Geneva, November 6, Outline

Size: px
Start display at page:

Download "Geneva, November 6, Outline"

Transcription

1 Supersymmetry in Particle Physics and Cosmology Wim de Boer IEKP, University Karlsruhe http//home.cern.ch/ deboerw Geneva, November 6, 2 Outline Introduction CMSSM Constraints Positron fraction in the CMSSM Parameter Space Comparison with HEAT and AMS data Summary Wim de Boer Geneva, November 6th, 2 1

2 Fundamental Questions in Physics Particle Physics What is the origin of mass? Why is the hydrogen atom exactly neutral? Why do the electroweak and strong forces have such different strengths? Cosmology Why does matter(atoms, galaxies..) exist? How where galaxies formed? What is Dark Matter made off? Magic Solution SUPERSYMMETRY Wim de Boer Geneva, November 6th, 2 2

3 SUSY is a symmetry between fermions and bosons It can be realized in nature only by presupposing a spin j 1/2 partner for each spin j particle of the SM. Since e.g. spin 0 electrons have not been observed, these shadow particles must be heavier ( broken supersymmetry) Nomenclature for Sparticles gluinos, winos, zinos, photinos spin 1/2 gauge bosons selectrons, smuons, staus, sneutrinos spin 0 leptons stop, sbottom, squark,...spin 0 quarks Higgsinos spin 1/2 partners of Higgs bosons charginos 2 mass eigenstates mixture of winos and charged Higgsinos neutralinos 4 mass eigenstates mixture of neutral gauge bosons and Higgsinos Wim de Boer Geneva, November 6th, 2 3

4 Typical Fits to AMS+HEAT Data vs e + /(e + + e - ) fraction bg+22 signal χ 2 =24.2 bg (ep-scaling=0.91) bg only fit χ 2 =48.0 HEAT 94/95/0 AMS 01 tanβ= 1.6; m 0 = ; = 300 e + /(e + + e - ) fraction bg+15 signal χ 2 =25.1 bg (ep-scaling=0.86) bg only fit χ 2=48.0 HEAT 94/95/0 AMS 01 tanβ=50; m 0 = 500; = 500 W + W - b b b b τ + τ positron energy 10-3 τ + τ positron energy Wim de Boer Geneva, November 6th, 2 4

5 More Fits e + /(e + + e - ) fraction tot (boost = 95) χ 2 = 30. bg (ep-scaling = 0.84) bg only fit χ 2 = 56.0 TS 93 Golden(96) CAPRICE 94 Boezio(9) HEAT 94/95/00 AMS 01 tanβ = 50; m 0 = 300; = 500 e + /(e + + e - ) fraction t t bg+8400 signal χ 2 =28.99 bg (ep-scaling=0.83) bg only fit χ 2=48.0 HEAT 94/95/0 AMS 01 tanβ=1.6; m 0 = 500; = 500 b b positron energy positron energy Wim de Boer Geneva, November 6th, 2 5

6 4 * 1 Dark Matter Annihilation equals B-Physics at LEP WILL SHOW at large quark pairs PRESENT LIMITS ON the annihilation is predominantly into large enough for this to happen Therefore Dark Matter annihilates dominantly into b-quarks Energy of the b-quarks +-, * ) ( '&% "!$# /.0 23 B-meson decay WELL understood in Dark Matter energy range Stable particles from dark matter annihilation are will propagate in the universe # , which Hard positron spectrum from semileptonic B-decays allows separation from antimatter, produced by secondary processes in universe Much more difficult for soft antiprotons Impossible for matter particles Antimatter will NOT penetrate atmosphere. Need detectors in space Wim de Boer Geneva, November 6th, 2 6

7 k m i j k G ˆ ƒ ƒƒ Œ ur f i w u v p cd b Q s lo º o h g urh CMSSM Fitprocedure urr cco lo rts loqp k lnm my xqy{z w u v k ƒ }~ Žq w Choose the 10 GUT supergravity inspired parameters H DF Š }~ˆ G = CEDF AB <;>= Žq w Q OP RXW Q OP = RVU Q OP = RTS Q OP = N = JLKM I = Ž w Š }~ Œ Minimize the Higgs potential in order to determine HZY s loqp u r ž Ÿ rts w œ lš u v Calculate masses and couplings at low energies by integrating about 30 coupled RGE s and decoupling sparticles at thresholds u r Ÿ «ª s ln ce f, _`a O^ []\ u v calculate ur ḱ³ o²± k³ o ± ¹ u µ v Determine the best parameters by minimizing. r Å Ä Â Â Ã Á ¾@ À ¼½ ¼š uln» u s læç uéè v Ah = = strongly correlated. Repeat fits for all pairs of Ah and Wim de Boer Geneva, November 6th, 2

