Time Series Outlier Detection

Size: px
Start display at page:

Download "Time Series Outlier Detection"

Transcription

1 Time Series Outlier Detection Tingyi Zhu July 28, 2016 Tingyi Zhu Time Series Outlier Detection July 28, / 42

2 Outline Time Series Basics Outliers Detection in Single Time Series Outlier Series Detection from Multiple Time Series Demos Tingyi Zhu Time Series Outlier Detection July 28, / 42

3 Time Series Basics Tingyi Zhu Time Series Outlier Detection July 28, / 42

4 First-order Autoregression A model denoted as AR(1), in which the value of X at time t is a linear function of the value of X at time t 1: Assumptions: ε t i.i.d N(0, σ), stochastic term. ε t is independent of X t. X t = φx t 1 + ε t (1) Tingyi Zhu Time Series Outlier Detection July 28, / 42

5 General Autoregressive Model AR(p): X t = φ 1 X t 1 + φ 2 X t φ p X t p + ε t p = φ i X t i + ε t = i=1 p φ i B i X t + ε t i=1 where we use the backshift operator B (BX t = X t 1, B k X t = X t k ). Alternative notation: φ(b) is a polynomial of B, φ(b)x t = ε t φ(b) = 1 φ 1 B φ 2 B 2 φ p B p = 1 p φ i B i i=1 Tingyi Zhu Time Series Outlier Detection July 28, / 42

6 Moving Average Another approach for modeling univariate time series X t depends linearly on its own current and previous stochastic terms MA(1): MA(q): X t = ε t + θ 1 ε t 1 X t = ε t + θ 1 ε t θ q ε t q Tingyi Zhu Time Series Outlier Detection July 28, / 42

7 θ 1,..., θ q : parameters of MA model ε t,..., ε t q : stochastic terms Using backshift operator B, model simplified as X t = (1 + θ 1 B + + θ q B q )ε t q = (1 + θ i B i )ε t = θ(b)ε t i=1 Tingyi Zhu Time Series Outlier Detection July 28, / 42

8 ARMA Model A model consists of both autoregressive (AR) part and moving average (MA) part: X t = p q φ i X t i + ε t + θ i ε t i (2) i=1 i=1 referred to as the ARMA(p,q) model. p: the order of the autoregressive part q: the order of the moving average part More concisely, using backshift operator B, (2) becomes: φ(b)x t = θ(b)ε t Tingyi Zhu Time Series Outlier Detection July 28, / 42

9 Stationarity of Time Series In short, a time series is stationary if its statistical properties are all constant over time. To mention some properties: Mean: E[X t ] = E[X s ] for any t, s Z, Variance: Var[X t ] = Var[X s ] for any t, s Z, Joint distribution: Cov(X t, X t+1 ) = Cov(X s, X s+1 ) for any t, s Z. Tingyi Zhu Time Series Outlier Detection July 28, / 42

10 Tingyi Zhu Time Series Outlier Detection July 28, / 42

11 Requirements for a Stationary Time Series AR(1) X t = φx t 1 + ε t : φ < 1 AR(p) φ(b)x t = ε t : All the roots of φ(z) = 0 are outside unit circle. MA models are always stationary ARMA(p,q) φ(b)x t = θ(b)ε t : All the roots of φ(z) = 0 are outside unit circle. Tingyi Zhu Time Series Outlier Detection July 28, / 42

12 Non-stationary time series Trend effect Seasonal effect AirPassengers Time Figure: Monthly totals of international airline passengers, 1949 to Tingyi Zhu Time Series Outlier Detection July 28, / 42

13 Time Series Decomposition Think of a more general time series formulation including both trend and seasonal effect: X t = T t + S t + E t (3) X t is data point at time t Tt is the trend component at time t St is the seasonal component at time t E t is the remainder component at time t (containing AR and MA terms) Tingyi Zhu Time Series Outlier Detection July 28, / 42

