Short-run electricity demand forecasts in Maharashtra

Size: px
Start display at page:

Download "Short-run electricity demand forecasts in Maharashtra"

Transcription

1 Applied Economics, 2002, 34, 1055±1059 Short-run electricity demand forecasts in Maharashtra SAJAL GHO SH* and AN JAN A D AS Indira Gandhi Institute of Development Research, Mumbai, India This paper, has tried to forecast monthly maximum electricity demand for the state Maharashtra, India, using Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) method for seasonally unadjusted monthly data spanning from April 1980 to June The forecasted period is 18 months ahead from June This study s basic ndings are that the series does not reveal any drastic change for the forecasted period. It continues to follow the same trend along with the seasonal variation. I. INTROD UCTIO N Economic growth in a nation is closely related to the availability of energy. Electricity is the most exible form of energy that constitutes one of the vital infrastructural inputs in socio-economic development. Due to increased industrialization and commercialization; the demand for electricity has been growing continuously. Since electricity cannot be stored and there is substantial variation of demand for electricity within a day, between the days and between the months so precise forecasting of demand for electricity is of great importance. This enables the policy maker to plan for cost-e ective investment and operation of the existing and new power plants so that the supply of electricity can be adequate enough to meet the future demand and its variation. Time series forecasting is a sophisticated and widely used technique to forecast the future demand. A time series usually contains secular trends, seasonal variations, cyclical movements and irregular components. Cyclical component, which is basically related to the business cycle movement, causes change considerably over a period of 10 to 15 years. Hence for a short span of time it becomes really di cult to distinguish between the trend and cyclical components in a series. 1 Time series forecasting is a technique that helps to predict what will occur in future if the trends do not change. Univariate time-series analysis incorporates making use of historical data of the concerned variable to construct a model that describes the behaviour of this variable (timeseries) and allows making satisfactory forecast for the future. This paper has tried to forecast the short-run (monthly) maximum electricity demand in Maharashtra, an important state located at the western part of India, by using univariate Box±Jenkins Autoregressive Integrated Moving Average (ARIMA) Technique. ARIMA model has long been used by researchers and modellers in order to forecast the short-run electricity demand (Nelson et al., 1989; Tserkezos, 1992; Kokkelenberg and Mount, 1993; Chavez et al., 1999). The paper is organized in the following manner: Section II contains the theories of ARIMA models. Section III gives description of the data and statistical analysis of the series. Finally, Section IV wraps up the work into conclusion. II. ARIM A MODELS A linear non-stationary stochastic process is said to be homogeneous of degree d when upon di erentiating the original process by d times, the resulting transformed pro- * Corresponding author: Energy Division, CII, Gate No. 31, North Block, J. N. Stadium, New Delhi , India. sajal.ghosh@ ciionline.org 1 In this case it is assumed that the trend includes the cyclical component. So, trend and seasonal components are the permanent components whereas random component captures all idiosyncratic nature of the series. Applied Economics ISSN 0003±6846 print/issn 1466±4283 online # 2002 Taylor & Francis Ltd DOI: /

