2. Multivariate ARMA

Size: px
Start display at page:

Download "2. Multivariate ARMA"

Transcription

1 2. Multivariate ARMA JEM 140: Quantitative Multivariate Finance IES, Charles University, Prague Summer 2018 JEM 140 () 2. Multivariate ARMA Summer / 19

2 Multivariate AR I Let r t = (r 1t,..., r kt ) 0 denote the log returns of k assets at time t I Assume that r t is stationary I De ne its mean as µ = E (r t ) where the expectation is over the joint distribution of r t. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

3 Covariance Matrix I De ne the covariance matrix of r t as Γ 0 = E (r t µ) (r t µ) Γ 11 (0) Γ 12 (0) Γ 13 (0) Γ 1k (0) Γ 21 (0) Γ 22 (0) Γ 23 (0) Γ 2k (0) = Γ 31 (0) Γ 32 (0) Γ 33 (0) Γ 3k (0) Γ k1 (0) Γ k2 (0) Γ k3 (0) Γ kk (0) where h Γ ii (0) = E (r it µ i ) 2i (variances) h i Γ ij (0) = E (r it µ i ) r jt µ j for i 6= j (covariances) JEM 140 (IES) 2. Multivariate ARMA Summer / 19

4 Vector Autoregressive Models I A multivariate time series r t is a VAR(1) process if it follows the model r t = φ 0 + Φr t 1 + a t (1) where: I I I I φ 0 is a k-dimensional vector Φ is a k k matrix of coe cients fat g is a sequence of serially uncorrelated random vectors with mean zero and covariance matrix Σ It is often assumed that a t is multivariate Normal I Consider the case with k = 2 : r 1t = φ 10 + Φ 11 r 1,t 1 + Φ 12 r 2,t 1 + a 1t r 2t = φ 20 + Φ 21 r 1,t 1 + Φ 22 r 2,t 1 + a 2t JEM 140 (IES) 2. Multivariate ARMA Summer / 19

5 Moments of VAR(1) I Assume that the VAR(1) process r t is stationary I Taking expectations and using E (a t ) = 0 we obtain I Since r t is time-invariant, if the matrix (I I Moreover, E (r t ) = φ 0 + ΦE (r t 1 ) µ E (r t ) = (I Φ) 1 φ 0 Φ) 1 is nonsingular. φ 0 = (I Φ) µ and hence VAR(1) in (1) can also be written as r t µ = (I Φ) µ + Φr t 1 µ + a t = I µ Φµ + Φr t 1 µ + a t = Φ (r t 1 µ) + a t er t = Φer t 1 + a t (2) JEM 140 (IES) 2. Multivariate ARMA Summer / 19

6 Stationarity of VAR(1) I By repeated substitutions, we can rewrite (2) as er t = Φer t 1 + a t = Φ (Φer t 2 + a t 1 ) + a t = Φ 2 er t 2 + Φa t 1 + a t = Φ 2 (Φer t 3 + a t 2 ) + Φa t 1 + a t = Φ 3 er t 3 + Φ 2 a t 2 + Φa t 1 + a t =. = a t + Φa t 1 + Φ 2 a t 2 + Φ 3 a t I For the series to have a nite sum, we need Φ j! 0 as j! (all eigenvalues of Φ should be less than 1) JEM 140 (IES) 2. Multivariate ARMA Summer / 19

7 Vector Autoregressive Models of Order p I The time series r t follows a VAR(p) model if it satis es r t = φ 0 + Φ 1 r t 1 + Φ 2 r t Φ p r t p + a t for p > 0. I Using the backshift operator B j de ned by r t j = B j r t the AR(p) model can also be written as or more compactly as where is a matrix polynomial. (I Φ 1 B... Φ p B p ) r t = φ 0 + a t Φ(B)r t = φ 0 + a t Φ(B) = I Φ 1 B... Φ p B p JEM 140 (IES) 2. Multivariate ARMA Summer / 19

8 Moments of AR(p) I If r t is stationary then we have µ = E (r t ) = (I Φ 1... Φ p ) 1 φ 0 = [Φ(1)] 1 I Moreover, Cov(r t, a t ) = Σ Cov(r t j, a t ) = 0 for all j > 0 JEM 140 (IES) 2. Multivariate ARMA Summer / 19