14 Series with Trend, examples: Assuming no seasonal effect, i.e. S t = 0 Linear trend: X t = 2t + 0.5X t 1 + ε t Quadratic trend: X t = 2t + t X t 1 + ε t Goal: remove the trend, to transform the series to be stationary Solution: lag-1 differencing Tingyi Zhu Time Series Outlier Detection July 28, / 42

15 Differencing and Trend Define the lag-1 difference operator, where B is the backshift operator. If X t = β 0 + β 1 t + E t, then If X t = k i=0 β it i + E t, then X t = X t X t 1 = (1 B)X t, X t = β 1 + E t. k X t = (1 B) k X t = k!β k + k E t. we call k kth lag-1 difference operator. Tingyi Zhu Time Series Outlier Detection July 28, / 42

16 Lag-1 Differencing S&P 500 Quote Year To Date S&P 500 YTD Lag 1 Differencing Jan Mar May Jul Jan Mar May Jul Tingyi Zhu Time Series Outlier Detection July 28, / 42

17 Series with Seasonal Effect, example: For quarterly data, with possible seasonal (quarterly) effects, we can define indicator function S j. For j = 1, 2, 3, 4, { 1 if observation is in quarter j of a year, S j = 0 otherwise. A model with seasonal effects could be written as X t = α 1 S 1 + α 2 S 2 + α 3 S 3 + α 4 S 4 + ε t Goal: remove the seasonal effects Solution: lag-s differencing, where s is the number of seasons Tingyi Zhu Time Series Outlier Detection July 28, / 42

18 Differencing and Seasonal Effects Define the lag-s difference operator, s X t = X t X t s = (1 B s )X t, where B is the backshift operator. If X t = T t + S t + E t, and S t has period s (i.e. S t = S t s for all t), then s X t = (1 B s )X t = T t T t s + s E t. Tingyi Zhu Time Series Outlier Detection July 28, / 42

19 Non-seasonal ARIMA S t = 0 ARIMA stands for Auto-Regressive Integrated Moving Average, ARMA integrated with differencing. A nonseasonal ARIMA model is classified as ARIMA(p,d,q), where p is the order of AR terms, d is the number of nonseasonal differences needed for stationarity, q is the order of MA terms. Tingyi Zhu Time Series Outlier Detection July 28, / 42

20 Non-seasonal ARIMA, Cont. Recall ARMA(p,q): φ(b)x t = θ(b)ε t, φ(b) and θ(b) are polynomials of B of order p and q. Stationary requirement: all roots of φ(z) = 0 outside unit circle. ARIMA(p,d,q): φ(b)(1 B) d X t = θ(b)ε t, Xt is not stationary. Why? Z t = (1 B) d X t is ARMA(p,q), is stationary. Tingyi Zhu Time Series Outlier Detection July 28, / 42

21 Seasonal ARIMA A seasonal ARIMA model is classified as ARIMA(p, d, q) (P, D, Q) m p is the order of AR terms, d is the number of nonseasonal differences, q is the order of MA terms. P is the order of seasonal AR terms, D is the number of seasonal differences, Q is the order of seasonal MA terms. m is the number of seasons. Tingyi Zhu Time Series Outlier Detection July 28, / 42

22 Example: ARIMA(1, 1, 1) (1, 1, 1) 4 Tingyi Zhu Time Series Outlier Detection July 28, / 42

23 General ARIMA The ARIMA model can be generalized as follow: φ(b)α(b)x t = θ(b)ε t, φ(b): autoregressive polynomial, all roots outside unit circle α(b): differencing filter renders the data stationary, all roots on the unit circle θ(b): moving average polynomial, all roots outside unit circle (to assure θ(b) is invertible. Alternatively, X t = θ(b) φ(b)α(b) ε t. Tingyi Zhu Time Series Outlier Detection July 28, / 42