2 1056 S. Ghosh and A. Das cess has become covariance-stationary. If the original series X t is homogeneous of degree d, then d X t ˆ 1 L d X t ˆ Z t ; t ˆ 1; 2; 3;... ; T 1 is covariance-stationary. Here, L is the backward shift operator. An integrated process X t is designed as an ARIMA (p; d; q), if taking di erences of order d, a stationary process Z t of the type ARMA (p; q) is obtained. The ARIMA (p, d, q) model is expressed by the function Z t ˆ 1 Z t 1 2 Z t p Z t p u t 1 u t 1 2 u t q u t q Or L 1 L d X t ˆ L u t 2 Non-stationary homogeneous models with seasonal variations, ARIMA (P,D,Q) s : In most of the monthly electricity time series data, seasonal variation is one of the main sources of non-stationarity. To remove seasonal non-stationarity of such series where seasonality is yearly, one can proceed with seasonal di erencing by s ˆ 12 times. The seasonal models ARIMA (P; D; Q), which are not stationary but homogeneous of degree D can be expressed as Z t ˆ 1 Z t s 2 Z t 2s p Z t ps d u t 1 u t s 2 u t 2s... Or p L s 1 L s D X t ˆ d Q L s u t 3 where and are xed seasonal autoregressive (AR) and moving average (MA) parameters. General multiplicative seasonal models, ARIMA (p, d, q) (P, D, Q) 2 s : These models take into account the e ect of trend and seasonal uctuations of a time series and are expressed as: p L s p L 1 L s D 1 L d X t ˆ Q L s q L u t 4 Root mean square error (RMSE) criterion: To evaluate the performance of the model one can consider RMSE criterion, which is de ned as: h RMSE ˆ 1=T X i 1=2 ^X t X t 2 5 where ^X t is the one step ahead forecast or tted value of X t based on an estimated model, and T is the number of observations used in the computation. According to the above de nition the RMSE is an estimate of the standard deviation of random errors (s), if the model is appropriate and the parameter estimates of the model are unbiased. The post-sample RMSE is a measure of model performance of forecast accuracy using the estimated model. Assuming the estimated model is representative during the forecast period, the post-sample RMSE is a guide to assess which model better explains the forecasted time series. ARIMA model building For a given time series, it is important to know which ARIMA model is capable of generating the underlying series. In other words, which model adequately represents the behaviour of the concerned Time Series so that the forecasts of the series under study can be done precisely. Box±Jenkins consider model building as an iterative process which can be divided into four stages: identi cation, estimation, diagnostic checking and forecasting. Identi cation: This stage basically tries to identify an appropriate ARIMA model for the underlying stationary time series on the basis of Sample Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). If the series is nonstationary it is rst transformed to covariance-stationary and then one can easily identify the possible values of the regular part of the model i.e., autoregressive order p and moving average order q in a univariate ARMA model along with the seasonal part. Estimation: In the estimation stage, point estimates of the coe cients can be obtained by the method of maximum likelihood. Associated standard errors are also provided, suggesting which coe cients could be dropped. Diagnostic checking: In this stage, additional autoregressive and moving average variables can be added and their statistical signi cance can be examined. One should also examine whether the residuals of the model appear to be white noise process. After the model has been respeci ed, it will be reestimated and diagnostic checks will be applied again until the coe cients are reasonably statistically signi cant and the residuals are random. Forecasting: After the diagnostic checking comes the fundamental aim of the methodology, i.e., the forecasts of the future values of the time series. III. DATA D ES CRIPTIO N AND STATISTICAL AN ALYSIS In this article, the variable under study is `maximum monthly electricity demand of Maharashtra from April 2 For a time series having both seasonal and nonseasonal components multiplicative ARIMA type of models are preferred to additive ARIMA.

3 Short-run electricity demand forecasts in Maharashtra Mw to June The data have been collected from Maharashtra State Electricity Board. This paper made an attempt to forecast the short-run maximum electricity demand of Maharashtra. The forecast periods are 18 months ahead from June This study has used simple Box±Jenkins methodology for modelling this variable. The statistical package used for this purpose is `SAS version From the raw plot of the time series data, as shown in Fig. 1, it is clear that the series poses nonstationary behaviour along with increasing trend and seasonal variation. In order to make a robust conclusion on the seasonal pattern of the series the level variable is regressed on 12 seasonal dummies. It has been observed that each of the dummy coe cients is signi cantly di erent from zero. 3 So, seasonal component is a systematic cause of variation of the concerned series. But in order to know if seasonal component is the only systematic part, which is causing nonstationarity or whether there is any other systematic component present in the series the classical Box± Jenkins Identi cation procedure is proceeded with. From correlogram (not reported here) it is observed that ACF tails o very slowly at higher lags indicating the presence of nonstationarity in the series. Table 1. Unit root tests of the maximum monthly electricity demand Critical value Origin ADf lag at 10% level signi cance length Adf statistic of signi cance Level First di erence* Notes: * Rejection of null hypothesis of a unit root Months (4/80 to 6/99) Fig. 1. Monthly maximum electricity demand in Maharashtra Also, inverse autocorrelation function as well as PACF plot show that the autocorrelations are not only signi cant at lag 12, lags 1, 11 and 13 are also signi cant. This gives a clear indication that there must be nonseasonal systematic component, (trend here) making the series nonstationary. Besides, Augmented Dickey±Fuller (ADF) test also assures that the series has nonstationarity. ADF test is conducted with the following model: X t ˆ a 0 bt a 1 X t 1 j X t j " t ; j : 1; 2;... ; p where X t is the underlying variable at time t, " t is the error term and 0 ; ; 1 and j are the parameters to be estimated. The lag terms are introduced in order to justify that errors are uncorrelated with lag terms. For the abovespeci ed model the hypothesis, which would be of interest, is: H 0 : a 0 ˆ 0 and 1 ˆ 0 The results of the unit root tests are reported in Table 1. It has been found that the null hypothesis of unit root is not rejected at the 10% level of signi cance implying that the series is nonstationary. Hence, this study takes the rst di erence of the series and carried out similar analysis (stated above) on the rst di erenced series where the null hypothesis of a unit root is rejected at 10% level of signi cance. Contrary to the unit root tests, which indicate stationarity after taking rst di erence, it has been found that the correlogram associated with the rst di erence series appear to show that the series is still nonstationary. The ACF and PACF still show signi cant spikes 4 at lag 1, 12, 11 and 13 and the rate of decaying in ACF is linear indicating the presence of seasonality as well as nonstationarity. As a result, this study takes rst and span-12 di erence of the series. Identi cation stage con rms stationarity of the series. In the next stage, this study has estimated about 21 models taking di erent values of p and q ranging from 0 to 3 and for seasonal AR and/or MA component P ˆ 0 or Q ˆ 3 respectively. It has been found that ARIMA (0, 1, 3) (0, 12, 1) is the best tted model in terms of smallest Akike Information Criterion (AIC) and Schwarz Bayesiam Criterion (SBC) to explain the maximum monthly electricity demand in Maharashtra. This model has also ful lled RMSE criterion. Hence the estimated model (with absolute t-ratios in parentheses) is: 6 3 Values will be provided on request. 4 A large statistically signi cant autocorrelation is termed as Spike.