9 Determining the order of VAR(p) I Consider the following consecutive VAR models: r t = φ 0 + Φ 1 r t 1 + a t r t = φ 0 + Φ 1 r t 1 + Φ 2 r t 2 + a t. =. r t = φ 0 + Φ 1 r t 1 + Φ 2 r t Φ i r t i + a t. =. I We can estimate the model by the maximum likelihood (MLE) and then use information criteria (e.g. AIC) to select the model order JEM 140 (IES) 2. Multivariate ARMA Summer / 19

10 Determining the order of VAR(p) I The MLE estimate of is eσ i = 1 T T h ba (i) t ba (i) t t=i+1 where ba (i) t is the MLE estimate of a t for VAR(i) and T is the legth of the time series. I The AIC of a VAR(i) model under the normality assumption is de ned as AIC (i) = ln eσ i + 2k 2 i/t I For a given vector time series, one selects the VAR order p such that i 0 AIC (p) = min 0ip0 AIC (i) where p 0 is a prespeci ed positive integer. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

11 Multivariate MA I A vector moving-average model of order q, or VMA(q), is in the form r t = θ 0 + a t 1 Θ 1 a t 1 Θ q a t q or r t = θ 0 + Θ(B)a t where θ 0 is a k-dimensional vector, Θ i are k k matrices, and Θ(B) = I Θ 1 B Θ q B q is the MA matrix polynomial in the back-shift operator B. I The mean of VMA(q) is µ = E (r t ) = θ 0 JEM 140 (IES) 2. Multivariate ARMA Summer / 19

12 Multivariate ARMA I A VARMA(p, q) model can be written as Φ(B)r t = φ 0 + Θ(B)a t where Φ(B) and Θ(B) are two matrix polynomials. I For v > 0, the (i, j)th elements of the coe cient matrices Φ v and Θ v measure the linear dependence of r 1t on r j,t v and a j,t v, respectively. I The necessary and su cient condition of weak stationarity for rt is the same as that for the VAR(p) model with matrix polynomial Φ(B). JEM 140 (IES) 2. Multivariate ARMA Summer / 19

13 Example I Consider the monthly log returns of IBM stock and the S&P 500 index from January 1926 to December 1999 with 888 observations. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

14 Order Determination I The following table shows the AIC output for the data: I The AIC results indicate that a VAR(3) model would be adequate. I The M(i) statistic indicates that only lags 1 and 3 are signi cant. I We can now estimate the model using MLE. r t = φ 0 + Φ 1 r t 1 + Φ 2 r t 3 + a t JEM 140 (IES) 2. Multivariate ARMA Summer / 19

15 MLE Estimates Note: In the simpli ed model, coe cients that are not signi cant at 5% were set to zero. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

16 Outcomes I The model shows that IBM t = SP5 t SP5 t 3 + a 1t SP5 t = SP5 t SP5 t 3 + a 2t I The two log return series have positive and signi cant means, implying that the log prices of the two series had an upward trend over the data span. I At the 5% signi cance level, there is a unidirectional dynamic relationship from the monthly S&P 500 index return to the IBM return. I If the S&P 500 index represents the U.S. stock market, then IBM return is a ected by the past movements of the market. I However, past movements of IBM stock returns do not signi cantly a ect the U.S. market, even though the two returns have substantial concurrent correlation. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

17 Outcomes I In matrix notation, the tted model can be written as IBMt = + SP5 SP5 t t 1 SP t 3 + indicating that SP5t is the driving factor of the bivariate series. a1t a 2t JEM 140 (IES) 2. Multivariate ARMA Summer / 19

18 Forecasting I For a VAR(p) model, the 1-step ahead forecast at the time origin h is r h (1) = φ 0 + and the associated forecast error is p i=1 e h (1) = a h+1 Φ i r h+1 I For 2-step ahead forecasts, we substitute r h+1 by its forecast to obtain r h (2) = φ 0 + Φ 1 r h (1) + and the associated forecast error is p i=2 i Φ i r h+2 e h (2) = a h+2 + Φ 1 [r t r h (1)] = a h+2 + Φ 1 a h+1 I If r t is stationary, then the l-step ahead forecast r h (l) converges to its mean vector µ as the forecast horizon increases. JEM 140 (IES) 2. Multivariate ARMA Summer / 19 i

