Amsterdam, December 13, Outline

Size: px
Start display at page:

Download "Amsterdam, December 13, Outline"

Transcription

1 Unification Scale Physics Wim de Boer IEKP, University Karlsruhe deboerw Amsterdam, December 13, 2 Outline Introduction MSSM Constraints Positron fraction in the CMSSM Parameter Space Comparison with HEAT and AMS data Summary Wim de Boer Amsterdam, December 13th, 2 1

2 SUSY is a symmetry between fermions and bosons It can be realized in nature only by presupposing a spin j 1/2 partner for each spin j particle of the SM. Since e.g. spin 0 electrons have not been observed, these shadow particles must be heavier ( broken supersymmetry) Nomenclature for Sparticles: gluinos, winos, zinos, photinos: spin 1/2 gauge bosons selectrons, smuons, staus, sneutrinos: spin 0 leptons stop, sbottom, squark,...:spin 0 quarks Higgsinos: spin 1/2 partners of Higgs bosons charginos: 2 mass eigenstates: mixture of winos and charged Higgsinos neutralinos: 4 mass eigenstates: mixture of neutral gauge bosons and Higgsinos Wim de Boer Amsterdam, December 13th, 2 2

3 Unification of the Coupling Constants in the SM and the minimal MSSM 1/α i /α i /α 1 MSSM /α /α log Q log Q U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) coupling constants of electromagnetic, weak, and strong interactions due to radiative corrections (LO) Wim de Boer Amsterdam, December 13th, 2 3

4 ) (% % '&% % * * " % 0 Running Coupling Constants Electric Charge q Colour Charge Quantum Fluctuations around pointlike charge create energy-dependent (running) effective charge. (Allowed by Einstein (E=mc ) and Heisenberg ( )) QED: Shielding of bare charge by pairs. Reduced charge at large distance (or low energy.) At LEP instead of at low energy "$# QCD: In contrast to photons, GLUONS carry (colour) charge THEMSELVES Not only splitting into pairs, but into gluons as well Gluons enhance charge Antishielding (which dominates over shielding) opposite running At LEP instead of at the proton mass.,+ "$# &% -/. Wim de Boer Amsterdam, December 13th, 2 4

5 A < C B Running of strong coupling constant jet fraction / % a) y cut = 0.0 AMY JADE MARK II TASSO VENUS LEP 3-jet fraction 9;: 2 24 QCD, α s (m Z ) = 0.11 µ 2 = 0.0 s =>@? From: T. Hebbeker, Phys. Rep. 217(1992) s / GeV Wim de Boer Amsterdam, December 13th, 2 5

6 KL J I 9 G E KKWW V U P P cbww a S P P P S _ Q Which CC needed for unification? values (calc. up ): 9HG Most precise to sin 2 θw from (m 0 MON : 9HG, )F (100,100) (Higgs) WYX PRQ S U TS PRQ WWWW WYX from (,) (300,300) ^ [ Z\[ ] 9 G (500,500) 0,b A FB (Higgs) WYX PRQ ` _S S PRQ (1000,1000) WWWW WYX world avg. A LR (SLD) Larger value of clearly preferred for unification with SUSY masses below a few TeV. 9HG 0.23 (Note: small value of from sensitive to theoretical error on luminosity ) 9HG world avg. [ Z\[ ] L Kgf Jed α s Wim de Boer Amsterdam, December 13th, 2 6

7 h Triple Yukawa Unification Y t Y b Y τ Infrared Fixed Points for all Yukawas at large i.e. values of Yukawa couplings at low energy largely independent of starting values at the GUT scale m l ikj Low energy values consistent with top, bottom and tau mass log E Wim de Boer Amsterdam, December 13th, 2 7

8 o s o s o n =Yτ ˆ Œ. Š ŠŽ ˆ Œ ˆ Yukawa Unification 220 prs = prq o m l ikj } xzy{ ql q t 10 Mtop Ju w t p v } xzy{ s ql Ju µ(0) > 0 µ(0) < w ~ p v q~ } xzy{ s ql } xzy{ s w Ju p v q Y t Yt/b (0) 10-3 w o w ~ 10-4 Y b r and ƒ Relation between Preferred: χ 2 or Š. ˆ # r 20 r Ž 10 scenario excluded by Higgs limit r Low 0 tan β 1 10 Wim de Boer Amsterdam, December 13th, 2