24 Outliers Detection in Single Time Series Tingyi Zhu Time Series Outlier Detection July 28, / 42

25 Automatic Detection Procedure Described in Chung Chen, Lon-Mu Liu. Joint Estimation of Model Parameters and Outlier Effects in Time Series,JASA, 1993 Based on the framework of ARIMA models R package tsoutlier written by YAHOO in 2014 Tingyi Zhu Time Series Outlier Detection July 28, / 42

26 Types of Outliers General representation: L(B)I t (t j ) L(B): a polynomial of lag operator B I t (t j ) = 1 there s outlier at time t = t j, and 0 otherwise. Types of outliers: Additive Outliers (AO): L(B) = 1; Level Shift (LS): L(B) = 1 1 B ; Temporary Change (TC): L(B) = 1 1 δb ; Seasonal Level Shift (SLS): L(B) = 1 1 B s ; Innovational Outliers (IO): L(B) = θ(b) φ(b)α(b). Tingyi Zhu Time Series Outlier Detection July 28, / 42

27 Types of Outliers Tingyi Zhu Time Series Outlier Detection July 28, / 42

28 Formulation ARIMA model: X t = θ(b) φ(b)α(b) ε t. Model with outliers at time t 1, t 2,..., t m : X t = m ω j L j (B)I t (t j ) + θ(b) φ(b)α(b) ε t. j=1 Lj (B) depends on pattern of the jth outlier I t (t j ) = 1 there s outlier at time t = t j, and 0 otherwise. ωj denotes the magnitude of the jth outlier effect Tingyi Zhu Time Series Outlier Detection July 28, / 42

29 Effect of One Outlier Assume the time series parameters are known, we examine the effect of one outlier: Define polynomial π(b) as: X t = ωl(b)i t (t 1 ) + θ(b) φ(b)α(b) ε t π(b) = φ(b)α(b) θ(b) = 1 π 1 B π 2 B, Contaminated by the outlier, the estimated residual ê t becomes (Without outlier, ê t = π(b)x t.) ê t = π(b)x t Tingyi Zhu Time Series Outlier Detection July 28, / 42

30 For the four types of outliers, IO: ê t = ωi t (t 1 ) + ε t, AO: ê t = ωπ(b)i t (t 1 ) + ε t, LS: ê t = ω π(b) 1 B I t(t 1 ) + ε t, TC: ê t = ω π(b) 1 δb I t(t 1 ) + ε t. Alternatively, ê t = ωx i,t + ε t, t = t 1, t 1 + 1,... and i = 1, 2, 3, 4 x i,t = 0 for all i and t < t 1, x i,t = 1 for all i, x 1,t1 +k = 0, x 2,t1 +k = π k, x 3,t1 +k = 1 k j=1 π j, x 4,t1 +k = δ k k 1 j=1 δk j π j π k. A simple linear regression! Tingyi Zhu Time Series Outlier Detection July 28, / 42

31 Estimate of ω The least square estimate doe the effect of a single outlier at t = t 1 can be expressed as Tingyi Zhu Time Series Outlier Detection July 28, / 42

32 Test Statistics τ From regression analysis, we have ˆω ω n ( x ˆσ i,t) 2 1/2 N(0, 1), a t=t 1 where ˆσ a is the estimation of residual standard deviation. We want to test whether ω = 0, then the following statistics are approximately N(0, 1): Tingyi Zhu Time Series Outlier Detection July 28, / 42

33 Procedure in the Presence of Multiple Ouliers In the presence of multiple outliers, recall the model X t = m ω j L j (B)I t (t j ) + θ(b) φ(b)α(b) ε t. j=1 where ˆσ a is the estimation of residual standard deviation. The estimated residual becomes ê t = m ω j π(b)l j (B)I t (t j ) + ε t j=1 Tingyi Zhu Time Series Outlier Detection July 28, / 42

34 Stage 1: Joint Estimation of Outlier Effect and Model Parameters Fitting the series by an ARIMA model (forecast package in R), obtain initial parameter (φ(b), θ(b), α(b)) estimation of the model. Detect outliers one by one sequentially Tingyi Zhu Time Series Outlier Detection July 28, / 42