19 Forecasting I The following table provides 1-step to 6-step ahead forecasts of the monthly log returns, in percentages, of IBM stock and the S&P 500 index at the forecast origin h = 888. I These forecasts are obtained by the re ned VAR(3) model. JEM 140 (IES) 2. Multivariate ARMA Summer / 19

20 Reference I Reference: Tsay (2005), chapter 8 JEM 140 (IES) 2. Multivariate ARMA Summer / 19

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 017, Mr Ruey S Tsay Solutions to Midterm Problem A: (51 points; 3 points per question) Answer briefly the following questions

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay. Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH ntro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH JEM 140: Quantitative Multivariate Finance ES, Charles University, Prague Summer 2018 JEM 140 () 4. MGARCH Summer 2018

More information

Web Appendix to Multivariate High-Frequency-Based Volatility (HEAVY) Models

Web Appendix to Multivariate High-Frequency-Based Volatility (HEAVY) Models Web Appendix to Multivariate High-Frequency-Based Volatility (HEAVY) Models Diaa Noureldin Department of Economics, University of Oxford, & Oxford-Man Institute, Eagle House, Walton Well Road, Oxford OX

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm

Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Booth School of Business, University of Chicago Business 41914, Spring Quarter 2017, Mr. Ruey S. Tsay Midterm Chicago Booth Honor Code: I pledge my honor that I have not violated the Honor Code during

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

When is a copula constant? A test for changing relationships

When is a copula constant? A test for changing relationships When is a copula constant? A test for changing relationships Fabio Busetti and Andrew Harvey Bank of Italy and University of Cambridge November 2007 usetti and Harvey (Bank of Italy and University of Cambridge)

More information

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j

Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis. x 1t x 2t. X t = Cov(X t, X t j ) = Γ j Lecture Note of Bus 41202, Spring 2006: Multivariate Time Series Analysis Forcus on two series (Bivariate) Time series: Data: x 1, x 2,, x T. Weak stationarity: X t = x 1t x 2t. E(X t ) = µ Cov(X t, X

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Multivariate forecasting with VAR models

Multivariate forecasting with VAR models Multivariate forecasting with VAR models Franz Eigner University of Vienna UK Econometric Forecasting Prof. Robert Kunst 16th June 2009 Overview Vector autoregressive model univariate forecasting multivariate

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive.

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive. Advantages of GARCH model Simplicity Generates volatility clustering Heavy tails (high kurtosis) Weaknesses of GARCH model Symmetric btw positive & negative prior returns Restrictive Provides no explanation

More information

R = µ + Bf Arbitrage Pricing Model, APM

R = µ + Bf Arbitrage Pricing Model, APM 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

1. The Multivariate Classical Linear Regression Model

1. The Multivariate Classical Linear Regression Model Business School, Brunel University MSc. EC550/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 08956584) Lecture Notes 5. The

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b)

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) Explain/Obtain the variance-covariance matrix of Both in the bivariate case (two regressors) and

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Multivariate Time Series Analysis: VAR Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) VAR 01/13 1 / 25 Structural equations Suppose have simultaneous system for supply

More information

ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008

ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008 ECONOMETRICS FIELD EXAM Michigan State University May 9, 2008 Instructions: Answer all four (4) questions. Point totals for each question are given in parenthesis; there are 00 points possible. Within

More information

Trending Models in the Data

Trending Models in the Data April 13, 2009 Spurious regression I Before we proceed to test for unit root and trend-stationary models, we will examine the phenomena of spurious regression. The material in this lecture can be found

More information

GMM-based inference in the AR(1) panel data model for parameter values where local identi cation fails

GMM-based inference in the AR(1) panel data model for parameter values where local identi cation fails GMM-based inference in the AR() panel data model for parameter values where local identi cation fails Edith Madsen entre for Applied Microeconometrics (AM) Department of Economics, University of openhagen,

More information

Instead of using all the sample observations for estimation, the suggested procedure is to divide the data set

Instead of using all the sample observations for estimation, the suggested procedure is to divide the data set Chow forecast test: Instead of using all the sample observations for estimation, the suggested procedure is to divide the data set of N sample observations into N 1 observations to be used for estimation