4 1058 S. Ghosh and A. Das Table 2. Diagnostic checking of the estimated model Probability [Table value> Lag Chi-sq(À 2 ) dof Observed (À 2 )] L 1 L 12 X t 1:86 4:94 ˆ 1 0:64L 0:01L 2 0:28L 3 1 0:88L 12 u t 10:21 0:12 4:26 15:98 AIC ˆ 3139:13 SBC ˆ 3156:12 Diagnostic checking of this model shows that the estimated residuals are random as shown in Table 2. Again, the correlogram of the estimated residuals (not reported here) shows that the ACFs are within 95% con dence interval limits. The estimated model is used to forecast monthly maximum electricity demand in Maharhastra for 18 months from June The forecast series and plot of the same are shown in Table 3 and Fig. 2 respectively. IV. CONCLUS ION Maharashtra has a total geographical area of square kilometres. The State has a total population and Mw Jan-98 Jul-98 Feb-99 Aug-99 Mar-00 Oct-00 Apr-01 Months (6/98 to 12/2000) Fig. 2. Electricity demand forecasts in Maharashtra Original Forecast peak electricity demand of 89 million and 9719 Mega- Watt (MW) respectively where as Maharashtra State Electricity Board (MSEB) has a total installed capacity of about MW in 1998±1999. Agricultural and industrial sector consume about 32 and 34% of the electricity sold respectively. Per capita Gross Domestic Product and per capita electricity consumption are Rupees and 558 kilo-watt-hour respectively in 1998±1999, which are well above the national level (Economic Survey of Maharashtra 1998±1999). This paper has predicted maximum monthly electricity demand in Maharashtra for 18 months ahead from June Forecast series have not revealed any drastic change in maximum demand for electricity in the near future. The series appears to follow the same trend along with seasonal variation. The prediction will have minimum forecast error if there is no structural break within the forecast period. Table 3. Electricity demand forecasts in Maharashtra Observation Forecast (Mw) Lower 5% (Mw) Upper 5% (Mw) Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

