lecture 4: Polarimetry 2 Outline 1 Scattering Polarization 2 Zeeman Effect 3 Hanle Effect Scattering Polarization Single Particle Scattering light is absorbed and re-emitted if light has low enough energy,

More information

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science Heavy Atom Quantum Diffraction by Scattering from Coworkers: Dr. Jeremy M. Moix Surfaces Eli Pollak Chemical Physics Department Weizmann Institute of Science Grants: Israel Science Foundation Weizmann-UK

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information