A Volumetric Contact Model for Space Robot and Planetary Rover Application

Size: px
Start display at page:

Download "A Volumetric Contact Model for Space Robot and Planetary Rover Application"

Transcription

1 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work A Volumetric Contact Model for Space Robot and Planetary Rover Application Willem Petersen Mike Boos John McPhee Yves Gonthier University of Waterloo Systems Design Engineering Agence Spatiale Canadienne Canadian Space Agency Y. Gonthier A Volumetric Contact Model for Space Application

2 Outline Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work 1 Introduction 2 Elastic Foundation Model 3 Experimental Validation 4 Hyperelastic Foundation Model 5 Planetary Rover Simulation Platform 6 Future Work Y. Gonthier A Volumetric Contact Model for Space Application

3 Motivation Motivation Model Experiments Results Figure: Dextre at the tip of Canadarm2 (Gonthier, 27). Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 4/ 32

4 Contact Models Motivation Model Experiments Results Electrical Connectors Alignment Sleeve 36" Micro Fixture 28" 12" Coarse Alignment Bumper Point contact models Small contact patches only Simple, convex geometries SPDM OTCM Alignment Pins No rolling resistance, spinning friction torque Battery Battery Worksite FEM Worksite Too complex for real-time ISS battery box (Gonthier, 27). Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 5/ 32

5 Motivation Model Experiments Results Volumetric contact model Ball-table simulation: real-time (Gonthier, 27) Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 6/ 32

6 Motivation Model Experiments Results Volumetric contact model Advantages Larger, more complex, and conforming contact patches possible Includes both translational (normal and friction forces) and rotational (rolling resistance and spinning friction torque) dynamics. Validation of the model still required for hard contact (metals) Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 7/ 32

7 Goals Motivation Model Experiments Results 1 Experimentally validate the normal force components of the volumetric contact dynamics model for hard-on-hard (metal) contact 2 Demonstrate parameter identification for this model Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 8/ 32

8 Volumetric model Motivation Model Experiments Results Volumetric model Normal forces fn S s δ(s) B i B j Figure: A volumetric contact model based on a Winkler foundation. p(s) = dfn ds = k vδ(s)(1 + av n ) V Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 1/ 32

9 Volumetric properties Motivation Model Experiments Results Volumetric model Normal forces B i δ(s) j n S δ(s) s δ(s) i V B j Volumetric properties V - volume of interference n - contact normal J s - surface-inertia tensor J v - volume-inertia tensor Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 11/ 32

10 Normal forces Motivation Model Experiments Results Volumetric model Normal forces V Normal force f n = k v V (1 + av cn )n n v cn S Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 12/ 32

11 Rolling resistance Motivation Model Experiments Results Volumetric model Normal forces V Rolling resistance torque τ r = k v a J s ω t n ω t S Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 13/ 32

12 Friction Motivation Model Experiments Results Volumetric model Normal forces The model can include tangential friction forces and spinning friction torque. (Gonthier et al., 27) f t = µ c f n v ct v avg τ s = µ cf n V v avg J s ω n Mike Boos and John McPhee Volumetric Contact Dynamics Models and Validation 14/ 32

13 Goals Normal contact force Apparatus in normal configuration Quasi-static experiments Dynamic experiments Cylindrical payload Force sensor Linear encoder Encoder reference Contact surface Mike Boos Volumetric Contact Dynamics Models and Validation 3/ 21

14 Goals Normal contact force Quasi-static experiments Dynamic experiments Quasi-static results with sphere on aluminum 1 8 Measured data Volumetric fit Hertzian fit Contact force (N) Displacement (µm) Volumetric stiffness k v = N/m 3 Mike Boos Volumetric Contact Dynamics Models and Validation 4/ 21

15 Goals Normal contact force Quasi-static experiments Dynamic experiments Quasi-static results with sphere on magnesium Contact force (N) Measured data Volumetric fit Hertzian fit Displacement (µm) Magnesium surface tarnished quickly after polishing Anisotropic material Volumetric stiffness k v = N/m 3 Mike Boos Volumetric Contact Dynamics Models and Validation 5/ 21

16 Goals Normal contact force Problems with cylinders Quasi-static experiments Dynamic experiments Non-linear force-displacement relationship Either misalignment or surface asperities γ Used a cylindrical wedge to estimate possible misalignment for the volumetric model Mike Boos Volumetric Contact Dynamics Models and Validation 6/ 21