8 Ì Ë Unification of the Coupling Constants in the SM and the minimal MSSM 1/α i /α i /α 1 MSSM /α /α log Q log Q CÊ C B = C? = U. Amaldi, W. de Boer, H. Fürstenau, PL B260(1991) coupling constants of electromagnetic, weak, and strong interactions BÒ Ñ Ï Ð Î CEÍ due to radiative corrections (LO) Wim de Boer Geneva, November 6th, 2 8

9 _ h I I CMSSM Sparticle Spectrum mass From RGE equations q ~ L t ~ L t ~ R l ~ L Bino ~ l R Wino Gluino m 1 m 2 tan β = 50 Y t = Y b = Y τ (µ 0 2+m 0 2) m log 10 Q Characteristic MSSM Features Squarks and gluinos heavy through strong rad. corr. Gaugino from U(1) (=Bino) Lightest Neutral SUSY Particle (LSP) (if Ah not too large w.r.t. ) Mass terms in Higgs potential driven negative by Yukawa couplings EWSB (determines ) Higgs mixing parameter usually large compared with Ah Consequently Pseudoscalar Higgs and higgsinos heavy light Higgs SM-higgs-like LSP bino-like, since no mixing with heavy higgsinos very good DARK MATTER candidate Wim de Boer Geneva, November 6th, 2 9

10 o Ó u o f s s f s OÚ Þ OÚ ß h O Ý I h z z â ž z z æ å è æì æë ç Gaugino Fraction of the LSP Neutralino Mass Mixing Matrix ØÖÙ o p o p s o²p s o²p o p o²p ÔÖÕ oqp s oqp 1 From RGE Ah Ý QÚÜ Ý QÚÜ gaugino fraction Ah Ah { ÚÜ Q â àqã á  à [â á  à g  Neutralino à ä h á  àqä á  Gaugino Fraction ì é ê ìîí é m0 éê gaugino fraction SMALL coupling to Higgs and gauge bosons! _ Â ï» Large Wim de Boer Geneva, November 6th, 2 10

11 ð Où Ç ø I b Anom. magn. moment Iand ñó ñò ô<õ vs 130 öh m µ > 0 µ < 0 µ > 0 µ < 0 m0 / 1000 / 1000 / tanβ strongly preferred from ce f cd = GeV û Þ ø Q ú Å = = Ah = < Wim de Boer Geneva, November 6th, 2 11

12 ^ _`a ø ÿ ø Ç s Q O û û Ý b f _`a ž ž û Experimental Limits on χ total a µ = 339(112) b sγ = 3.43(0.53) 10-4 m h > GeV 6 tan β > 6.5 (95% CL) tan β at 95% C.L., if new data from g-2 (E821 Coll., PRL 89(2)101804), (BaBAR, hep-ex/06) and Higgs limit GeV are included. Note 1 away from SM, if data is used for calculating vacuum polarization; only, if hadronic -decays are used (M. Davier et al., hep-ph/02081); looking forward to KLOE data. Note 2 new Babar data ( ) closer to SM ( ) than previous CLEO ( ) data ü ýþ s ^ [ \ s û û û Þ ž s ß ß û s û Wim de Boer Geneva, November 6th, 2 12

13 # % # ' ' ( ' ÿ =Yτ ÿ / ÿ /0 ÿ Yukawa Unification 220!"!" #$ 180 Mtop &%!" #$ µ(0) > 0 µ(0) < 0 160!" #$ Y t Yt/b (0) % 10-3 ü ýþ and )+* Relation between Y b Preferred χ 2 or.-, ü ýþ ü ýþ 1 20 scenario excluded by Higgs limit! ü ýþ Low 10 0 tan β 1 10 Wim de Boer Geneva, November 6th, 2 13

14 2 2 2 > = ;? C = Electroweak precision data in MSSM and SM SM χ 2 /d.o.f = 33.1/1 MSSM χ 2 /d.o.f = 22.4/13 CMSSM χ 2 /d.o.f = 29.2/18 LEP SLC M Z Γ Z σ had R l l A FB R b R c b A FB c A FB M t sin 2 lept Θ eff M W (LEP) sin 2 Θ lept (A LR ) eff b X s γ SM fit has prob. 1.1%, i.e. excluded at 99% C.L.? Rescale errors from and NO significant change in parameters, but probability 8%, because of anomalous magne- and MSSM reduced tic moment, 3546 ;< 89 MSSM results from MSSM-Fitter (see WdB, W. Hollik et al., Z.Phys. C5(199) 62 and hepph/ ) SM results obtained with ZFITTER6.11 (see D. Bardin et al., hep-ph/ ) a µ SUSY pulls=(data-theo)/error Wim de Boer Geneva, November 6th, 2 14