9 CMSSM Sparticle Spectrum mass From RGE equations: q ~ L t ~ L t ~ R l ~ L Bino ~ l R Wino Gluino m 1 m 2 tan β = 50 Y t = Y b = Y τ (µ 0 2+m 0 2) m log 10 Q Characteristic MSSM Features: Squarks and gluinos heavy through strong rad. corr. Gaugino from U(1) (=Bino) Lightest Neutral SUSY Particle (LSP) (if not too large w.r.t. ) Mass terms in Higgs potential driven negative by Yukawa couplings EWSB (determines ) Higgs mixing parameter usually large compared with Consequently: Pseudoscalar Higgs and higgsinos heavy light Higgs SM-higgs-like LSP bino-like, since no mixing with heavy higgsinos very good DARK MATTER candidate Wim de Boer Amsterdam, December 13th, 2 9

10 Ÿ " µ µ µ µ š " š ³ Ÿ µ µ µ µ ± Ÿ ˆ Ÿ & & ½ - # # ¼ ¼ # ¼ ¼ Å - Ž & Ÿ Ž Higgs mechanism predicted in MSSM & $œ š ): # The MSSM requires two Higgs doublets ( ª «" # ž ª " # ž The tree level potential for the neutral sector can be written as: ² ² ¹ š.. ² ² ² ³ š ² ³ ² " # ² Note: Couplings are GAUGE couplings, not arbitrary as in SM Electroweak Symmetry Breaking, if potential has minimum with non-zero v.e.v. r Æ ÃÀÄ ÂÁ ¾À ËÍÌ ÇÉÈÊ one can derive easily: º» º º» º From - Ž At GUT scale:, but at due to loop corrections from heavy top mass Only works for # # # GeV - Ð% Ž3Ï Î - % Wim de Boer Amsterdam, December 13th, 2 10

11 Fundamental Questions in Physics: Particle Physics Cosmology Why do the electroweak and strong forces have such different strengths? What is the origin of mass? Why is the hydrogen atom exactly neutral? What is Dark Matter made off? Why does matter(atoms, galaxies..) exist? How where galaxies formed? Possible Solution to all questions simultaneously: SUPERSYMMETRY Wim de Boer Amsterdam, December 13th, 2 11

12 ãâ ã è ãâû Typical Fits to AMS+HEAT Data vs ÑÒ Ó e + /(e + + e - ) fraction bg+22 signal χ 2 =24.2 bg (ep-scaling=0.91) bg only fit χ 2 =4.0 HEAT 94/95/0 AMS 01 tanβ= 1.6; m 0 = ; = 300 e + /(e + + e - ) fraction bg+175 signal χ 2 =25.1 bg (ep-scaling=0.6) bg only fit χ Ô2=4.0 HEAT 94/95/0 AMS 01 tanβ=50; m 0 = 500; = 500 W + W - b b b b τ + τ positron energy 10-3 τ + τ positron energy ç ä å à Ù á ã Þ ØÚÙ rö ç äæå à Ù á ÝßÞ Û/Ü ØÚÙ rö Wim de Boer Amsterdam, December 13th, 2 12

13 ãâ ã è More Fits e + /(e + + e - ) fraction tot (boost = 95) χ 2 = 30.7 bg (ep-scaling = 0.4) bg only fit χ 2 = 56.0 TS 93 Golden(96) CAPRICE 94 Boezio(97) HEAT 94/95/00 AMS 01 tanβ = 50; m 0 = 300; = 500 e + /(e + + e - ) fraction t t bg+400 signal χ 2 =2.99 bg (ep-scaling=0.3) bg only fit χ Ô2=4.0 HEAT 94/95/0 AMS 01 tanβ=1.6; m 0 = 500; = 500 b b positron energy positron energy ç ä å ãâ ã à Ù á ÝßÞ Û/Ü Ø Ù rö ç ä å à Ù á ã Þ ØÚÙ rö Wim de Boer Amsterdam, December 13th, 2 13

14 í í ì ì ÿ ø ø þ Dark Matter Annihilation equals B-Physics at LEP WILL SHOW: at large quark pairs PRESENT LIMITS ON ékêë é êë the annihilation is predominantly into large enough for this to happen Therefore: Dark Matter annihilates dominantly into b-quarks Energy of the b-quarks: öõôó îðïòñ ùúú îüûý B-meson decay WELL understood in Dark Matter energy range Stable particles from dark matter annihilation are: will propagate in the universe ñ, which Hard positron spectrum from semileptonic B-decays allows separation from antimatter, produced by secondary processes in universe Much more difficult for soft antiprotons Impossible for matter particles Antimatter will NOT penetrate atmosphere. Need detectors in space Wim de Boer Amsterdam, December 13th, 2 14