17 Goals Normal contact force Quasi-static experiments Dynamic experiments Quasi-static results with cylinder on aluminum Measured data Perpendicular fit Off angle fit Theoretical volumetric stiffness k v = N/m 3 Contact force (N) Estimated misalignment γ = Displacement (µm) Mike Boos Volumetric Contact Dynamics Models and Validation 7/ 21

18 Goals Normal contact force Quasi-static experiments Dynamic experiments Quasi-static results with cylinder on magnesium Contact force (N) Measured data Perpendicular fit Off angle fit Theoretical volumetric stiffness k v = N/m 3 Estimated misalignment γ = Displacement (µm) Mike Boos Volumetric Contact Dynamics Models and Validation 8/ 21

19 Goals Normal contact force Quasi-static experiments Dynamic experiments Dynamic experiment with magnesium at.58 mm/s Displacement (mm) 4 2 x Measured 5 Model with damping Model no damping 4 Force (N) Damping factor a = s/m Time (s) Mike Boos Volumetric Contact Dynamics Models and Validation 9/ 21

20 Goals Normal contact force Measured damping factors Quasi-static experiments Dynamic experiments Damping factor (s/m) 1 x Estimated factors for Al Fit of a 1/v i for Al Estimated factors for Mg Fit of a 1/v i for Mg Impact velocity (mm/s) Model in free collision a 1 e2 eff e eff v i n e eff = 1 αv i n Measurements (driven) a Al 18.7 v i n a Mg 8.68 v i n Mike Boos Volumetric Contact Dynamics Models and Validation 1/ 21

21 Goals Normal contact force Apparatus in friction configuration Translation experiments Rotation experiments Contensou effect experiments Linear motor Rotational motor Contact surface Cylindrical payload Linear encoder Encoder reference 3DOF force sensors Mike Boos Volumetric Contact Dynamics Models and Validation 11/ 21

22 Static friction Goals Normal contact force Translation experiments Rotation experiments Contensou effect experiments.25 Force measurements Force measurements adjusted by rotation.3.25 Measured coefficients Model bristle stiffness only Model bristle stiffness and damping Friction over normal force magnitudes Coefficient of friction Displacement (mm) Time (s) Coefficient of static friction µ s.2 Bristle stiffness and damping σ = 45m 1 σ 1 = 3s/m Mike Boos Volumetric Contact Dynamics Models and Validation 12/ 21

23 Kinetic friction Goals Normal contact force Translation experiments Rotation experiments Contensou effect experiments Coefficient of friction.2.15 Coefficient of friction Measured coefficients of friction Linear regression Time (s) Velocity (mm/s) Coefficient of kinetic friction µ d.2 Mike Boos Volumetric Contact Dynamics Models and Validation 13/ 21

24 Goals Normal contact force Dwell-time dependency experiment Translation experiments Rotation experiments Contensou effect experiments.6.5 Coefficient of friction Could not detect dwell-time dependency Adhesion effect observed where friction force increased with time Time (s) Mike Boos Volumetric Contact Dynamics Models and Validation 14/ 21

25 Rotation experiments Goals Normal contact force Translation experiments Rotation experiments Contensou effect experiments Coefficient of friction.1.5 Coefficient of friction Rotation (degrees) Measured coefficients of friction Linear regression Angular velocity (radians/s) Coefficient of static friction µ s.2 Coefficient of kinetic friction µ d.2 Mike Boos Volumetric Contact Dynamics Models and Validation 15/ 21

26 Goals Normal contact force Conensou effect experiment Translation experiments Rotation experiments Contensou effect experiments Tangential force measurements Spinning torque measurements.45.4 Measured coefficients Model coefficients.5.45 Measured coefficients Model coefficients.35.4 Coefficient of Friction Coefficient of Friction Time (s) Time (s) Mike Boos Volumetric Contact Dynamics Models and Validation 16/ 21

27 Goals Normal contact force Normal contact Experiments compare well against Hertzian models Applicability to unusual geometries demonstrated Inverse relationship between impact velocity and damping Friction contact Similar results for translation and rotation Adhesion effect observed Contensou effect demonstrated Mike Boos Volumetric Contact Dynamics Models and Validation 17/ 21

28 Goals Normal contact force Recommendations Incremental improvements to apparatus: Alignment Force and speed ranges Increased surface area/reduced contact pressure in friction contact Investigate other aspects of contact: Rolling resistance torque Understanding of adhesion effect Mike Boos Volumetric Contact Dynamics Models and Validation 18/ 21

