Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X"

Transcription

1 Analysis of complexfluid-structureinteraction problems using a triangular boundary element for the fluid dynamics A. Hopf, G. Hailfmger, R. Krieg Forschungszentrum Karlsruhe GmbH, Institutfur D- 7^027 Abstract For fluid-structure interaction problems with complex geometries boundary element methods are quite suitable to describe the transient fluid dynamics. In this paper a triangular boundary element will be introduced to solve such problems. Both the pressure and its normal derivative are distributed linearly over the element. It was possible to carry out the integrations with regular and singular integrands analytically. To demonstrate the method, it has been applied to the blowdown accident of a nuclear reactor. By postulating a sudden break of a pressure vessel nozzle, the incipient coolant flow around the control rods inside the vessel has been investigated. 1 Introduction In safety investigations for chemical and nuclear plants, fluidstructure interaction problems play an important role. Initiating events such as impulsive loadings or postulated failures of pipes and pressure vessels, cause strong accelerations of the fluid inside these components or incipient flows through break openings. As a consequence, high transient pressures occurring at the fluid boundaries lead to dynamic deformations of the structures, and thus to changes of the fluid boundaries. In other words, there is a feed back from the structural dynamics on the fluid dynamics. For suchfluid-structureinteraction problems, boundary elements (BE) have been applied to the fluid dynamics while finite elements (FE) have been used to describe the structural dynamics. This ap-

2 178 Boundary Element Technology proach takes advantage of the fact that only the solution at the fluid boundary is of interest and that for many problems the BE discretization at the fluid boundary is partly identical with the FE discretization of the structure (shell structure, for example). In the Seventies the BE problem for thefluiddynamics was solved by an indirect method using rectangular boundary elements with uniform dipole distributions [1]. A major drawback was that these elements were not very suitable to describe non-rectangular surfaces and that the shapes of the elements and the distributions over the elements were different from those preferred for the structural part of the problem. Therefore, work has been started to develop triangular boundary elements for the fluid dynamics. In order to obtain useful solutions at the element corners, a direct method is applied, where both the pressure and its normal derivative are distributed linearly over the element [2]. 2 Assumptions and Basic Equations For many of the transient flow problems under discussion here, the fluid can be assumed to be incompressible, in viscid and irrotational. Sources and body forces are not present and the term %pv2, wherep is the fluid density and v the fluid velocity, is negligible in comparison to the fluid pressure. Then for the flow field, the Laplace equation applies Ap = 0, (1) where p represents thefluidpressure [3]. At thefluidboundary, F, the normal derivative, dp/dn, which is taken with respect to the outside direction of the boundary describes the acceleration of the boundary, an = 1/p dp/dn. The boundary is subdivided into FI, usually representing a free surface, and F^ formed by the structure. At Fj the pressure p is given and the derivative dp/dn yields the acceleration <%%. At F2 the acceleration a%, and thus the derivative dp/dn is given and the pressure p has to be calculated. It represents the structural loading. For classical steady state flow problems the dynamic pressure, VzpvZ, is not negligible and the flow field is governed by the Laplace equation A<p = 0, (2) where (p is the flow potential. At thefluidboundary F the normal derivative d<p/dn taken with respect to the outside direction of the boundary describes the velocity of the boundary, u% = d<p/dn. To be consistant with the transient problem above, the boundary is subdivided into FI where (p is given and d<p/dn has to be calculated, and Fa where d(p/dn is given and 0 has to be determined.

3 Boundary Element Technology 179 The descriptions for the transient flow problems and for steady state problems are mathematically identical. However, the physical meaning is quite different because of the different assumptions (for transient problems, often neglecting fluid viscosity is quite acceptable, while for steady state problems it usually represents a more severe restriction). In the literature, the second formulation is very common, and therefore, it will be used as the basis for the mathematical treatment. It should be taken in mind, however, that the solution will be applied for the transient flow problem described by the Laplace equation (1). 3 Introduction of Green's Formula and Boundary Elements The Laplace equation (2) can be replaced by Green's formula -)<" (3, where the potential fa at any point i in thefluidfieldcan be calculated from the potential $ and its normal derivative d$/dn = q at the boundary T. In equ. (3), r; is the distance between the point i and the particular boundary point and c, is the space angle of the fluid field around the point i. For a point inside the field c, = 4n> for a point at a smooth boundary a = 2n, for a rectangular corner as part of the boundary ci = n/2. More information about Green's formula may be found by Brebbia [4]. For numerical evaluation, the boundary T is subdivided into triangular boundary elements F<> with boundary nodes j. The potential $ and its normal derivative q at thefluidboundary are approximated by their values $/ and %, respectively, at the boundary nodes and by linear interpolations between these nodes. In addition, the point i is assumed to be identical with the boundary nodes (collocation). Green's formula then yields the following set of linear equations: The coefficients Cy represent a diagonal matrix consisting of the space angles a, while the coefficients f% and Gy consist of integrals hi and gi over the boundary elements FQ [4] (4) 4»,