15 à à à à Ü % Ü ' < 6; Gaugino Fraction of the LSP Neutralino Mass Mixing Matrix: 1 From RGE: # Þ $% ã " ã " gaugino fraction & Þ $% Þ " $% 2 0 (1, *.- % (/0, *.- à+* Ù () Neutralino: à ( 3 %, *.- à (3, * Gaugino Fraction: < 9 : <>= 9 m0 9: 6 7 gaugino fraction SMALL coupling to Higgs and gauge *? Large Wim de Boer Amsterdam, December 13th, 2 15

16 l jj c c ¾ h i j ¾ h f á g - h x y r M x y z ut uu x y j f o à s j o j à s o b ¾ % o ) o Ø Þ Þ Þ à Þ CMSSM Fitprocedure ¾i in mn k h xw uv t pqrso l Choose the 10 GUT supergravity inspired parameters: N JL xw {} ~ pqzso M D IKJL $H D AGF ACBED ƒ l xw T UZY T D U.X T D UWV T D S Ø D OQPR ' D l t pq so Minimize the Higgs potential in order to determine N\[ ¾ l k j 42Ž 2 l Œ ¾Š ¾Ĝ k Calculate masses and couplings at low energies by integrating about 30 coupled RGE s and decoupling sparticles at thresholds 22Ž ¾ ce _ /^] šœ k calculate žhÿ j žh Ÿ k Determine the best parameters by minimizing. j * * Gª «Š ¾ oá j %à ¾ ± ³² k rö $% D strongly correlated. Repeat fits for all pairs of $% à D and Wim de Boer Amsterdam, December 13th, 2 16

17 ¼ ¾ ã½ ' Þ Ù ± Þ b Anom. magn. moment 'and µ µ ǹ vs ºÒ Ó 130»h m µ > 0 µ < 0 µ > 0 µ < 0 m0 / 1000 / 1000 / tanβ strongly preferred from ce cd à D Þ GeV À # Û Û Ü ½ à D Ø Þ D rö $% D Wim de Boer Amsterdam, December 13th, 2 17

18 ½ Ø Û Û ½ ± Þ Û âû Å À ÄÀ à " å È 4 Û 4 Û è 4 Û À ã Ü Experimental Limits on ºÂÁ Ó χ total a µ = 339(112) b sγ = 3.43(0.53) 10-4 m h > GeV 6 tan β > 6.5 (95% CL) tan β at 95% C.L., if new data from g-2 (E21 Coll., PRL 9(2)10104), (BaBAR, hep-ex/ ) and Higgs limit GeV are included. Note 1: away from SM, if data is used for calculating vacuum polarization; only, if hadronic -decays are used (M. Davier et al., hep-ph/020177); looking forward to KLOE data. Note 2: new Babar data ( ) closer to SM ( ) than previous CLEO ( ) data rö ã è Ý Ü Ù b _ / ] Û ã ÀÇÆ ÝÇÆ Û/Ü Ù Ü ãå Û âàü ã À # Ü Ü ãå & & À Ü ã o å Å É À Ü Wim de Boer Amsterdam, December 13th, 2 1

19 Ê Ê Ê Î Ñ Ö Ù Øa Ó Electroweak precision data in MSSM and SM SM: χ 2 /d.o.f = 33.1/17 MSSM: χ 2 /d.o.f = 22.4/13 CMSSM: χ 2 /d.o.f = 29.2/1 LEP: SLC: M Z Γ Z σ had R l l A FB R b R c b A FB c A FB M t sin 2 lept Θ eff M W (LEP) sin 2 Θ lept (A LR ) eff b X s γ SM fit has prob. 1.1%, i.e. excluded at 99% C.L.? Rescale errors from and NO significant change in parameters, but probability %, because of anomalous magne- and MSSM reduced tic moment, Ë ÌÍ ÑŽÒÔÓ ÏÐ MSSM results from MSSM-Fitter (see WdB, W. Hollik et al., Z.Phys. C75(1997) 627 and hepph/ ) SM results obtained with ZFITTER6.11 (see D. Bardin et al., hep-ph/ ) a µ SUSY pulls=(data-theo)/error Wim de Boer Amsterdam, December 13th, 2 19