5 Short-run electricity demand forecasts in Maharashtra 1059 ACK NOW LED GEMEN TS Sajal Ghosh is grateful to his wife Kakali Kanjilal for her extensive comments and suggestions. REFEREN CES Box, G. E. P. and Jenkins, G. M. (1976) Time Series Analysis: Forecasting and Control, Holden Day, San Francisco. Chavez, S. G., Bernat, J. X. and Colla, H. L. (1999) Forecasting of energy production and consumption in Asturis, Energy, 24, 183±98. Dickey, D. A. and Fuller, W. A. (1981) Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica, 49, 1057±72. Government of Maharashtra (1999) Economic Survey of Maharashtra 1998±99, Directorate of Economics and Statistics, Planning Department, Mumbai. Kokkelenberg, E. C. and Mount, T. D. (1993) Oil shocks and demand for electricity, The Energy Journal, 14, 1132±9. Nelson, C. R., Peak, S. C. and Uhler, R. G. (1989) The NERC fan in retrospect, The Energy Journal, 10, 91±107. Parikh, K. S. (1999) India Development Report 1999±2000, Oxford University Press, New Delhi. Tserkezos, E. D. (1992) Forecasting residential electricity consumption in Greece using monthly and quarterly data, Energy Economics, 14, 226±31.

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia

Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia International Journal of Applied Science and Technology Vol. 5, No. 5; October 2015 Time Series Analysis of United States of America Crude Oil and Petroleum Products Importations from Saudi Arabia Olayan

More information

Forecasting the Prices of Indian Natural Rubber using ARIMA Model

Forecasting the Prices of Indian Natural Rubber using ARIMA Model Available online at www.ijpab.com Rani and Krishnan Int. J. Pure App. Biosci. 6 (2): 217-221 (2018) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5464 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Asitha Kodippili. Deepthika Senaratne. Department of Mathematics and Computer Science,Fayetteville State University, USA.

Asitha Kodippili. Deepthika Senaratne. Department of Mathematics and Computer Science,Fayetteville State University, USA. Forecasting Tourist Arrivals to Sri Lanka Using Seasonal ARIMA Asitha Kodippili Department of Mathematics and Computer Science,Fayetteville State University, USA. akodippili@uncfsu.edu Deepthika Senaratne

More information

Classical Decomposition Model Revisited: I

Classical Decomposition Model Revisited: I Classical Decomposition Model Revisited: I recall classical decomposition model for time series Y t, namely, Y t = m t + s t + W t, where m t is trend; s t is periodic with known period s (i.e., s t s

More information

MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH

MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH M.C.Alibuhtto 1 &P.A.H.R.Ariyarathna 2 1 Department of Mathematical Sciences, Faculty of Applied Sciences, South

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Time Series Analysis of Currency in Circulation in Nigeria

Time Series Analysis of Currency in Circulation in Nigeria ISSN -3 (Paper) ISSN 5-091 (Online) Time Series Analysis of Currency in Circulation in Nigeria Omekara C.O Okereke O.E. Ire K.I. Irokwe O. Department of Statistics, Michael Okpara University of Agriculture

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Technical note on seasonal adjustment for Capital goods imports

Technical note on seasonal adjustment for Capital goods imports Technical note on seasonal adjustment for Capital goods imports July 1, 2013 Contents 1 Capital goods imports 2 1.1 Additive versus multiplicative seasonality..................... 2 2 Steps in the seasonal

More information

Empirical Approach to Modelling and Forecasting Inflation in Ghana

Empirical Approach to Modelling and Forecasting Inflation in Ghana Current Research Journal of Economic Theory 4(3): 83-87, 2012 ISSN: 2042-485X Maxwell Scientific Organization, 2012 Submitted: April 13, 2012 Accepted: May 06, 2012 Published: June 30, 2012 Empirical Approach

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

FORECASTING COARSE RICE PRICES IN BANGLADESH

FORECASTING COARSE RICE PRICES IN BANGLADESH Progress. Agric. 22(1 & 2): 193 201, 2011 ISSN 1017-8139 FORECASTING COARSE RICE PRICES IN BANGLADESH M. F. Hassan*, M. A. Islam 1, M. F. Imam 2 and S. M. Sayem 3 Department of Agricultural Statistics,

More information

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model Forecasting Area, Production and Yield of Cotton in India using ARIMA Model M. K. Debnath 1, Kartic Bera 2 *, P. Mishra 1 1 Department of Agricultural Statistics, Bidhan Chanda Krishi Vishwavidyalaya,

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods International Journal of Sciences Research Article (ISSN 2305-3925) Volume 2, Issue July 2013 http://www.ijsciences.com Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins

More information

A STUDY OF ARIMA AND GARCH MODELS TO FORECAST CRUDE PALM OIL (CPO) EXPORT IN INDONESIA

A STUDY OF ARIMA AND GARCH MODELS TO FORECAST CRUDE PALM OIL (CPO) EXPORT IN INDONESIA Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 A STUDY OF ARIMA AND GARCH MODELS TO FORECAST