29 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Motivation for Hyperelastic Foundation Model Highly nonlinear soil properties Large deformation of the soft soil Y. Gonthier A Volumetric Contact Model for Space Application

30 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Volume vs. Hypervolume z y x Penetration Volume k f h f F n Elastic Foundation: F n,l = k v f S (S) ds n }{{} Volume V Hyperelastic Foundation: F n,nl = k v fs n (S) ds n }{{} Hypervolume V h Y. Gonthier A Volumetric Contact Model for Space Application

31 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Cylinder on Flat Ground Exact Solution: Find m for a variation of n f n S (S) ds V m = Hypervolumen Exponent Field 3 Hypervolume Exponent Variation Hypervolume exponent m Bekker Exponent n Bekker Exponent n Penetration depth parameter a Hypervolume exponent m Y. Gonthier A Volumetric Contact Model for Space Application

32 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Cylinder on Flat Ground Series Solution: Find α i for a certain n and dz =..R For n > 1: f n S (S) ds Normal force F n [N] numerically integrated series solution 4 α i V i = i=1 Contact Force Comparison For n < 1: f n S (S) ds Normal force F n [N] α i V 1/i = i=1 Contact Force Comparison Absolute error [N] Penetration depth dz [m] Absolute error [N] Penetration depth dz [m] Error: 1.38%.129% Y. Gonthier A Volumetric Contact Model for Space Application

33 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Cylinder on Flat Ground Mean Value Solution: Find c v (V ) for a variation of n F n,nl = k v b = k v b Apply Mean Value Theorem F n,nl = k v bc v (V ) a a a a a a g (x) n dx g (x) (n 1) g (x) dx g (x) dx = k v bc v (V ) V with c v (V ) = a a g (x)n dx a a g (x) dx Y. Gonthier A Volumetric Contact Model for Space Application

34 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Cylinder on Flat Ground Results of c v (V ) for wheel with R = ln c v n = n = 1 n = 2 n = Possible Solution : ln V c v (V ) = e a +a 1 ln V Y. Gonthier A Volumetric Contact Model for Space Application

35 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Tire/Soil Contact Model z max z ω F T C D θ θ dz dx R c F soil x Vertical Force: Hyperelasic foundation model Bekker soil parameters Longitudinal Force: Traction force (Janosi-Hanamoto, grousers) Resistance force (soil compaction) Willem Petersen ME 62 Project Presentation 14 Y. Gonthier A Volumetric Contact Model for Space Application

36 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Planetary Rover Model Developed MapleSim 4.5 Model Exported symbolic equations to S-function block Developed Simulink model and with LLG contact models Y. Gonthier A Volumetric Contact Model for Space Application

37 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Planetary Rover Simulation Platform Rover Simulation Platform Combine tire model with rover dynamics MuT (Multibody Toolbox) Contact Model Libraries in Numeric Simulation Environment LLG CSA/MDA Project Final Review Y. Gonthier A Volumetric Contact Model for Space Application

38 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Planetary Rover Simulation Simulation and animation of rover with Parallel Geometry Inc. (LLG) software Y. Gonthier A Volumetric Contact Model for Space Application

39 Introduction Elastic Foundation Model Experimental Validation Hyperelastic Foundation Model Planetary Rover Simulation Platform Future Work Future work 1. Experimental validation of hyperelastic contact models 2. Use more sophisticated tire and terrain geometries 3. Develop models to run on a high performance computer Y. Gonthier A Volumetric Contact Model for Space Application

Volumetric Contact Dynamics Models and Validation

Volumetric Contact Dynamics Models and Validation Volumetric Contact Dynamics s and Validation Mike Boos and John McPhee Department of Systems Design Engineering University of Waterloo Canada May 26, 2010 Mike Boos and John McPhee Volumetric Contact Dynamics

More information

Validation of Volumetric Contact Dynamics Models

Validation of Volumetric Contact Dynamics Models Validation of Volumetric Contact Dynamics s February 3, 2010 Validation of Volumetric Contact Dynamics s Outline 1 2 Volumetric model 3 4 Validation of Volumetric Contact Dynamics s Outline 1 2 Volumetric

More information

Validation of Volumetric Contact Dynamics Models

Validation of Volumetric Contact Dynamics Models Validation of Volumetric Contact Dynamics Models by Michael Boos A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in