More information

MC3: Econometric Theory and Methods. Course Notes 4

MC3: Econometric Theory and Methods. Course Notes 4 University College London Department of Economics M.Sc. in Economics MC3: Econometric Theory and Methods Course Notes 4 Notes on maximum likelihood methods Andrew Chesher 25/0/2005 Course Notes 4, Andrew

More information

Lesson 17: Vector AutoRegressive Models

Lesson 17: Vector AutoRegressive Models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Vector AutoRegressive models The extension of ARMA models into a multivariate framework

More information

Wild Bootstrap Tests for Autocorrelation in Vector Autoregressive Models

Wild Bootstrap Tests for Autocorrelation in Vector Autoregressive Models MEDDELANDEN FRÅN SVENSKA HANDELSHÖGSKOLAN HANKEN SCHOOL OF ECONOMICS WORKING PAPERS 562 Niklas Ahlgren and Paul Catani Wild Bootstrap Tests for Autocorrelation in Vector Autoregressive Models 2012 Wild

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Parametric Inference on Strong Dependence

Parametric Inference on Strong Dependence Parametric Inference on Strong Dependence Peter M. Robinson London School of Economics Based on joint work with Javier Hualde: Javier Hualde and Peter M. Robinson: Gaussian Pseudo-Maximum Likelihood Estimation

More information

Heteroskedasticity; Step Changes; VARMA models; Likelihood ratio test statistic; Cusum statistic.

Heteroskedasticity; Step Changes; VARMA models; Likelihood ratio test statistic; Cusum statistic. 47 3!,57 Statistics and Econometrics Series 5 Febrary 24 Departamento de Estadística y Econometría Universidad Carlos III de Madrid Calle Madrid, 126 2893 Getafe (Spain) Fax (34) 91 624-98-49 VARIANCE

More information

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay

Lecture Notes of Bus (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Lecture Notes of Bus 41202 (Spring 2017) Analysis of Financial Time Series Ruey S. Tsay Simple AR models: (Regression with lagged variables.) Motivating example: The growth rate of U.S. quarterly real

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Bootstrapping the Grainger Causality Test With Integrated Data

Bootstrapping the Grainger Causality Test With Integrated Data Bootstrapping the Grainger Causality Test With Integrated Data Richard Ti n University of Reading July 26, 2006 Abstract A Monte-carlo experiment is conducted to investigate the small sample performance

More information

Cointegrated VARIMA models: specification and. simulation

Cointegrated VARIMA models: specification and. simulation Cointegrated VARIMA models: specification and simulation José L. Gallego and Carlos Díaz Universidad de Cantabria. Abstract In this note we show how specify cointegrated vector autoregressive-moving average

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 Joseph George Caldwell, PhD (Statistics) 1432 N Camino Mateo, Tucson, AZ 85745-3311 USA Tel. (001)(520)222-3446, E-mail jcaldwell9@yahoo.com (File converted

More information

7. MULTIVARATE STATIONARY PROCESSES

7. MULTIVARATE STATIONARY PROCESSES 7. MULTIVARATE STATIONARY PROCESSES 1 1 Some Preliminary Definitions and Concepts Random Vector: A vector X = (X 1,..., X n ) whose components are scalar-valued random variables on the same probability

More information

Economics 620, Lecture 13: Time Series I

Economics 620, Lecture 13: Time Series I Economics 620, Lecture 13: Time Series I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series I 1 / 19 AUTOCORRELATION Consider y = X + u where y is

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Examination paper for Solution: TMA4285 Time series models

Examination paper for Solution: TMA4285 Time series models Department of Mathematical Sciences Examination paper for Solution: TMA4285 Time series models Academic contact during examination: Håkon Tjelmeland Phone: 4822 1896 Examination date: December 7th 2013

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

Title. Description. var intro Introduction to vector autoregressive models

Title. Description. var intro Introduction to vector autoregressive models Title var intro Introduction to vector autoregressive models Description Stata has a suite of commands for fitting, forecasting, interpreting, and performing inference on vector autoregressive (VAR) models

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM.