More information

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL S.Poyyamozhi 1, Dr. A. Kachi Mohideen 2. 1 Assistant Professor and Head, Department of Statistics, Government Arts College (Autonomous), Kumbakonam

More information

Public Infrastructure and Economic Growth in Mexico

Public Infrastructure and Economic Growth in Mexico Public Infrastructure and Economic Growth in Mexico Antonio Noriega Matias Fontenla Universidad de Guanajuato and CIDE April 15, 2005 Abstract We develop a model where investment in infrastructure complements

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

ARIMA modeling to forecast area and production of rice in West Bengal

ARIMA modeling to forecast area and production of rice in West Bengal Journal of Crop and Weed, 9(2):26-31(2013) ARIMA modeling to forecast area and production of rice in West Bengal R. BISWAS AND B. BHATTACHARYYA Department of Agricultural Statistics Bidhan Chandra Krishi

More information

Time Series Analysis

Time Series Analysis Time Series Analysis A time series is a sequence of observations made: 1) over a continuous time interval, 2) of successive measurements across that interval, 3) using equal spacing between consecutive

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

1 Regression with Time Series Variables

1 Regression with Time Series Variables 1 Regression with Time Series Variables With time series regression, Y might not only depend on X, but also lags of Y and lags of X Autoregressive Distributed lag (or ADL(p; q)) model has these features:

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

Trending Models in the Data

Trending Models in the Data April 13, 2009 Spurious regression I Before we proceed to test for unit root and trend-stationary models, we will examine the phenomena of spurious regression. The material in this lecture can be found

More information

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh CHIANG MAI UNIVERSITY JOURNAL OF SOCIAL SCIENCE AND HUMANITIES M. N. A. Bhuiyan 1*, Kazi Saleh Ahmed 2 and Roushan Jahan 1 Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

More information

1 Augmented Dickey Fuller, ADF, Test

1 Augmented Dickey Fuller, ADF, Test Applied Econometrics 1 Augmented Dickey Fuller, ADF, Test Consider a simple general AR(p) process given by Y t = ¹ + Á 1 Y t 1 + Á 2 Y t 2 + ::::Á p Y t p + ² t (1) If this is the process generating the

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Fall 2008 Environmental Econometrics (GR03) TSII Fall 2008 1 / 16 More on AR(1) In AR(1) model (Y t = µ + ρy t 1 + u t ) with ρ = 1, the series is said to have a unit root or a

More information

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia

Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia DOI 10.1515/ptse-2017-0005 PTSE 12 (1): 43-50 Autoregressive Integrated Moving Average Model to Predict Graduate Unemployment in Indonesia Umi MAHMUDAH u_mudah@yahoo.com (State Islamic University of Pekalongan,

More information

A stochastic modeling for paddy production in Tamilnadu

A stochastic modeling for paddy production in Tamilnadu 2017; 2(5): 14-21 ISSN: 2456-1452 Maths 2017; 2(5): 14-21 2017 Stats & Maths www.mathsjournal.com Received: 04-07-2017 Accepted: 05-08-2017 M Saranyadevi Assistant Professor (GUEST), Department of Statistics,

More information

Frequency Forecasting using Time Series ARIMA model

Frequency Forecasting using Time Series ARIMA model Frequency Forecasting using Time Series ARIMA model Manish Kumar Tikariha DGM(O) NSPCL Bhilai Abstract In view of stringent regulatory stance and recent tariff guidelines, Deviation Settlement mechanism

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

Forecasting Foreign Direct Investment Inflows into India Using ARIMA Model

Forecasting Foreign Direct Investment Inflows into India Using ARIMA Model Forecasting Foreign Direct Investment Inflows into India Using ARIMA Model Dr.K.Nithya Kala & Aruna.P.Remesh, 1 Assistant Professor, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India 2 PhD

More information

ECONOMETRIA II. CURSO 2009/2010 LAB # 3

ECONOMETRIA II. CURSO 2009/2010 LAB # 3 ECONOMETRIA II. CURSO 2009/2010 LAB # 3 BOX-JENKINS METHODOLOGY The Box Jenkins approach combines the moving average and the autorregresive models. Although both models were already known, the contribution

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu Volume 109 No. 8 2016, 225-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

More information

BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7

BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7 BUSI 460 Suggested Answers to Selected Review and Discussion Questions Lesson 7 1. The definitions follow: (a) Time series: Time series data, also known as a data series, consists of observations on a

More information

Technical note on seasonal adjustment for M0

Technical note on seasonal adjustment for M0 Technical note on seasonal adjustment for M0 July 1, 2013 Contents 1 M0 2 2 Steps in the seasonal adjustment procedure 3 2.1 Pre-adjustment analysis............................... 3 2.2 Seasonal adjustment.................................