More information

Surface Interaction Modeling Engineering Methods. Karl Iagnemma, Ph.D. Massachusetts Institute of Technology

Surface Interaction Modeling Engineering Methods. Karl Iagnemma, Ph.D. Massachusetts Institute of Technology Surface Interaction Modeling Engineering Methods Karl Iagnemma, Ph.D. Massachusetts Institute of Technology 1 Terramechanics Terramechanics Engineering science that studies the interaction between vehicles

More information

Contact Dynamics Modelling for Robotic Task Simulation

Contact Dynamics Modelling for Robotic Task Simulation Contact Dynamics Modelling for Robotic Task Simulation by Yves Gonthier A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy

More information

Volumetric Contact Model of Ellipsoid-Plane Geometries

Volumetric Contact Model of Ellipsoid-Plane Geometries Abstract ECCOMAS Thematic Conference on Multibody Dynamics June 19-22, 2017, Prague, Czech Republic olumetric Contact Model of Ellipsoid-Plane Geometries Peter Brown, John McPhee Systems Design Engineering

More information

Terramechanics V MARYLAND U N I V E R S I T Y O F. Terramechanics V. ENAE 788X - Planetary Surface Robotics

Terramechanics V MARYLAND U N I V E R S I T Y O F. Terramechanics V. ENAE 788X - Planetary Surface Robotics Terramechanics V Note - I haven t posted the slides from Tuesday because there were a number of typos (and outright mistakes) that were (almost) all corrected on Thursday. This set of slides are the corrected

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Terramechanics MARYLAND. Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis U N I V E R S I T Y O F

Terramechanics MARYLAND. Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis U N I V E R S I T Y O F Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis 2007 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Soil Mechanics Wheel rolling over

More information

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Z.-D. Ma C. Scholar N. C. Perkins University of Michigan Objective Efficient simulation of vehicle response including track

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Terramechanics. Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics MARYLAND U N I V E R S I T Y O F

Terramechanics. Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics MARYLAND U N I V E R S I T Y O F Terramechanics Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics 1 2010 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Lunar Regolith Broken down from larger pieces

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

3D Simulation and Validation of RCL-E and MER Rover Types Mobility

3D Simulation and Validation of RCL-E and MER Rover Types Mobility In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 26' ESTEC, Noordwijk, The Netherlands, November 28-3, 26 3D Simulation and Validation of RCL-E and

More information

Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study

Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study Issue 2, Volume 5, 2011 91 Computational and mathematical modeling of an industrialautomobile robot: a multi-purpose case of study J. Alejandro Betancur Abstract Nowadays, in automobile industry are found

More information

Ch. 10: Fundamental of contact between solids

Ch. 10: Fundamental of contact between solids Ch. 10: Fundamental of contact between solids Actual surface is not smooth. At atomic scale, there are always defects at surface, such as vacancies, ledges, kinks, terraces. In micro or macro scale, roughness

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Rotational kinematics

Rotational kinematics Rotational kinematics Suppose you cut a circle out of a piece of paper and then several pieces of string which are just as long as the radius of the paper circle. If you then begin to lay these pieces

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

Lecture 6 Physics 106 Spring 2006

Lecture 6 Physics 106 Spring 2006 Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] http://web.njit.edu/~sirenko/

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

Terramechanics. Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics MARYLAND U N I V E R S I T Y O F.

Terramechanics. Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics MARYLAND U N I V E R S I T Y O F. Origin and nature of lunar soil Soil mechanics Rigid wheel mechanics 1 2012 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Notes about Revised Course Schedule No class next week (9/11

More information

Lecture 6 mechanical system modeling equivalent mass gears

Lecture 6 mechanical system modeling equivalent mass gears M2794.25 Mechanical System Analysis 기계시스템해석 lecture 6,7,8 Dongjun Lee ( 이동준 ) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Lecture 6 mechanical system modeling

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Get Discount Coupons for your Coaching institute and FREE Study Material at   Force System Get Discount Coupons for your Coaching institute and FEE Study Material at www.pickmycoaching.com Mechanics Force System When a member of forces simultaneously acting on the body, it is known as force

More information

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.

Assignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ. Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass

More information

557. Radial correction controllers of gyroscopic stabilizer

557. Radial correction controllers of gyroscopic stabilizer 557. Radial correction controllers of gyroscopic stabilizer M. Sivčák 1, J. Škoda, Technical University in Liberec, Studentská, Liberec, Czech Republic e-mail: 1 michal.sivcak@tul.cz; jan.skoda@pevnosti.cz

More information

Vector mechanics PHY1021: Jan 2011 exam- Hints and tips. Lecturer: Dr. Stavroula Foteinopoulou

Vector mechanics PHY1021: Jan 2011 exam- Hints and tips. Lecturer: Dr. Stavroula Foteinopoulou Vector mechanics PHY1021: Jan 2011 exam- Hints and tips Lecturer: Dr. Stavroula Foteinopoulou 1(i) W

More information

Rotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem

Rotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem Slide 1 / 34 Rotational ynamics l Slide 2 / 34 Moment of Inertia To determine the moment of inertia we divide the object into tiny masses of m i a distance r i from the center. is the sum of all the tiny

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Transactions on Engineering Sciences vol 14, 1997 WIT Press, ISSN

Transactions on Engineering Sciences vol 14, 1997 WIT Press,  ISSN On the Computation of Elastic Elastic Rolling Contact using Adaptive Finite Element Techniques B. Zastrau^, U. Nackenhorst*,J. Jarewski^ ^Institute of Mechanics and Informatics, Technical University Dresden,

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations

Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 8- Rotational Kinematics Angular Variables Kinematic Equations Chapter 9- Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law- Angular Rotational Work & Energy Angular Momentum Angular

More information

Revolve, Rotate & Roll:

Revolve, Rotate & Roll: I. Warm-UP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of free-fall acceleration near Earth s surface, and r, the radius of a VERTICAL

More information

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. Chapter 3 Mechanical Systems A. Bazoune 3.1 INRODUCION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENS Any mechanical system consists

More information

Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil ICRA '07 Space Robotics Workshop 14 April, 2007 Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil Kazuya Yoshida and Keiji Nagatani Dept. Aerospace Engineering Graduate

More information

Connection between angular and linear speed

Connection between angular and linear speed Connection between angular and linear speed If a point-like object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

Final Exam Spring 2014 May 05, 2014

Final Exam Spring 2014 May 05, 2014 95.141 Final Exam Spring 2014 May 05, 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided.

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Terramechanics. Origin and nature of lunar soil Soil mechanics Wheel-soil interactions Tandem wheel calculations Grousers MARYLAND

Terramechanics. Origin and nature of lunar soil Soil mechanics Wheel-soil interactions Tandem wheel calculations Grousers MARYLAND Terramechanics Origin and nature of lunar soil Soil mechanics Wheel-soil interactions Tandem wheel calculations Grousers 1 16 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Lunar Regolith

More information

TIRE FORCE AND MOMENT PROPERTIES FOR COMBINED SLIP CONDITIONS CONSIDERING CAMBER EFFECT

TIRE FORCE AND MOMENT PROPERTIES FOR COMBINED SLIP CONDITIONS CONSIDERING CAMBER EFFECT TIRE FORCE AND MOMENT PROPERTIES FOR COMBINED SLIP CONDITIONS CONSIDERING CAMBER EFFECT Nan Xu, Konghui Guo ASCL State Key Lab, Jilin University Changchun Jilin, China April -1, 15 Outline Introduction

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors

Video Lecture #2 Introductory Conservation of Momentum Problem using Unit Vectors AP Physics C Video Lecture Notes Chapter 09-10 Thank You, Emily Rencsok, for these notes. Video Lecture #1 Introduction to Momentum and Derivation of Conservation of Momentum Video Lecture #2 Introductory

More information

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

More information

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133 Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meyer PART I: QUALITATIVE Exam II Spring 2004 Serway & Jewett, Chapters 6-10 Assigned Seat Number Fill in the bubble for the correct answer on the answer sheet. next to the number. NO PARTIAL CREDIT:

More information

Review of physics concepts for Exam 3. April, 2019

Review of physics concepts for Exam 3. April, 2019 Review of physics concepts for Exam 3 April, 2019 Reminders: 1. The vector sum of all forces = (the total inertial mass ) *a 2. Gravity F = mg; E=mgh 3. Friction along a surface Ff = (friction coefficient)

More information

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13)

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13) Lectures Today: Rolling and Angular Momentum in ch 1 Homework 6 due Next time: Complete angular momentum (chapter 1) and begin equilibrium (chapter 13) By Monday, will post at website Sample midterm II

More information

Mobility Prediction of Multi-Body Vehicle Dynamics Handling Simulations on Deformable Terrain. By Justin C. Madsen