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM. 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

Short-run electricity demand forecasts in Maharashtra

Short-run electricity demand forecasts in Maharashtra Applied Economics, 2002, 34, 1055±1059 Short-run electricity demand forecasts in Maharashtra SAJAL GHO SH* and AN JAN A D AS Indira Gandhi Institute of Development Research, Mumbai, India This paper, has

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Cointegration Tests Using Instrumental Variables Estimation and the Demand for Money in England

Cointegration Tests Using Instrumental Variables Estimation and the Demand for Money in England Cointegration Tests Using Instrumental Variables Estimation and the Demand for Money in England Kyung So Im Junsoo Lee Walter Enders June 12, 2005 Abstract In this paper, we propose new cointegration tests

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

The Predictive Space or If x predicts y; what does y tell us about x?

The Predictive Space or If x predicts y; what does y tell us about x? The Predictive Space or If x predicts y; what does y tell us about x? Donald Robertson and Stephen Wright y October 28, 202 Abstract A predictive regression for y t and a time series representation of

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica Acta Universitatis Carolinae. Mathematica et Physica Jitka Zichová Some applications of time series models to financial data Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011), No. 1,

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

You must continuously work on this project over the course of four weeks.

You must continuously work on this project over the course of four weeks. The project Five project topics are described below. You should choose one the projects. Maximum of two people per project is allowed. If two people are working on a topic they are expected to do double

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Booth School of Business Business 41914, Spring Quarter 2013, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Booth School of Business Business 494, Spring Quarter 03, Mr. Ruey S. Tsay Unit-Root Nonstationary VARMA Models Unit root plays an important role both in theory and applications

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -33 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Regression on Principal components

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006.

9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. 9. Multivariate Linear Time Series (II). MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Introduction to Time Series and Forecasting. P.J. Brockwell and R. A. Davis, Springer Texts

More information

Vector Time-Series Models

Vector Time-Series Models T. Rothenberg Fall, 2007 1 Introduction Vector Time-Series Models The n-dimensional, mean-zero vector process fz t g is said to be weakly stationary if secondorder moments exist and only depend on time

More information

2014 Preliminary Examination

2014 Preliminary Examination 014 reliminary Examination 1) Standard error consistency and test statistic asymptotic normality in linear models Consider the model for the observable data y t ; x T t n Y = X + U; (1) where is a k 1

More information

LECTURE 13: TIME SERIES I

LECTURE 13: TIME SERIES I 1 LECTURE 13: TIME SERIES I AUTOCORRELATION: Consider y = X + u where y is T 1, X is T K, is K 1 and u is T 1. We are using T and not N for sample size to emphasize that this is a time series. The natural

More information

Time Series Outlier Detection

Time Series Outlier Detection Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, 2016 1 / 42 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection

More information

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models

A Non-Parametric Approach of Heteroskedasticity Robust Estimation of Vector-Autoregressive (VAR) Models Journal of Finance and Investment Analysis, vol.1, no.1, 2012, 55-67 ISSN: 2241-0988 (print version), 2241-0996 (online) International Scientific Press, 2012 A Non-Parametric Approach of Heteroskedasticity

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Lecture 7a: Vector Autoregression (VAR)

Lecture 7a: Vector Autoregression (VAR) Lecture 7a: Vector Autoregression (VAR) 1 Big Picture We are done with univariate time series analysis Now we switch to multivariate analysis, that is, studying several time series simultaneously. VAR

More information

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations.

x i = 1 yi 2 = 55 with N = 30. Use the above sample information to answer all the following questions. Show explicitly all formulas and calculations. Exercises for the course of Econometrics Introduction 1. () A researcher is using data for a sample of 30 observations to investigate the relationship between some dependent variable y i and independent

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Vector error correction model, VECM Cointegrated VAR

Vector error correction model, VECM Cointegrated VAR 1 / 58 Vector error correction model, VECM Cointegrated VAR Chapter 4 Financial Econometrics Michael Hauser WS17/18 2 / 58 Content Motivation: plausible economic relations Model with I(1) variables: spurious

More information

1 Class Organization. 2 Introduction

1 Class Organization. 2 Introduction Time Series Analysis, Lecture 1, 2018 1 1 Class Organization Course Description Prerequisite Homework and Grading Readings and Lecture Notes Course Website: http://www.nanlifinance.org/teaching.html wechat

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

1. Fundamental concepts

1. Fundamental concepts . Fundamental concepts A time series is a sequence of data points, measured typically at successive times spaced at uniform intervals. Time series are used in such fields as statistics, signal processing

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information