More information

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c.

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c. ISSN: 2415-0304 (Print) ISSN: 2522-2465 (Online) Indexing/Abstracting Forecasting GDP Growth: Application of Autoregressive Integrated Moving Average Model Author: Yesuf M. Awel 1c Affiliation: 1 PhD,

More information

Univariate linear models

Univariate linear models Univariate linear models The specification process of an univariate ARIMA model is based on the theoretical properties of the different processes and it is also important the observation and interpretation

More information

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production Journal of Applied Mathematics & Bioinformatics, vol.3, no.3, 2013, 103-112 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2013 Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Available online at ScienceDirect. Procedia Computer Science 72 (2015 )

Available online at  ScienceDirect. Procedia Computer Science 72 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 72 (2015 ) 630 637 The Third Information Systems International Conference Performance Comparisons Between Arima and Arimax

More information

Lecture 19 Box-Jenkins Seasonal Models

Lecture 19 Box-Jenkins Seasonal Models Lecture 19 Box-Jenkins Seasonal Models If the time series is nonstationary with respect to its variance, then we can stabilize the variance of the time series by using a pre-differencing transformation.

More information

ANALYZING THE IMPACT OF HISTORICAL DATA LENGTH IN NON SEASONAL ARIMA MODELS FORECASTING

ANALYZING THE IMPACT OF HISTORICAL DATA LENGTH IN NON SEASONAL ARIMA MODELS FORECASTING ANALYZING THE IMPACT OF HISTORICAL DATA LENGTH IN NON SEASONAL ARIMA MODELS FORECASTING Amon Mwenda, Dmitry Kuznetsov, Silas Mirau School of Computational and Communication Science and Engineering Nelson

More information

1 Quantitative Techniques in Practice

1 Quantitative Techniques in Practice 1 Quantitative Techniques in Practice 1.1 Lecture 2: Stationarity, spurious regression, etc. 1.1.1 Overview In the rst part we shall look at some issues in time series economics. In the second part we

More information

Austrian Inflation Rate

Austrian Inflation Rate Austrian Inflation Rate Course of Econometric Forecasting Nadir Shahzad Virkun Tomas Sedliacik Goal and Data Selection Our goal is to find a relatively accurate procedure in order to forecast the Austrian

More information

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (6): 1042-1051 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5838 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

A Univariate Time Series Autoregressive Integrated Moving Average Model for the Exchange Rate Between Nigerian Naira and US Dollar

A Univariate Time Series Autoregressive Integrated Moving Average Model for the Exchange Rate Between Nigerian Naira and US Dollar American Journal of Theoretical and Applied Statistics 2018; 7(5): 173-179 http://www.sciencepublishinggroup.com/j/ajtas doi: 10.11648/j.ajtas.20180705.12 ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Forecasting of Soybean Yield in India through ARIMA Model

Forecasting of Soybean Yield in India through ARIMA Model Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (5): 1538-1546 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5834 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Global Temperature Trends

Global Temperature Trends Global Temperature Trends Trevor Breusch Crawford School of Economics and Government Australian National University E-mail: Trevor.Breusch@anu.edu.au and Farshid Vahid School of Economics College of Business

More information

TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE

TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE Mozammel H. Khan Kuwait Institute for Scientific Research Introduction The objective of this work was to investigate

More information

Economics 620, Lecture 13: Time Series I

Economics 620, Lecture 13: Time Series I Economics 620, Lecture 13: Time Series I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 13: Time Series I 1 / 19 AUTOCORRELATION Consider y = X + u where y is

More information

Decision 411: Class 9. HW#3 issues

Decision 411: Class 9. HW#3 issues Decision 411: Class 9 Presentation/discussion of HW#3 Introduction to ARIMA models Rules for fitting nonseasonal models Differencing and stationarity Reading the tea leaves : : ACF and PACF plots Unit