20 Û Ù Ó âá Ù à Ó Ú Mass 0.55 W-Boson Mass M W pp -colliders ± LEP ± MSSM m t LEP2+pp Ü =179.4 GeV Average ± χ 2 /DoF: 0.0 / 1 NuTeV ± 0.04 LEP1/SLD ± SM GeV LEP1/SLD/m t ± m W m susy Direct measurements of ( above SM prediction from ). Ù\ãåä ÙWæ ä ÑÒ Ó Ï ÎÐ Ùèç ä ÝßÞ data Better agreement between direct and indirect measurements, if radiative corrections include SUSY contributions. Wim de Boer Amsterdam, December 13th, 2 20

21 î êë ï í ì ó â õô õô ó à ö ö û ú ü ú ú é and ðò ðñ ) 10-4 Br(b X s γ m a µ SUSY m MSSM Contributions: Combined Data on from ALEPH, BaBar, CLEO, BEL- LE slightly BELOW SM prediction, if one uses running c-quark mass a â (Gambino and Misiak, hep-ph/ ) øþý øeù ø ý ø ù øeÿ ø ù Data on anomalous magnetic moment from E-21 slightly ABO- VE SM prediction, after correcting sign error in SM prediction from light-by-light scattering Wim de Boer Amsterdam, December 13th, 2 21

22 Dark Matter Density Physics Input Flat universe, if total density equals critical density, or Reacceleration of universe, as measured by redshift from Supernova Ia, depends on DIFFERENCE of and, while position of first acoustic peak in the CMB is sensitive to the flatness of the universe, i.e. SUM of and. ææ â æ æ ææ ææ à æ Wim de Boer Amsterdam, December 13th, 2 22

23 Dark Matter Density Composition of the Universe: 77% Vacuumenergy, 20% non-baryonic dark matter, 3% baryonic. Wim de Boer Amsterdam, December 13th, 2 23

24 ' & ' & % &( &( &( &( &( ' & 0 7 â Ö Ö ; ; Ý Ö Ö â Ë Ö Ö â Ë Ö Ö â 7 Main Diagrams for Neutralino Annihilation Gauge Bosons Fermions + )* "$# "$# "$# "$# ",# ",# '/. ' # "-# "-# To Note: 1. Light fermion pairs suppressed due to Pauli-Principle (neutralinos are Majorana particles and fermions Pauli-Principle at zero momentum p-wave fermion mass ) 2. for Ð 132 :9 fermion pairs dominate :9 Ö Ö â B <>= Ý Ö Ö â C C 5 5 < = (Neg. interference with t-channel) (Pos. interference with t-channel) ) 4. RESULT: dominates over (for 4 5 Ð 1 2 ) Wim de Boer Amsterdam, December 13th, 2 24

25 J I H G H G c d c PW _ ^ jr { z ] \ W y [ x r w ` ab M N PQ PO jk ji V à p-wave suppression at low momentum for light final states at low neutralino momenta ÑFE 0 D N L K N KJL,M hg g dfe ƒ ~} W P Y r j u W P PZY r j jvu O PW L i rjs t rjs X PW L q ljmonp RPSTU à9 Ë Š 7 Œ à9 Ë æ Š Ž 7 Œ à ó Š 7 à Ñ à Þ Wim de Boer Amsterdam, December 13th, 2 25

26 ¾ º à  Á ª À œ ½ º ¼ º œ» º µ œ ³ œ ¹ 4 Ð f Pseudoscalar Higgs exchange vs Ë Ö Þ Ö Þ Ë Ö Þ Ö Þ ² ± ± ««š ž Ÿ. 1 2 dominates at large Ë Ö Þ Ö Þ Wim de Boer Amsterdam, December 13th, 2 26

27 ð ï ï Å Ä Ä üõ Ü Û Ó Ú Ù ü íì éç ç õö õô ËÌ ËÊ 7 à f s,t-channel Interferences at large final state final state Higgs small, Z large for Higgs large, Z small for óò ò ðçñ ÉÈ È ÅÇÆ ÓËØ ò ò ò Ý ÝßÞ ü õ ÿ ãëê ãä â å æå èà Ýáà Ó Ë Ö ãä â å æå ü õ õ ÿ Ó Ë Ë Ö ô üõý Ê ÓËÔ þ üõý í éî ç ãä â å æå èà ÓËÔ û õøðùú Ò ÍËÎÐÏÑ (t-ch, Higgs) Interf. POS, (t-ch, Z) Interf. NEG ) final states suppressed (enhanced) due to interferences ( final state dominates at large 7 Œ à9 7 Œ à9 æ Ž à ó à à Þ Wim de Boer Amsterdam, December 13th, 2 27