35 Stage 2: Initial Parameter Estimation and Outlier Detection Tingyi Zhu Time Series Outlier Detection July 28, / 42

36 Tingyi Zhu Time Series Outlier Detection July 28, / 42

37 Outlier Series Detection from Multiple Time Series Tingyi Zhu Time Series Outlier Detection July 28, / 42

38 Detect Anomalous Series Goal: efficiently find the least similar time series in a large set Motivation: Internet companies monitoring the servers(cpu, Memory), find unusual behaviors Tingyi Zhu Time Series Outlier Detection July 28, / 42

39 Detect Anomalous Series Described in Rob J Hyndman et al. Large-Scale Unusual Time Series Detection, ICDM, 2015 Approach: Extract features from time series, PCA R package anomalous Test on real data from YAHOO server, 80% accuracy compared to 40% from previous methods Tingyi Zhu Time Series Outlier Detection July 28, / 42

40 Step 1: Extract Features from Time Series 15 features selected, each captures the global information of time series Tingyi Zhu Time Series Outlier Detection July 28, / 42

41 Step2: PCA to reduce dimension dim=15 initially, correlation existing between features The first 2 PCs are sufficient, capturing most of the variance Step 3: Implement multi-dimentional outlier detection algorithm to find outlier series Density based α-hull Tingyi Zhu Time Series Outlier Detection July 28, / 42

42 Demo Tingyi Zhu Time Series Outlier Detection July 28, / 42

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1

γ 0 = Var(X i ) = Var(φ 1 X i 1 +W i ) = φ 2 1γ 0 +σ 2, which implies that we must have φ 1 < 1, and γ 0 = σ2 . 1 φ 2 1 We may also calculate for j 1 4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

ARMA (and ARIMA) models are often expressed in backshift notation.

ARMA (and ARIMA) models are often expressed in backshift notation. Backshift Notation ARMA (and ARIMA) models are often expressed in backshift notation. B is the backshift operator (also called the lag operator ). It operates on time series, and means back up by one time

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Identifiability, Invertibility

Identifiability, Invertibility Identifiability, Invertibility Defn: If {ǫ t } is a white noise series and µ and b 0,..., b p are constants then X t = µ + b 0 ǫ t + b ǫ t + + b p ǫ t p is a moving average of order p; write MA(p). Q:

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

arxiv: v1 [stat.co] 11 Dec 2012

arxiv: v1 [stat.co] 11 Dec 2012 Simulating the Continuation of a Time Series in R December 12, 2012 arxiv:1212.2393v1 [stat.co] 11 Dec 2012 Halis Sak 1 Department of Industrial and Systems Engineering, Yeditepe University, Kayışdağı,

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

AR(p) + I(d) + MA(q) = ARIMA(p, d, q)

AR(p) + I(d) + MA(q) = ARIMA(p, d, q) AR(p) + I(d) + MA(q) = ARIMA(p, d, q) Outline 1 4.1: Nonstationarity in the Mean 2 ARIMA Arthur Berg AR(p) + I(d)+ MA(q) = ARIMA(p, d, q) 2/ 19 Deterministic Trend Models Polynomial Trend Consider the

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

ITSM-R Reference Manual

ITSM-R Reference Manual ITSM-R Reference Manual George Weigt February 11, 2018 1 Contents 1 Introduction 3 1.1 Time series analysis in a nutshell............................... 3 1.2 White Noise Variance.....................................

More information

Time Series 4. Robert Almgren. Oct. 5, 2009

Time Series 4. Robert Almgren. Oct. 5, 2009 Time Series 4 Robert Almgren Oct. 5, 2009 1 Nonstationarity How should you model a process that has drift? ARMA models are intrinsically stationary, that is, they are mean-reverting: when the value of

More information

ARMA models with time-varying coefficients. Periodic case.