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

LECTURE 13: TIME SERIES I

LECTURE 13: TIME SERIES I 1 LECTURE 13: TIME SERIES I AUTOCORRELATION: Consider y = X + u where y is T 1, X is T K, is K 1 and u is T 1. We are using T and not N for sample size to emphasize that this is a time series. The natural

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Notes on Time Series Modeling

Notes on Time Series Modeling Notes on Time Series Modeling Garey Ramey University of California, San Diego January 17 1 Stationary processes De nition A stochastic process is any set of random variables y t indexed by t T : fy t g

More information

Price Forecasting of Mango in Varanasi Market of Uttar Pradesh

Price Forecasting of Mango in Varanasi Market of Uttar Pradesh ISSN: 2347-4688, Vol. 6, No.(2) 2018, pg. 218-224 Current Agriculture Research Journal www.agriculturejournal.org/ Price Forecasting of Mango in Varanasi Market of Uttar Pradesh Ravishankar Pardhi 1, Rakesh

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Time Series Analysis of Monthly Rainfall data for the Gadaref rainfall station, Sudan, by Sarima Methods

Time Series Analysis of Monthly Rainfall data for the Gadaref rainfall station, Sudan, by Sarima Methods International Journal of Scientific Research in Knowledge, 2(7), pp. 320-327, 2014 Available online at http://www.ijsrpub.com/ijsrk ISSN: 2322-4541; 2014 IJSRPUB http://dx.doi.org/10.12983/ijsrk-2014-p0320-0327

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT USING PROC ARIMA TO MODEL TRENDS IN US HOME PRICES Ross Bettinger, Analytical Consultant, Seattle, WA We demonstrate the use of the Box-Jenkins time series modeling methodology to analyze US home

More information

Development of Demand Forecasting Models for Improved Customer Service in Nigeria Soft Drink Industry_ Case of Coca-Cola Company Enugu

Development of Demand Forecasting Models for Improved Customer Service in Nigeria Soft Drink Industry_ Case of Coca-Cola Company Enugu International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 882 Volume 5, Issue 4, April 26 259 Development of Demand Forecasting Models for Improved Customer Service in Nigeria

More information

Unit root problem, solution of difference equations Simple deterministic model, question of unit root

Unit root problem, solution of difference equations Simple deterministic model, question of unit root Unit root problem, solution of difference equations Simple deterministic model, question of unit root (1 φ 1 L)X t = µ, Solution X t φ 1 X t 1 = µ X t = A + Bz t with unknown z and unknown A (clearly X

More information

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS Marian Zaharia, Ioana Zaheu, and Elena Roxana Stan Abstract Stock exchange market is one of the most dynamic and unpredictable

More information

Multiple Regression Analysis

Multiple Regression Analysis 1 OUTLINE Basic Concept: Multiple Regression MULTICOLLINEARITY AUTOCORRELATION HETEROSCEDASTICITY REASEARCH IN FINANCE 2 BASIC CONCEPTS: Multiple Regression Y i = β 1 + β 2 X 1i + β 3 X 2i + β 4 X 3i +

More information

Modeling and Forecasting Currency in Circulation in Sri Lanka

Modeling and Forecasting Currency in Circulation in Sri Lanka Modeling and Forecasting Currency in Circulation in Sri Lanka Rupa Dheerasinghe 1 Abstract Currency in circulation is typically estimated either by specifying a currency demand equation based on the theory

More information

The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates

The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates Abstract Ette Harrison Etuk (Corresponding author) Department of Mathematics/Computer Science, Rivers State University of Science and

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

STOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION

STOCHASTIC MODELING OF MONTHLY RAINFALL AT KOTA REGION STOCHASTIC MODELIG OF MOTHLY RAIFALL AT KOTA REGIO S. R. Bhakar, Raj Vir Singh, eeraj Chhajed and Anil Kumar Bansal Department of Soil and Water Engineering, CTAE, Udaipur, Rajasthan, India E-mail: srbhakar@rediffmail.com

More information

STUDY ON MODELING AND FORECASTING OF MILK PRODUCTION IN INDIA. Prema Borkar

STUDY ON MODELING AND FORECASTING OF MILK PRODUCTION IN INDIA. Prema Borkar STUDY ON MODELING AND FORECASTING OF MILK PRODUCTION IN INDIA Prema Borkar Gokhale Institute of Politics and Economics, BMCC Road, Deccan Gymkhana, Pune 411004. Maharashtra, India. ABSTRACT The paper describes

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

ARIMA model to forecast international tourist visit in Bumthang, Bhutan

ARIMA model to forecast international tourist visit in Bumthang, Bhutan Journal of Physics: Conference Series PAPER OPEN ACCESS ARIMA model to forecast international tourist visit in Bumthang, Bhutan To cite this article: Choden and Suntaree Unhapipat 2018 J. Phys.: Conf.