28 LK E & \ [ = < Z ; Y : V NR X 7 /3 9 ON 0/ NM /. A ` aa ` 7 f x-section vs FGIH GIJ CD AB -, + ')(* * "#%$ W NR /3 E] ] E^^ #?> > # U NR 6 /3 T NR 5 /3 S NR 4 /3 Q P GIJ 2 1(* âa a ( )? <>= ; ( âa a æ D æ ) _ Þ _ Þ 9 _ Þ _ Þ DOMINANT _ Þ _ Þ : For Wim de Boer Amsterdam, December 13th, 2 2

29 d b kj i h g D f e c n 7 7 n x x t aa x x u { { wy z y Þ} Þ} Comparison of X-sections in CalcHEP and darksusy cm s GeV 9 l q n 9 sr l GeV Žq l Ïp 7on Œ 4ml 1 2 GeV l GeV lþ CalcHEP darksusy Iw u q Iw vu q q u t w w w q u w q u Œ Iw u Iw vu w z Feynarts agrees with CalcHEP concerning Wim de Boer Amsterdam, December 13th, 2 29

30 ~ a a Neutralino Annihilation X-sections for f <σv> [cm 3 s -1 ] sigv_bb m 0 <σv> [cm 3 s -1 ] sigv_tt m 0 Wim de Boer Amsterdam, December 13th, 2 30

31 ~ z y y Neutralino Annihilation X-sections for f <σv> [cm 3 s -1 ] sigv_tau m 0 <σv> [cm 3 s -1 ] sigv_ww m 0 w Wim de Boer Amsterdam, December 13th, 2 31

32 ~ a a Neutralino Annihilation X-sections for f <σv> [cm 3 s -1 ] sigv_bb m 0 <σv> [cm 3 s -1 ] sigv_tt m 0 Wim de Boer Amsterdam, December 13th, 2 32

33 ~ z y y Neutralino Annihilation X-sections for f <σv> [cm 3 s -1 ] sigv_tau m 0 <σv> [cm 3 s -1 ] sigv_ww m 0 w Wim de Boer Amsterdam, December 13th, 2 33

34 ~ Neutralino Annih. total X-sections for f and <σv> [cm 3 s -1 ] sigmav m 0 <σv> [cm 3 s -1 ] sigmav m 0 l ƒ l ƒ Wim de Boer Amsterdam, December 13th, 2 34

35 ˆ contr. for AMS+HEAT Data vs f l ƒ l ƒ χ 2 - term χ 2 - term χ m χ m Wim de Boer Amsterdam, December 13th, 2 35

36 Boost factor for combined AMS and HEAT Data l ƒ l ƒ boost factor boost m boost factor boost m Wim de Boer Amsterdam, December 13th, 2 36

37 What about antiprotons? p flux [GeV -1 cm -2 s -1 sr -1 ] tanβ = 50 m 0 = 300 GeV = 500 GeV Φ F = 500 MeV tot (boost = 1) χ 2 = 13.3 signal(dsusy) bg (SMR) χ 2 = 12.9 MASS 91 Basini(99) IMAX 92 Mitchell(96) CAPRICE 94 Boezio(97) BESS 95/97 Orito(00) CAPRICE 9 Boezio(00) p flux [GeV -1 cm -2 s -1 sr -1 ] tanβ = 50 m 0 = 300 GeV = 500 GeV Φ F = 900 MeV tot (boost = 7) χ 2 = 12.9 signal(dsusy) bg (SMR) χ 2 = 14. MASS 91 Basini(99) IMAX 92 Mitchell(96) CAPRICE 94 Boezio(97) BESS 95/97 Orito(00) CAPRICE 9 Boezio(00) antiproton energy Solar Modulation 500 GeV antiproton energy Solar Mod. 900 GeV Wim de Boer Amsterdam, December 13th, 2 37

38 AMS02 is a state of the art detector to separate matter from antimatter: High resolution spectrometer based on silicon sensors in a superconducting 0.9 T Magnet, Transition Radiation Detector, RICH counter and calorimeter to identify particles. Wim de Boer Amsterdam, December 13th, 2 3