ARMA models with time-varying coefficients. Periodic case. ARMA models with time-varying coefficients. Periodic case. Agnieszka Wy lomańska Hugo Steinhaus Center Wroc law University of Technology ARMA models with time-varying coefficients. Periodic case. 1 Some

More information

Time Series and Forecasting

Time Series and Forecasting Time Series and Forecasting Introduction to Forecasting n What is forecasting? n Primary Function is to Predict the Future using (time series related or other) data we have in hand n Why are we interested?

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods International Journal of Sciences Research Article (ISSN 2305-3925) Volume 2, Issue July 2013 http://www.ijsciences.com Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.5 Seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.5 Seasonal ARIMA models Forecasting using R 1 Outline 1 Backshift notation reviewed 2 Seasonal ARIMA models 3 ARIMA vs ETS 4 Lab session 12 Forecasting using R Backshift

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

ARIMA Models. Richard G. Pierse

ARIMA Models. Richard G. Pierse ARIMA Models Richard G. Pierse 1 Introduction Time Series Analysis looks at the properties of time series from a purely statistical point of view. No attempt is made to relate variables using a priori

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

STOR 356: Summary Course Notes

STOR 356: Summary Course Notes STOR 356: Summary Course Notes Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 7599-360 rls@email.unc.edu February 19, 008 Course text: Introduction

More information

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because

Forecasting. This optimal forecast is referred to as the Minimum Mean Square Error Forecast. This optimal forecast is unbiased because Forecasting 1. Optimal Forecast Criterion - Minimum Mean Square Error Forecast We have now considered how to determine which ARIMA model we should fit to our data, we have also examined how to estimate

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

STAT 443 (Winter ) Forecasting

STAT 443 (Winter ) Forecasting Winter 2014 TABLE OF CONTENTS STAT 443 (Winter 2014-1141) Forecasting Prof R Ramezan University of Waterloo L A TEXer: W KONG http://wwkonggithubio Last Revision: September 3, 2014 Table of Contents 1

More information

Seasonality. Matthieu Stigler January 8, Version 1.1

Seasonality. Matthieu Stigler January 8, Version 1.1 Seasonality Matthieu Stigler Matthieu.Stigler@gmail.com January 8, 2009 Version 1.1 This document is released under the Creative Commons Attribution-Noncommercial 2.5 India license. Matthieu Stigler Matthieu.Stigler@gmail.com

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Time Series Analysis - Part 1

Time Series Analysis - Part 1 Time Series Analysis - Part 1 Dr. Esam Mahdi Islamic University of Gaza - Department of Mathematics April 19, 2017 1 of 189 What is a Time Series? Fundamental concepts Time Series Decomposition Estimating

More information

Evaluation of Some Techniques for Forecasting of Electricity Demand in Sri Lanka

Evaluation of Some Techniques for Forecasting of Electricity Demand in Sri Lanka Appeared in Sri Lankan Journal of Applied Statistics (Volume 3) 00 Evaluation of Some echniques for Forecasting of Electricity Demand in Sri Lanka.M.J. A. Cooray and M.Indralingam Department of Mathematics

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Forecasting: Principles and Practice. Rob J Hyndman. 12. Advanced methods OTexts.com/fpp/9/2/ OTexts.com/fpp/9/3/

Forecasting: Principles and Practice. Rob J Hyndman. 12. Advanced methods OTexts.com/fpp/9/2/ OTexts.com/fpp/9/3/ Rob J Hyndman Forecasting: Principles and Practice 12. Advanced methods OTexts.com/fpp/9/2/ OTexts.com/fpp/9/3/ Forecasting: Principles and Practice 1 Outline 1 Vector autoregressions 2 Neural network

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Autoregressive and Moving-Average Models

Autoregressive and Moving-Average Models Chapter 3 Autoregressive and Moving-Average Models 3.1 Introduction Let y be a random variable. We consider the elements of an observed time series {y 0,y 1,y2,...,y t } as being realizations of this randoms

More information

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005 Lecture # 37 Prof. John W. Sutherland Nov. 28, 2005 Linear Regression 8 y 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 x Modeling To describe the data above, propose the model: y = B 0 + B 1 x + ε Fitted model will

More information

Lecture 19 Box-Jenkins Seasonal Models

Lecture 19 Box-Jenkins Seasonal Models Lecture 19 Box-Jenkins Seasonal Models If the time series is nonstationary with respect to its variance, then we can stabilize the variance of the time series by using a pre-differencing transformation.