15 E C = LK C J = D Mass W-Boson Mass M W pp -colliders ± LEP ± MSSM m t LEP2+pp F =19.4 GeV Average ± χ 2 /DoF 0.0 / 1 NuTeV ± LEP1/SLD ± SM GeV LEP1/SLD/m t ± m W m susy Direct measurements of ( above SM prediction from ). CNMPO C+Q O = ; < 8 9 CSR O GIH data Better agreement between direct and indirect measurements, if radiative corrections include SUSY contributions. Wim de Boer Geneva, November 6th, 2 15

16 Y UV Z X W ^ ws ^ L `_ `_ a a g l l f h f f T and [] [\ b) 10-4 Br(b X s γ m a µ SUSY m MSSM Contributions Combined Data on from ALEPH, BaBar, CLEO, BEL- LE slightly BELOW SM prediction, if one uses running c-quark mass s prq B > mon (Gambino and Misiak, hep-ph/ ) tvu z { J tyx cji ced c i c d cek c d Data on anomalous magnetic moment from E-821 slightly ABO- VE SM prediction, after correcting sign error in SM prediction from light-by-light scattering Wim de Boer Geneva, November 6th, 2 16

17 ws Œ u } } ƒ } } ƒ Dark Matter Density Physics Input Flat universe, if total density equals critical density, or Reacceleration of universe, as measured by redshift from Supernova Ia, depends on DIFFERENCE of and, while position of first acoustic peak in the CMB is sensitive to the flatness of the universe, i.e. SUM of and. QQ L ƒ Q } Q~ QQ QQ ˆ Š J Q Wim de Boer Geneva, November 6th, 2 1

18 Dark Matter Density Composition of the Universe % Vacuumenergy, 20% non-baryonic dark matter, 3% baryonic. Wim de Boer Geneva, November 6th, 2 18

19 z J J ) / J ˆ 0 š J š J ½ W J Repulsive Gravity? A simple example ž šœ J * *, Q Ÿ Q~ Differentiate with respect to t and use m M v «ª Two solutions for acceleration w if O J if O ² ± µ W { ³ J º¹ * ± J INFLATION, since Solution 2 at GUT ener- with gies Radius of Universe doubles every w¼0 /, J» s after phase transition! ½ /, 0À J ª ¾ 9» Wim de Boer Geneva, November 6th, 2 19

20 Á  Dark Matter Å Ã Ä Æ Ã Ä z Ë J É Ç È 9 ËÊ J É ÇœÈ < Ω h 2 < < Ω h 2 < Ωh 2 m 0 Ωh 2 m 0 Light regions preferred by Boomerang and SN Ia Wim de Boer Geneva, November 6th, 2 20

21 Ñ Ð ÑÓ ÑÓ Ì Ì Ì Ì ÑÓ ÒÑ Ì Ì Ü ë ë è ç á á è ç â â sá á ì ë ë ì s á á ð ð ë ë á á Main Diagrams for Neutralino Annihilation Gauge Bosons Fermions Ò ÑÓ Ö Ô Õ ÒÚÙ ÍÏÎ Ì ÍÏÎ Ì ÒÑ ÑÓ Ò Î ÍÏÎ Ì ÍÏÎ Ì Í Î Í Î ÍØÎ ÍØÎ To Note 1. Light fermion pairs suppressed due to Pauli-Principle (neutralinos are Majorana particles and fermions Pauli-Principle at zero momentum p-wave fermion mass!) 2. at 3. Ç ÈÝ L à à L à à ï à à Ë ÉßÞ á fermion pairs dominate ãåäæ æ sîí í s Þ Þ ëë ï à à ï à à sêé L à à á ã äæ æ (Neg. interference with t-channel) (Pos. interference with t-channel) ) 4. RESULT dominates over (for ÇœÈÝ ) Ë É Þ Wim de Boer Geneva, November 6th, 2 21

22 ö õ õ þ! * ) ( '! & û ü 3 / þÿ þý < ; ; ; ËÊ ë á ç p-wave suppression at low momentum for light final states at low neutralino momenta òôó t Ü ñ üú ù ü ùøyú û ø öê ,.0/ þ! $ þ þ! %$ ý þú!" þú #!" þ HE E ðgf < = ç ËÊ E E ðcb < = ç <>= ç Ë D D? ò Wim de Boer Geneva, November 6th, 2 22

23 K áá ð à à ëë ð à à v lr { z y b a ` x _ w ^ ] U[ u lr t lr \ U[ s lr ml VU lk UT q Z É ëë ð à à 5 5 IJ Pseudoscalar Higgs exchange vs j i i g h g d c dfe c S R R P Q P M L MON L n6op W6XY. ÇœÈÝ dominates at large Wim de Boer Geneva, November 6th, 2 23