Mobility Prediction of Multi-Body Vehicle Dynamics Handling Simulations on Deformable Terrain. By Justin C. Madsen Mobility Prediction of Multi-Body Vehicle Dynamics Handling Simulations on Deformable Terrain By Justin C. Madsen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B. Tech I Semester Supplementary Examinations Aug. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m

N - W = 0. + F = m a ; N = W. Fs = 0.7W r. Ans. r = 9.32 m 91962_05_R1_p0479-0512 6/5/09 3:53 PM Page 479 R1 1. The ball is thrown horizontally with a speed of 8 m>s. Find the equation of the path, y = f(x), and then determine the ball s velocity and the normal

More information

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION

ROTATIONAL MOTION FROM TRANSLATIONAL MOTION ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1-D otion 3-D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Physics 221. Final Exam Spring 2003

Physics 221. Final Exam Spring 2003 Physics 1. Final Exam Spring 003 The situation below refers to the next two questions: A block of mass m = 0. kg starts from rest at point A and slides down a frictionless curved surface to point B, where

More information

SOIL MECHANICS OF LUNAR REGOLITH SIMULANTS FOR PROBE LANDING AND ROVER LOCOMOTION

SOIL MECHANICS OF LUNAR REGOLITH SIMULANTS FOR PROBE LANDING AND ROVER LOCOMOTION SOIL MECHANICS OF LUNAR REGOLITH SIMULANTS FOR PROBE LANDING AND ROVER LOCOMOTION Kazuya Yoshida *1, Keiji Nagatani *1, Genya Ishigami *1, Shigehito Shimizu *1 Kozo Sekimoto *2, Akira Miyahara *3, Takaaki

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

Extra Credit 1: Problems

Extra Credit 1: Problems Extra Credit 1: Problems Due Friday, May 5, to your TA s mailbox Note: You may do either this assignment or Extra Credit 2, but not both. Note 2: In order to get credit for these problems, you must include

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Collision Resolution

Collision Resolution Collision Resolution Our Problem Collision detection (supposedly) reported a collision. We want to solve it, i.e. move back the colliding objects apart from each other. In which direction and with what

More information

Contents. Chapter 1 Introduction Chapter 2 Unacceptable Cam Curves Chapter 3 Double-Dwell Cam Curves... 27

Contents. Chapter 1 Introduction Chapter 2 Unacceptable Cam Curves Chapter 3 Double-Dwell Cam Curves... 27 Contents Chapter 1 Introduction... 1 1.0 Cam-Follower Systems... 1 1.1 Fundamentals... 1 1.2 Terminology... 4 Type of Follower Motion... 4 Type of Joint Closure... 4 Type of Follower... 5 Type of Cam...

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

SYSTEM OF PARTICLES AND ROTATIONAL MOTION

SYSTEM OF PARTICLES AND ROTATIONAL MOTION Chapter Seven SYSTEM OF PARTICLES AND ROTATIONAL MOTION MCQ I 7.1 For which of the following does the centre of mass lie outside the body? (a) A pencil (b) A shotput (c) A dice (d) A bangle 7. Which of

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N

Practice Exam #3 A N B. 1.2 N C N D N E. 0 N Practice Exam #3 1. A barbell is mounted on a nearly frictionless axle through its center. The low-mass rod has a length d = 0.9 m, and each ball has a mass m = 0.5 kg. At this instant, there are two forces

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Contact Mechanics and Elements of Tribology

Contact Mechanics and Elements of Tribology Contact Mechanics and Elements of Tribology Lectures 2-3. Mechanical Contact Vladislav A. Yastrebov MINES ParisTech, PSL Research University, Centre des Matériaux, CNRS UMR 7633, Evry, France @ Centre

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

Lecture II: Rigid-Body Physics

Lecture II: Rigid-Body Physics Rigid-Body Motion Previously: Point dimensionless objects moving through a trajectory. Today: Objects with dimensions, moving as one piece. 2 Rigid-Body Kinematics Objects as sets of points. Relative distances

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

12. Rigid Body Dynamics I

12. Rigid Body Dynamics I University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 015 1. Rigid Body Dynamics I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement Textbook Correlation Textbook Correlation Physics 1115/2015 Chapter 1 Introduction, Measurement, Estimating 1.1 Describe thoughts of Aristotle vs. Galileo in describing motion 1 1 Nature of Science 1.2

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information