39 Expected Flight Date: 5 Wim de Boer Amsterdam, December 13th, 2 39

40 Wim de Boer Amsterdam, December 13th, 2 40

41 Š Š Possible AMS-02 Data in 6 one year AMS one year AMS e + /(e + + e - ) fraction 10-1 DarkSUSY (boost = 90) bg Mosk-Strong (e + -scale=0.5) MonteCarlo tanβ= 50; m 0 = 300; = 500 e + /(e + + e - ) fraction 10-1 DarkSUSY (boost = 250) bg Mosk-Strong (e + -scale=0.) MonteCarlo tanβ= 50; m 0 =1000; = positron energy positron energy Ž Œ Þ l Ž Œ% Þ l ml ƒ Wim de Boer Amsterdam, December 13th, 2 41

42 ˆ Š Š Possible after one year AMS excl. LSP 90 % CL 99 % CL tanβ=50; m 0 =500; = excl. LSP 90 % CL 99 % CL tanβ=50; m 0 =1000; = χ 2 m χ 2 m 0 Ž Œ Þ l Ž Œ% Þ l ml ƒ Wim de Boer Amsterdam, December 13th, 2 42

43 š ž œ Ÿ ž ž ž ž Summary Low values of ( LEP Higgs Limit and ) excluded by electroweak data (g-2, ) At larger values of ž ž DOMINANT FINAL STATE FINAL STATE has orders of magnitude larger x-section than final states and also larger than final states for large FINAL STATE fits the AMS+HEAT data as well as the final states or Space experiments AMS-02 and PAMELA offer good prospects for studying in detail DM annihilation by precise measurement of positron and antiproton spectra. Wim de Boer Amsterdam, December 13th, 2 43

Geneva, November 6, Outline

Geneva, November 6, Outline Supersymmetry in Particle Physics and Cosmology Wim de Boer IEKP, University Karlsruhe Wim.de.Boer@cern.ch http//home.cern.ch/ deboerw Geneva, November 6, 2 Outline Introduction CMSSM Constraints Positron

More information

Positron Fraction from Dark Matter Annihilation in the CMSSM

Positron Fraction from Dark Matter Annihilation in the CMSSM Positron Fraction from Dark Matter Annihilation in the CMSSM W. de Boer a iekp]institut für Experimentelle Kernphysik, Universität Karlsruhe (TH), P.O. Box 6980, 7628 Karlsruhe, GermanyC. Sander b, M.Horn

More information

Testing SUSY Dark Matter

Testing SUSY Dark Matter Testing SUSY Dark Matter Wi de Boer, Markus Horn, Christian Sander Institut für Experientelle Kernphysik Universität Karlsruhe Wi.de.Boer@cern.ch http://hoe.cern.ch/ deboerw SPACE Part Elba, May 7, CMSSM

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Search for Supersymmetry at LHC

Search for Supersymmetry at LHC Horváth Dezső: SUSY Search at LHC PBAR-11, Matsue, 2011.11.29 p. 1/40 Search for Supersymmetry at LHC PBAR-11, Matsue, 2011.11.29 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics,

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung e + Z*/γ τ + e - τ Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung 1 Outline Introduction of the International Linear Collider (ILC) Introduction of (g μ -2) in the

More information

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor Search for MSSM Higgs at LEP Haijun Yang University of Michigan, Ann Arbor Physics Seminar at Univ. of Michigan February 4, 2002 Introduction of MSSM UTLINE L Main Backgrounds L Analysis Procedure LEP

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Dark Matter Direct Detection in the NMSSM

Dark Matter Direct Detection in the NMSSM Dark Matter Direct Detection in the NMSSM,DSU27. Dark Matter Direct Detection in the NMSSM Daniel E. López-Fogliani Universidad Autónoma de Madrid Departamento de Física Teórica & IFT DSU27 D. Cerdeño,

More information

Szuperszimmetria keresése az LHC-nál

Szuperszimmetria keresése az LHC-nál Horváth Dezső: Szuperszimmetria keresése Debrecen, 2011.06.16 1. fólia p. 1/37 Szuperszimmetria keresése az LHC-nál ATOMKI-szeminárium, Debrecen, 2011.06.16 Horváth Dezső MTA KFKI RMKI, Budapest és MTA

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Searches for Physics Beyond the Standard Model at the Tevatron

Searches for Physics Beyond the Standard Model at the Tevatron FERMILAB-CONF-10-704-E-PPD Proceedings of the XXX. Physics in Collision Searches for Physics Beyond the Standard Model at the Tevatron Chris Hays 1 for the CDF and D0 Collaborations (1) Oxford University,

More information

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM USING LEP DATA Elizabeth Locci SPP/DAPNIA Saclay Representing LEP Collaborations 1 Outline LEP performance Theoretical framework Search for neutral Higgs

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Chapter 2 Theoretical Framework and Motivation