24 K ëë áá } ½ ¼ µ» º ¾ ÉË ÇÄ ƒ ƒ ëë áá Ï ËÊ IJ s,t-channel Interferences at large final state final state Higgs small, Z large for Higgs large, Z small for ««ª }~ µ ¹ ƒ Ä À Á  Ã «¾ É ÇÈ Ä À Á  Ã «fæ «Å µ œ š ž Ÿž ƒ Ž œ š ž Ÿž µ ƒ ƒ Ž À Ê À Á  ÃÂ Æ ¾ µ ƒœ µ œ š ž Ÿž ƒœ ±ˆ²³ Š ƒ ˆ (t-ch, Higgs) Interf. POS, (t-ch, Z) Interf. NEG ) final states suppressed (enhanced) due to interferences! ( ÌÎÍÝ final state dominates at large HE E ë á Ë D ðgf ËÊ E E D ð B? Ðò Wim de Boer Geneva, November 6th, 2 24

25 K þ Ý Ñ Ñ ô ó ò ñ î æê ð çæ æå é ï ëë áá è à à ï ëë áá ç à à ëë à à 5 5 IJ x-section vs ýþ ÿ üû û øöú øôù äã â Þàßá á ÙÚÜ Ø ÒÖÕ ÒÔÓ ï æê ü ü ØÚöõ Øõ Ú í æê ì æê ë æê þ è ßá ( ) æ ãåäæ â B ñ B ) á D ( DOMINANT! Ï Þ ÌÎÍÝ For Wim de Boer Geneva, November 6th, 2 25

26 #"! ñ E HE E E Ï A) ) $ % % % /ò /ò E E.. /ò E., + 3ò 3ò E E E E.. 66 Comparison of X-sections in CalcHEP and darksusy cm s GeV ðgf D ð B GeV 4(' &% ÌÎÍÝ D GeV GeV Ðò CalcHEP darksusy * ë ë 0, ) + E-, )&+ /ò. E * á á HE+ ), + ), $&+. 1 E, 0&+ E-, ! Feynarts agrees with CalcHEP concerning Wim de Boer Geneva, November 6th, 2 26

27 8 K ë ë 6 6 Neutralino Annihilation X-sections for IJ <σv> [cm 3 s -1 ] sigv_bb m 0 <σv> [cm 3 s -1 ] sigv_tt m 0 Wim de Boer Geneva, November 6th, 2 2

28 8 K Neutralino Annihilation X-sections for IJ <σv> [cm 3 s -1 ] sigv_tau m 0 <σv> [cm 3 s -1 ] sigv_ww m 0 Wim de Boer Geneva, November 6th, 2 28

29 98 K ë ë 6 6 Neutralino Annihilation X-sections for IJ <σv> [cm 3 s -1 ] sigv_bb m 0 <σv> [cm 3 s -1 ] sigv_tt m 0 Wim de Boer Geneva, November 6th, 2 29

30 98 K Neutralino Annihilation X-sections for IJ <σv> [cm 3 s -1 ] sigv_tau m 0 <σv> [cm 3 s -1 ] sigv_ww m 0 Wim de Boer Geneva, November 6th, 2 30

31 98 8 K Ï Ï Neutralino Annih. total X-sections for IJ and <σv> [cm 3 s -1 ] sigmav m 0 <σv> [cm 3 s -1 ] sigmav m 0 ÌÎÍ ÌÎÍ Wim de Boer Geneva, November 6th, 2 31

32 K < ; 0 Ï < ; Ï 0 E ç ç Typical Fits to AMS+HEAT Data vs IJ e + /(e + + e - ) fraction bg+22 signal χ 2 =24.2 bg (ep-scaling=0.91) bg only fit χ 2 =48.0 HEAT 94/95/0 AMS 01 tanβ= 1.6; m 0 = ; = 300 e + /(e + + e - ) fraction bg+15 signal χ 2 =25.1 bg (ep-scaling=0.86) bg only fit χ ;2=48.0 HEAT 94/95/0 AMS 01 tanβ=50; m 0 = 500; = 500 W + W - b b b b τ + τ positron energy 10-3 τ + τ positron energy 5 4 < ÌÎÍ 5 4 < H E+ ÌÎÍ Wim de Boer Geneva, November 6th, 2 32

33 0 K Ï Ï IJ contr. for AMS+HEAT Data vs = Ì Í ÌÎÍ χ 2 - term 30 χ 2 - term m0 m0 χ 2 χ 2 Wim de Boer Geneva, November 6th, 2 33

34 Ï Ï Boost factor for combined AMS and HEAT Data ÌÎÍ Ì Í boost factor boost m boost factor boost m Wim de Boer Geneva, November 6th, 2 34