More information

Introduction to Forecasting

Introduction to Forecasting Introduction to Forecasting Introduction to Forecasting Predicting the future Not an exact science but instead consists of a set of statistical tools and techniques that are supported by human judgment

More information

Parametric Inference on Strong Dependence

Parametric Inference on Strong Dependence Parametric Inference on Strong Dependence Peter M. Robinson London School of Economics Based on joint work with Javier Hualde: Javier Hualde and Peter M. Robinson: Gaussian Pseudo-Maximum Likelihood Estimation

More information

AE International Journal of Multi Disciplinary Research - Vol 2 - Issue -1 - January 2014

AE International Journal of Multi Disciplinary Research - Vol 2 - Issue -1 - January 2014 Time Series Model to Forecast Production of Cotton from India: An Application of Arima Model *Sundar rajan *Palanivel *Research Scholar, Department of Statistics, Govt Arts College, Udumalpet, Tamilnadu,

More information

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton

Economics 618B: Time Series Analysis Department of Economics State University of New York at Binghamton Problem Set #1 1. Generate n =500random numbers from both the uniform 1 (U [0, 1], uniformbetween zero and one) and exponential λ exp ( λx) (set λ =2and let x U [0, 1]) b a distributions. Plot the histograms

More information

Finite-sample critical values of the AugmentedDickey-Fuller statistic: The role of lag order

Finite-sample critical values of the AugmentedDickey-Fuller statistic: The role of lag order Finite-sample critical values of the AugmentedDickey-Fuller statistic: The role of lag order Abstract The lag order dependence of nite-sample Augmented Dickey-Fuller (ADF) critical values is examined.

More information

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL International Journal of Information Technology & Management Information System (IJITMIS) Volume 7, Issue 3, Sep-Dec-2016, pp. 01 07, Article ID: IJITMIS_07_03_001 Available online at http://www.iaeme.com/ijitmis/issues.asp?jtype=ijitmis&vtype=7&itype=3

More information

2. Multivariate ARMA

2. Multivariate ARMA 2. Multivariate ARMA JEM 140: Quantitative Multivariate Finance IES, Charles University, Prague Summer 2018 JEM 140 () 2. Multivariate ARMA Summer 2018 1 / 19 Multivariate AR I Let r t = (r 1t,..., r kt

More information

MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY

MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY The simple ARCH Model Eva Rubliková Ekonomická univerzita Bratislava Manuela Magalhães Hill Department of Quantitative Methods, INSTITUTO SUPERIOR

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

Part II. Time Series

Part II. Time Series Part II Time Series 12 Introduction This Part is mainly a summary of the book of Brockwell and Davis (2002). Additionally the textbook Shumway and Stoffer (2010) can be recommended. 1 Our purpose is to

More information

FinQuiz Notes

FinQuiz Notes Reading 9 A time series is any series of data that varies over time e.g. the quarterly sales for a company during the past five years or daily returns of a security. When assumptions of the regression

More information

Trend and Variability Analysis and Forecasting of Wind-Speed in Bangladesh

Trend and Variability Analysis and Forecasting of Wind-Speed in Bangladesh J. Environ. Sci. & Natural Resources, 5(): 97-07, 0 ISSN 999-736 Trend and Variability Analysis and Forecasting of Wind-Speed in Bangladesh J. A. Syeda Department of Statistics, Hajee Mohammad Danesh Science

More information

Euro-indicators Working Group

Euro-indicators Working Group Euro-indicators Working Group Luxembourg, 9 th & 10 th June 2011 Item 9.4 of the Agenda New developments in EuroMIND estimates Rosa Ruggeri Cannata Doc 309/11 What is EuroMIND? EuroMIND is a Monthly INDicator

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information