Chapter 2 Theoretical Framework and Motivation Chapter 2 Theoretical Framework and Motivation The Standard Model is currently the most precise theoretical framework to describe the sub-atomic particles and their behavior, and a large number of precision

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs L. Cooper D. Carter D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Beijing, 8 Oct 2008 page 1/25 What

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

12 Mar 2004, KTH, Stockholm. Peter Skands Dept. of Theoretical High Energy Physics, Lund University LHC

12 Mar 2004, KTH, Stockholm. Peter Skands Dept. of Theoretical High Energy Physics, Lund University LHC 12 Mar 2004, KTH, Stockholm Peter Skands Dept. of Theoretical High Energy Physics, Lund University RPV-SUSY @ LHC Including how to: Save the proton from a Supersymmetric Death. Measure a Neutrino Angle

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

PAMELA from Dark Matter Annihilations to Vector Leptons

PAMELA from Dark Matter Annihilations to Vector Leptons PAMELA from Dark Matter Annihilations to Vector Leptons phalendj@umich.edu With Aaron Pierce and Neal Weiner University of Michigan LHC and Dark Matter Workshop 2009 University of Michigan Outline PAMELA

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Testing the Standard Model and Search for New Physics with CMS at LHC

Testing the Standard Model and Search for New Physics with CMS at LHC Dezső Horváth: Search for New Physics with CMS FFK2017, Warsaw, Poland p. 1 Testing the Standard Model and Search for New Physics with CMS at LHC FFK-2017: International Conference on Precision Physics

More information

Supersymmetry at the ILC

Supersymmetry at the ILC Supersymmetry at the ILC Abdelhak DJOUADI (LPT Paris Sud). Introduction 2. High precision measurements 3. Determination of the SUSY lagrangian 4. Connection to cosmology 5. Conclusion For more details,

More information

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

arxiv:hep-ph/ v1 4 Apr 1997

arxiv:hep-ph/ v1 4 Apr 1997 DO-TH 97/07 April 997 arxiv:hep-ph/9704232v 4 Apr 997 Dark matter constraints on the parameter space and particle spectra in the nonminimal SUSY standard model A. Stephan Universität Dortmund, Institut

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Dark Matter Experiments and Searches

Dark Matter Experiments and Searches Dark Matter Experiments and Searches R.J.Cashmore Principal Brasenose College,Oxford and Dept of Physics,Oxford R.Cashmore Dark Matter 3 1 Dark Matter at LHC R.Cashmore Dark Matter 3 2 Satellite view of

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications KEKPH06 p.1/17 Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications Kentaro Kojima Based on the work with Kenzo Inoue and Koichi Yoshioka (Department of Physics,

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

R-hadrons and Highly Ionising Particles: Searches and Prospects

R-hadrons and Highly Ionising Particles: Searches and Prospects R-hadrons and Highly Ionising Particles: Searches and Prospects David Milstead Stockholm University The need for new particles Why they could be heavy and stable How can we identify them in current and

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Probing Supersymmetric Connection with Dark Matter

Probing Supersymmetric Connection with Dark Matter From サイエンス 82 Probing Supersymmetric Connection with Dark Matter Taken from Science, 1982 Teruki Kamon Department of Physics Texas A&M University November 3, 2005 Physics Colloquium, Texas Tech University

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

A light singlet at the LHC and DM

A light singlet at the LHC and DM A light singlet at the LHC and DM of the R-symmetric supersymmetric model Jan Kalinowski University of Warsaw in collaboration with P.Diessner, W. Kotlarski and D.Stoeckinger Supported in part by Harmonia

More information

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura The MSSM confronts the precision electroweak data and muon g 2 (KEK, JSPS Research Fellow) I. Overview/Introduction II. Muon g 2 vs MSSM III. EW data vs MSSM IV. Summary Based on K. Hagiwara, A.D. Martin,

More information

Supersymmetry and other theories of Dark Matter Candidates

Supersymmetry and other theories of Dark Matter Candidates Supersymmetry and other theories of Dark Matter Candidates Ellie Lockner 798G Presentation 3/1/07 798G 3/1/07 1 Overview Why bother with a new theory? Why is Supersymmetry a good solution? Basics of Supersymmetry

More information

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.)