35 What about antiprotons? p flux [GeV -1 cm -2 s -1 sr -1 ] tanβ = 50 m 0 = 300 GeV = 500 GeV Φ F = 500 MeV tot (boost = 1) χ 2 = 13.3 signal(dsusy) bg (SMR) χ 2 = 12.9 MASS 91 Basini(99) IMAX 92 Mitchell(96) CAPRICE 94 Boezio(9) BESS 95/9 Orito(00) CAPRICE 98 Boezio(00) p flux [GeV -1 cm -2 s -1 sr -1 ] tanβ = 50 m 0 = 300 GeV = 500 GeV Φ F = 900 MeV tot (boost = ) χ 2 = 12.9 signal(dsusy) bg (SMR) χ 2 = 14.8 MASS 91 Basini(99) IMAX 92 Mitchell(96) CAPRICE 94 Boezio(9) BESS 95/9 Orito(00) CAPRICE 98 Boezio(00) antiproton energy Solar Modulation 500 GeV antiproton energy Solar Mod. 900 GeV Wim de Boer Geneva, November 6th, 2 35

36 AMS02 is a state of the art detector to separate matter from antimatter High resolution spectrometer based on silicon sensors in a superconducting 0.9 T Magnet, Transition Radiation Detector, RICH counter and calorimeter to identify particles. Wim de Boer Geneva, November 6th, 2 36

37 Expected Flight Date 5 Wim de Boer Geneva, November 6th, 2 3

38 Wim de Boer Geneva, November 6th, 2 38

39 @ 0 Ï Possible AMS-02 Data in 6 one year AMS one year AMS e + /(e + + e - ) fraction 10-1 exp. data by DarkSUSY bg Mosk-Strong (e + -scale=0.86) generated dummy data tanβ= 50; m 0 = 500; = 500 e + /(e + + e - ) fraction 10-1 exp. data by DarkSUSY bg Mosk-Strong (e + -scale=0.89) generated dummy data tanβ= 50; m 0 =1000; = positron energy positron energy < ; > 5 4 < < ;?> 5 4 < ÌÎÍ Wim de Boer Geneva, November 6th, 2 39

40 0 0 Ï Possible after one year AMS excl. LSP 90 % CL 99 % CL tanβ=50; m 0 =500; = excl. LSP 90 % CL 99 % CL tanβ=50; m 0 =1000; = χ 2 m χ 2 m 0 < ; > 5 4 < < ;?> 5 4 < ÌÎÍ Wim de Boer Geneva, November 6th, 2 40

41 I LM KJ NO P M M Q S S R Q M M R S S Summary Low values of ( LEP Higgs Limit and FHG E D ) excluded by electroweak data (g-2, ) At larger values of DM M A DOMINANT FINAL STATE FINAL STATE has orders of magnitude larger x-section than final states and also larger than final states for large D A FINAL STATE fits the AMS+HEAT data as well as the final states or Space experiments AMS-02 and PAMELA offer good prospects for studying in detail DM annihilation by precise measurement of positron and antiproton spectra. Wim de Boer Geneva, November 6th, 2 41

Amsterdam, December 13, Outline

Amsterdam, December 13, Outline Unification Scale Physics Wim de Boer IEKP, University Karlsruhe Wim.de.Boer@cern.ch http://home.cern.ch/ deboerw Amsterdam, December 13, 2 Outline Introduction MSSM Constraints Positron fraction in the

More information

Positron Fraction from Dark Matter Annihilation in the CMSSM

Positron Fraction from Dark Matter Annihilation in the CMSSM Positron Fraction from Dark Matter Annihilation in the CMSSM W. de Boer a iekp]institut für Experimentelle Kernphysik, Universität Karlsruhe (TH), P.O. Box 6980, 7628 Karlsruhe, GermanyC. Sander b, M.Horn

More information

Testing SUSY Dark Matter

Testing SUSY Dark Matter Testing SUSY Dark Matter Wi de Boer, Markus Horn, Christian Sander Institut für Experientelle Kernphysik Universität Karlsruhe Wi.de.Boer@cern.ch http://hoe.cern.ch/ deboerw SPACE Part Elba, May 7, CMSSM

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Dark matter in split extended supersymmetry

Dark matter in split extended supersymmetry Dark matter in split extended supersymmetry Vienna 2 nd December 2006 Alessio Provenza (SISSA/ISAS) based on AP, M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) hep ph/0609059 Dark matter: experimental clues

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation Stefano Scopel Korea Institute of Advanced Study (based on: J. S. Lee, S. Scopel, PRD75, 075001 (2007)) PPP7, Taipei, Taiwan,

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Dark Matter Direct Detection in the NMSSM

Dark Matter Direct Detection in the NMSSM Dark Matter Direct Detection in the NMSSM,DSU27. Dark Matter Direct Detection in the NMSSM Daniel E. López-Fogliani Universidad Autónoma de Madrid Departamento de Física Teórica & IFT DSU27 D. Cerdeño,

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean? Origin of the Universe - 2 ASTR 2120 Sarazin What does it all mean? Fundamental Questions in Cosmology 1. Why did the Big Bang occur? 2. Why is the Universe old? 3. Why is the Universe made of matter?