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Ch 9. FORECASTING. Time Series Analysis

Ch 9. FORECASTING. Time Series Analysis In this chapter, we assume the model is known exactly, and consider the calculation of forecasts and their properties for both deterministic trend models and ARIMA models. 9.1 Minimum Mean Square Error

More information

Econ 623 Econometrics II Topic 2: Stationary Time Series

Econ 623 Econometrics II Topic 2: Stationary Time Series 1 Introduction Econ 623 Econometrics II Topic 2: Stationary Time Series In the regression model we can model the error term as an autoregression AR(1) process. That is, we can use the past value of the

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 3.2 Dynamic regression. Forecasting using R 1 Forecasting using R Rob J Hyndman 3.2 Dynamic regression Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Stochastic and deterministic trends 3 Periodic seasonality 4 Lab session 14 5 Dynamic

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

11. Further Issues in Using OLS with TS Data

11. Further Issues in Using OLS with TS Data 11. Further Issues in Using OLS with TS Data With TS, including lags of the dependent variable often allow us to fit much better the variation in y Exact distribution theory is rarely available in TS applications,

More information

Statistical Methods for Forecasting

Statistical Methods for Forecasting Statistical Methods for Forecasting BOVAS ABRAHAM University of Waterloo JOHANNES LEDOLTER University of Iowa John Wiley & Sons New York Chichester Brisbane Toronto Singapore Contents 1 INTRODUCTION AND

More information

Test for Parameter Change in ARIMA Models

Test for Parameter Change in ARIMA Models Test for Parameter Change in ARIMA Models Sangyeol Lee 1 Siyun Park 2 Koichi Maekawa 3 and Ken-ichi Kawai 4 Abstract In this paper we consider the problem of testing for parameter changes in ARIMA models

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Chapter 15 Finding Outliers in Linear and Nonlinear Time Series

Chapter 15 Finding Outliers in Linear and Nonlinear Time Series Chapter 15 Finding Outliers in Linear and Nonlinear Time Series Pedro Galeano and Daniel Peña 15.1 Introduction Outliers, or discordant observations, can have a strong effect on the model building process

More information

Covariances of ARMA Processes

Covariances of ARMA Processes Statistics 910, #10 1 Overview Covariances of ARMA Processes 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb

Stat 565. (S)Arima & Forecasting. Charlotte Wickham. stat565.cwick.co.nz. Feb Stat 565 (S)Arima & Forecasting Feb 2 2016 Charlotte Wickham stat565.cwick.co.nz Today A note from HW #3 Pick up with ARIMA processes Introduction to forecasting HW #3 The sample autocorrelation coefficients

More information

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko

Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko Permanent Income Hypothesis (PIH) Instructor: Dmytro Hryshko 1 / 36 The PIH Utility function is quadratic, u(c t ) = 1 2 (c t c) 2 ; borrowing/saving is allowed using only the risk-free bond; β(1 + r)

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 18: Time Series Jan-Willem van de Meent (credit: Aggarwal Chapter 14.3) Time Series Data http://www.capitalhubs.com/2012/08/the-correlation-between-apple-product.html

More information

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations.

We use the centered realization z t z in the computation. Also used in computing sample autocovariances and autocorrelations. Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 41: Applied Time Series Ioa State University Copyright 1 W. Q. Meeker. Segment 1 ARMA Notation, Conventions,

More information