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.) Exploring New Physics beyond the Standard Model of Particle Physics Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb. 2011 (Tohoku Univ.) We are confronting a critical moment of particle physics with the CERN

More information

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside Electroweak Data Fits & the Higgs Boson Mass Robert Clare UC Riverside Robert Clare UC Riverside LoopFest III Apr 1, 2004 2 Outline Electroweak corrections: definitions and strategies Experimental inputs

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

Cosmology at the LHC

Cosmology at the LHC Cosmology at the LHC R. Arnowitt*, A. Aurisano*^, B. Dutta*, T. Kamon*, N. Kolev**, P. Simeon*^^, D. Toback*, P. Wagner*^ *Department of Physics, Texas A&M University **Department of Physics, Regina University

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

XI. Beyond the Standard Model

XI. Beyond the Standard Model XI. Beyond the Standard Model While the Standard Model appears to be confirmed in all ways, there are some unclear points and possible extensions: Why do the observed quarks and leptons have the masses

More information

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment

A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment A Simulated Study Of The Potential For The Discovery of the Supersymmetric Sbottom Squark at the ATLAS Experiment By Rishiraj Pravahan University of Texas at Arlington Outline Why do we need Supersymmetry?

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination University of Bonn Outlook: supersymmetry: overview and signal LHC and ATLAS invariant mass distribution

More information

Overview of LHC Searches in Colorless SUSY Sectors

Overview of LHC Searches in Colorless SUSY Sectors Overview of LHC Searches in Colorless SUSY Sectors Teruki Kamon Texas A&M University & Kyungpook National University WCU High Energy Collider Physics Seminar Kyungpook National University Daegu, Korea

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Search for Charginos and Neutralinos with the DØ Detector

Search for Charginos and Neutralinos with the DØ Detector SUSY 006, 06/3/006 Marc Hohlfeld Search for Charginos and Neutralinos with the DØ Detector Marc Hohlfeld Laboratoire de l Accélérateur Linéaire, Orsay on behalf of the DØ Collaboration SUSY 006, 06/3/006

More information

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University Supersymmetry Physics Colloquium University of Virginia January 28, 2011 Stephen P. Martin Northern Illinois University 1 The Standard Model of particle physics The Hierarchy Problem : why is the Higgs

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation SUSY2014 @ Manchester University arxiv:1405.0779 (to be appeared in JHEP ) Junichiro Kawamura and Hiroyuki Abe Waseda Univ,

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009

Searches for Physics Beyond the Standard Model. Jay Wacker. APS April Meeting SLAC. A Theoretical Perspective. May 4, 2009 Searches for Physics Beyond the Standard Model A Theoretical Perspective Jay Wacker SLAC APS April Meeting May 4, 2009 1 The Plan Motivations for Physics Beyond the Standard Model New Hints from Dark Matter

More information

Tilman Plehn. Dresden, 4/2009

Tilman Plehn. Dresden, 4/2009 New Physics at the Universität Heidelberg Dresden, 4/2009 Outline The Large Hadron Collider: starting Summer 20XX The Large Hadron Collider: starting Summer 20XX Einstein: beam energy to particle mass

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Chapter 4 Supersymmetry

Chapter 4 Supersymmetry Chapter 4 Supersymmetry Contents 4.1 Introduction... 68 4. Difficulties in the standard model... 68 4.3 Minimal Supersymmetric Standard Model... 69 4.3.1 SUSY... 69 4.3. Reasons to introduce SUSY... 69

More information

Direct Detection Rates of Neutralino WIMP in MSSM

Direct Detection Rates of Neutralino WIMP in MSSM Direct Detection Rates of Neutralino WIMP in MSSM Yeong Gyun Kim a, 1 Takeshi Nihei b, Leszek Roszkowski a, and Roberto Ruiz de Austri c a Department of Physics, Lancaster University, Lancaster LA1 4YB,

More information

SUSY Phenomenology a

SUSY Phenomenology a KEK-TH-606 November 1998 SUSY Phenomenology a Yasuhiro Okada KEK, Oho 1-1, Tsukuba, 305-0801 Japan Three topics on phenomenology in supersymmetric models are reviewed, namely, the Higgs sector in the supersymmetric

More information

Search for the lightest MSSM Higgs boson in cascades of supersymmetric particles in ATLAS

Search for the lightest MSSM Higgs boson in cascades of supersymmetric particles in ATLAS Search for the lightest MSSM Higgs boson in cascades of supersymmetric particles in ATLAS Eirik Gramstad Department of Physics University of Oslo Norway Thesis submitted in partial fulfillment of the requirements

More information

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs Singlets at One-Loop Theoretical Particle Physics University of Manchester 5th October 2006 Based on RNH, A. Pilaftsis hep-ph/0612188 Outline

More information