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Search for Supersymmetry at LHC

Search for Supersymmetry at LHC Horváth Dezső: SUSY Search at LHC PBAR-11, Matsue, 2011.11.29 p. 1/40 Search for Supersymmetry at LHC PBAR-11, Matsue, 2011.11.29 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics,

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

The Egret Excess, an Example of Combining Tools

The Egret Excess, an Example of Combining Tools The Egret Excess, an Example of Combining Tools Institut für Experimentelle Kernphysik, Universität Karlsruhe TOOLS 2006-26th - 28th June 2006 - Annecy Outline Spectral Fit to EGRET data Problems: Rotation

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Supersymmetry at the ILC

Supersymmetry at the ILC Supersymmetry at the ILC Abdelhak DJOUADI (LPT Paris Sud). Introduction 2. High precision measurements 3. Determination of the SUSY lagrangian 4. Connection to cosmology 5. Conclusion For more details,

More information

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung e + Z*/γ τ + e - τ Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung 1 Outline Introduction of the International Linear Collider (ILC) Introduction of (g μ -2) in the

More information

Szuperszimmetria keresése az LHC-nál

Szuperszimmetria keresése az LHC-nál Horváth Dezső: Szuperszimmetria keresése Debrecen, 2011.06.16 1. fólia p. 1/37 Szuperszimmetria keresése az LHC-nál ATOMKI-szeminárium, Debrecen, 2011.06.16 Horváth Dezső MTA KFKI RMKI, Budapest és MTA

More information

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor Search for MSSM Higgs at LEP Haijun Yang University of Michigan, Ann Arbor Physics Seminar at Univ. of Michigan February 4, 2002 Introduction of MSSM UTLINE L Main Backgrounds L Analysis Procedure LEP

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM USING LEP DATA Elizabeth Locci SPP/DAPNIA Saclay Representing LEP Collaborations 1 Outline LEP performance Theoretical framework Search for neutral Higgs

More information

Dark Matter Experiments and Searches

Dark Matter Experiments and Searches Dark Matter Experiments and Searches R.J.Cashmore Principal Brasenose College,Oxford and Dept of Physics,Oxford R.Cashmore Dark Matter 3 1 Dark Matter at LHC R.Cashmore Dark Matter 3 2 Satellite view of

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs L. Cooper D. Carter D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Beijing, 8 Oct 2008 page 1/25 What

More information

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

A Statistical Analysis of Supersymmetric. Dark Matter in the MSSM after WMAP

A Statistical Analysis of Supersymmetric. Dark Matter in the MSSM after WMAP SISSA 46/2004/EP A Statistical Analysis of Supersymmetric arxiv:hep-ph/0407036 v1 5 Jul 2004 Dark Matter in the MSSM after WMAP S. Profumo and C. E. Yaguna Scuola Internazionale Superiore di Studi Avanzati,

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Signals from Dark Matter Indirect Detection

Signals from Dark Matter Indirect Detection Signals from Dark Matter Indirect Detection Indirect Search for Dark Matter Christian Sander Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany 2nd Symposium On Neutrinos and Dark Matter

More information

Cosmology at the LHC

Cosmology at the LHC Cosmology at the LHC R. Arnowitt*, A. Aurisano*^, B. Dutta*, T. Kamon*, N. Kolev**, P. Simeon*^^, D. Toback*, P. Wagner*^ *Department of Physics, Texas A&M University **Department of Physics, Regina University

More information

PAMELA from Dark Matter Annihilations to Vector Leptons

PAMELA from Dark Matter Annihilations to Vector Leptons PAMELA from Dark Matter Annihilations to Vector Leptons phalendj@umich.edu With Aaron Pierce and Neal Weiner University of Michigan LHC and Dark Matter Workshop 2009 University of Michigan Outline PAMELA

More information

Direct Detection Rates of Neutralino WIMP in MSSM

Direct Detection Rates of Neutralino WIMP in MSSM Direct Detection Rates of Neutralino WIMP in MSSM Yeong Gyun Kim a, 1 Takeshi Nihei b, Leszek Roszkowski a, and Roberto Ruiz de Austri c a Department of Physics, Lancaster University, Lancaster LA1 4YB,

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

XI. Beyond the Standard Model

XI. Beyond the Standard Model XI. Beyond the Standard Model While the Standard Model appears to be confirmed in all ways, there are some unclear points and possible extensions: Why do the observed quarks and leptons have the masses

More information

R-hadrons and Highly Ionising Particles: Searches and Prospects

R-hadrons and Highly Ionising Particles: Searches and Prospects R-hadrons and Highly Ionising Particles: Searches and Prospects David Milstead Stockholm University The need for new particles Why they could be heavy and stable How can we identify them in current and

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Chapter 2 Theoretical Framework and Motivation

Chapter 2 Theoretical Framework and Motivation Chapter 2 Theoretical Framework and Motivation The Standard Model is currently the most precise theoretical framework to describe the sub-atomic particles and their behavior, and a large number of precision

More information

Testing the Standard Model and Search for New Physics with CMS at LHC

Testing the Standard Model and Search for New Physics with CMS at LHC Dezső Horváth: Search for New Physics with CMS FFK2017, Warsaw, Poland p. 1 Testing the Standard Model and Search for New Physics with CMS at LHC FFK-2017: International Conference on Precision Physics

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Measuring Dark Matter Properties with High-Energy Colliders

Measuring Dark Matter Properties with High-Energy Colliders Measuring Dark Matter Properties with High-Energy Colliders The Dark Matter Problem The energy density of the universe is mostly unidentified Baryons: 5% Dark Matter: 20% Dark Energy: 75% The dark matter

More information

Searches for Physics Beyond the Standard Model at the Tevatron

Searches for Physics Beyond the Standard Model at the Tevatron FERMILAB-CONF-10-704-E-PPD Proceedings of the XXX. Physics in Collision Searches for Physics Beyond the Standard Model at the Tevatron Chris Hays 1 for the CDF and D0 Collaborations (1) Oxford University,

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Ingredients to this analysis

Ingredients to this analysis The dark connection between Canis Major, Monoceros Stream, gas flaring, the rotation curve and the EGRET excess From EGRET excess of diffuse Galactic gamma rays Determination of WIMP mass Determination

More information

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation SUSY2014 @ Manchester University arxiv:1405.0779 (to be appeared in JHEP ) Junichiro Kawamura and Hiroyuki Abe Waseda Univ,

More information

arxiv:hep-ph/ v1 4 Apr 1997

arxiv:hep-ph/ v1 4 Apr 1997 DO-TH 97/07 April 997 arxiv:hep-ph/9704232v 4 Apr 997 Dark matter constraints on the parameter space and particle spectra in the nonminimal SUSY standard model A. Stephan Universität Dortmund, Institut

More information

New Physics at the TeV Scale and Beyond Summary

New Physics at the TeV Scale and Beyond Summary New Physics at the TeV Scale and Beyond Summary Machine and Detector Issues 1. Correlated Beamstrahlung David Strom New Theoretical Ideas: 1. Signatures for Brane Kinetic Terms at the LC Tom Rizzo 2. Implementing

More information

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura The MSSM confronts the precision electroweak data and muon g 2 (KEK, JSPS Research Fellow) I. Overview/Introduction II. Muon g 2 vs MSSM III. EW data vs MSSM IV. Summary Based on K. Hagiwara, A.D. Martin,

More information

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model (Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model Dominik Stöckinger TU Dresden KIAS Workshop, October 2016 based on work with: [Philip Diessner, Jan Kalinowski, Wojciech Kotlarski,

More information

Probing Supersymmetric Connection with Dark Matter

Probing Supersymmetric Connection with Dark Matter From サイエンス 82 Probing Supersymmetric Connection with Dark Matter Taken from Science, 1982 Teruki Kamon Department of Physics Texas A&M University November 3, 2005 Physics Colloquium, Texas Tech University

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

New BaBar Results on Rare Leptonic B Decays

New BaBar Results on Rare Leptonic B Decays New BaBar Results on Rare Leptonic B Decays Valerie Halyo Stanford Linear Accelerator Center (SLAC) FPCP 22 valerieh@slac.stanford.edu 1 Table of Contents Motivation to look for and Analysis Strategy Measurement

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Dark Matter WIMP and SuperWIMP

Dark Matter WIMP and SuperWIMP Dark Matter WIMP and SuperWIMP Shufang Su U. of Arizona S. Su Dark Matters Outline Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM direct/indirect DM searches,

More information

Search for Charginos and Neutralinos with the DØ Detector

Search for Charginos and Neutralinos with the DØ Detector SUSY 006, 06/3/006 Marc Hohlfeld Search for Charginos and Neutralinos with the DØ Detector Marc Hohlfeld Laboratoire de l Accélérateur Linéaire, Orsay on behalf of the DØ Collaboration SUSY 006, 06/3/006

More information

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University

Supersymmetry. Physics Colloquium University of Virginia January 28, Stephen P. Martin Northern Illinois University Supersymmetry Physics Colloquium University of Virginia January 28, 2011 Stephen P. Martin Northern Illinois University 1 The Standard Model of particle physics The Hierarchy Problem : why is the Higgs

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications KEKPH06 p.1/17 Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications Kentaro Kojima Based on the work with Kenzo Inoue and Koichi Yoshioka (Department of Physics,

More information

Cosmology/DM - I. Konstantin Matchev

Cosmology/DM - I. Konstantin Matchev Cosmology/DM - I Konstantin Matchev What Do We Do? Trying to answer the really big questions: 1. What is the Universe made of?... 5. Can the laws of Physics be unified? 16. What is the cause of the terrible

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003 SUSY AND COSMOLOGY Jonathan Feng UC Irvine SLAC Summer Institute 5-6 August 2003 Target Audience From the organizers: graduate students, junior postdocs ¾ experimentalists, ¼ theorists Students enjoy the

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

Supersymmetry and other theories of Dark Matter Candidates

Supersymmetry and other theories of Dark Matter Candidates Supersymmetry and other theories of Dark Matter Candidates Ellie Lockner 798G Presentation 3/1/07 798G 3/1/07 1 Overview Why bother with a new theory? Why is Supersymmetry a good solution? Basics of Supersymmetry

More information

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside

Electroweak Data Fits & the Higgs Boson Mass. Robert Clare UC Riverside Electroweak Data Fits & the Higgs Boson Mass Robert Clare UC Riverside Robert Clare UC Riverside LoopFest III Apr 1, 2004 2 Outline Electroweak corrections: definitions and strategies Experimental inputs

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Supersymmetry and a Candidate for Dark Matter

Supersymmetry and a Candidate for Dark Matter Supersymmetry and a Candidate for Dark Matter Elizabeth Lockner Department of Physics, University of Maryland College Park, MD 20742 April 20, 2007. The Standard Model has been a powerful tool in understanding

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Detecting Higgs Bosons within Supersymmetric Models

Detecting Higgs Bosons within Supersymmetric Models Detecting Higgs Bosons within Supersymmetric Models Yili Wang University of Oklahoma C. Kao and Y. Wang, Phys. Lett. B 635, 3 (26) 1 Outlook of the Talk MSSM has two Higgs doulets. After symmetry reaking,

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Split SUSY at LHC and a 100 TeV collider

Split SUSY at LHC and a 100 TeV collider Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and Kevin Earl 1503.03099 GGI - 2015 Status of Supersymmetry stop searches gluino searches m t & 700GeV m g & 1.4TeV What

More information

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München Physics at the ILC Beyond the Standard Model: Supersymmetry Extra Dimensions Heavy Z, Z, Strong EWSB Precision Physics (top, W, ) CLIC top, W LHC ILC Synergy Ariane Frey, MPI München 1 Higgs Profile Use

More information

Slepton, Charginos and Neutralinos at the LHC

Slepton, Charginos and Neutralinos at the LHC Slepton, Charginos and Neutralinos at the LHC Shufang Su U. of Arizona, UC Irvine S. Su In collaboration with J. Eckel, W. Shepherd, arxiv:.xxxx; T. Han, S. Padhi, arxiv:.xxxx; Outline Limitation of current

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Physics at the Tevatron. Lecture IV

Physics at the Tevatron. Lecture IV Physics at the Tevatron Lecture IV Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory CERN, Academic Training Lectures, November 2007 1 Outline Lecture I: The Tevatron,

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Abdelhak DJOUADI (LPT Orsay/Next Southampton) SUSY@ILC Abdelhak DJOUADI (LPT Orsay/Next Southampton) 1. Probing SUSY 2. Precision SUSY measurements at the ILC 3. Determining the SUSY Lagrangian 4. Summary From the physics chapter of the ILC Reference

More information

Measuring Relic Density at the LHC

Measuring Relic Density at the LHC easuring Relic Density at the LHC Bhaskar Dutta Collaborators R. Arnowitt, A. Gurrola, T. Kamon, A. Krislock, D. Toback Texas A& University 7 th July 8 easuring Relic Density at the LHC OUTLINE Dark atter

More information

SUSY Searches at CMS in the Fully Hadronic Channel

SUSY Searches at CMS in the Fully Hadronic Channel SUSY Searches at CMS in the Fully Hadronic Channel Project B2 - Supersymmetry at the Large Hadron Collider Christian Autermann, Sergei Bobrovskyi, Ulla Gebbert, Kolja Kaschube, Friederike Nowak, Benedikt

More information

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Carlos E.M. Wagner EFI and KICP, University of Chicago HEP Division, Argonne National Lab. Work done in collaboration with

More information