4 180 Boundary Element Technology N<p and Nq are linear functions over the boundary elements FQ adopting the value 1 at the node j and vanishing for all the other nodes. According to the boundary condition at FI, the values qj, and at r%> the values <pj represent the unkowns. All other values are known. Using equ. (4), the unknowns can be determined. They are an approximate solution for the flow problem specified in section 2. 4 Transient Flow Problems with Flexible Structures For transient flow problems with flexible structures the boundary conditions have to be modified. At 7^, both the pressure p and the acceleration an are unknown. With respect to equ. (4), it means that at F2, both the values $>j and qj are unknown. Equation (4) can be transformed into the following form: 0 = Y M.. q. + P. Consider that now i and j denote only those nodes which are related to boundary F2. For the transient flow problem, <pi approximates the pressure and qj the acceleration of boundary f^>. Consequently, My approximates the mass effect of the flow. PI describes the given pressure at boundary FI. Finally, if the pressure at F<? is interpreted as a structural load and introduced into the structural dynamics relations, My (multiplied with a constant) has to be added to the structural mass matrix. Therefore, My is called the "added mass matrix". Usually My is fully populated, while the structural mass matrix is of band type. 5 Analytical Solution of the Integrals hi and g{ The evaluation of the integrals (5) represented a major problem. In cases, where the point i is identical with a corner point of a boundary element, TI approaches zero and thus the integrands approach infinity during the integration process. However, it turns out that the results of the integration approach regular values. Under these conditions analytical solutions of the integrals hi and gi are highly desirable. In the literature some analytical solutions have been published [5, 6], but the resulting mathematical formulae are very lengthy and very difficult to evaluate. Thus mistakes could hardly be eliminated. Revised solutions, which are more suitable for the numerical evaluation, have been obtained by Hopf [2], where details of the cumbersome analytical integration procedures and methods to check them are described. Some results will be discussed in this paper.

5 Boundary Element Technology Point i is identical with a corner point of the boundary element The integrals hi vanish. For evaluation of the integrals g, consider the boundary element shown in Fig. 1, where the point, i, is identical with the corner. Figure 1: Notation of the corner of a boundary element Three cases occur: - Node J is identical with the corner : A a + b + c g = ' c a + b - c Node j is identical with the corner : + c* A "CJTl 2c a Node j is identical with the corner : * A b-a c c _ A b-a 7 c In these formulae, a, b, c are the side lengths of the boundary element as shown in Fig. 1, and A is its area. 5.2 Point / is located at the plane of the boundary element Again the integrals hi vanish. For evaluation of the integrals #, subproblems are superimposed as indicated in Fig. 2. The solutions of these subproblems are of the types discussed in section 5.1. The resulting formulae are rather lengthy and they will not be presented here. Figure 2: Solution of the problem by superposition of the solution of subproblems according to section 5.1

6 182 Boundary Element Technology 5.3 Point i is located outside of the plane of the boundary element The evaluation of both integrals hi and gi requires superposition according to Fig. 2. Again the resulting formulae are lengthy and will not be presented here. 6 Discussion of the Solutions HI and gi The solutions h[ and gi for an equilateral triangle, with side length 1, are shown in Fig. 3. However, for better demonstration the linear functions N<p and Nq have been assumed to be constant over the area of the triangle. It is assumed that the point i, where hi and gi are related, moves along four different axes I, II, III, IV, which are perpendicular to the boundary element. The solutions obtained are depicted as functions over these axes, hi at the left hand side and gi at the right hand side of the figure. As mentioned in the last section, hi vanishes in the plane of the element. However, a step occurs between the lower and the upper side of the element. At the edge of the element (axis I) the step is 2n, inside the element (axis II) it is 4n, at a corner point of the element (axis III) it is 2a, and outside of the element (axis IV) no step occurs. For the solution gi, a sudden change of the slope occurs between the lower and the upper side of the element. n I DT hi 9i Figure 3: Solutions hi and gi over different axes I,..., IV, perpendicular to the boundary element (N$ and Nq assumed to be constant)

7 Boundary Element Technology Slowdown Flow around the Control Rods in a Nuclear Reactor Pressure Vessel A postulated sudden break of a pressure vessel nozzle in a nuclear reactor would lead to the so-called blowdown accident. It must be shown that the resulting incipient coolant flow around the control rods will not deform these rods significantly. For a reliable calculation of the structural loads, a sufficient three-dimensional resolution of all the spaces between the rods is necessary; but the influence of the coolant viscosity is expected to play a minor role. In the past, this problem had been analyzed with the former BEmethod [7, 81. Recently, the problem has been investigated by the method described in this paper. Fig. 4 shows the BE-dhcretization of a quarter of the blowdown flow field in the upper part of the pressure vessel. For most of the boundary elements the normal acceleration is assumed to vanish, i.e., the structures are assumed to be rigid. Only between the central part of the model and the front surface of the nozzle a pressure difference of 40 bar is applied causing an accelerating coolant flow to the nozzle. The resulting pressures at the rod surfaces have been integrated in order to obtain the total forces acting at the rods. As shown in Fig. 5, the forces are directed toward the nozzle. Fluid forces increase near the nozzle. Based on these results the deformations of the rods can be determined. References [1] R. Krieg, B. Goller, G. Hailfmger: Transient, Three-Dimensional Potential Flow Problems and Dynamic Response of the Surrounding Structures. Part I and II, J. Comput. Physics 34, (1980) [2] A. Hopf: BE/FE-Analyse von Fluid-Struktur-Problemen unter Verwendung eines dreieckigen Boundary Elements mit linearem Ansatz und vollstandiger analytischer Losung. University Karlsruhe, Ph.D Thesis (to appear) [3] O.C. Zienkiewicz: The Finite Element Method. McGraw-Hill, London (1977) [4] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel: Boundary Element Techniques. Springer-Verlag, Berlin /Heidelberg/New York /Tokyo (1984) [5] K. Davey, S. Hinduja: Analytical Integration of Linear Three-Dimensional Triangular Elements in BEM. Appl. Math. Modelling 13, (1989) [6] E.E. Okon, R.F. Harrington: The Potential Integral for a Linear Distribution over a Triangular Domain. Int. J. Numer. Meth. Engng. 18, (1982) [7] R. Krieg, et al.: Core Support Columns in the Upper Plenum of a Pressurized Water Reactor under Blowdown Loading. Nucl. Engng. Des. 73, (1982) [8] G. Hailfmger, et al.: Blowdown Loading of the Control Rods and the Core Support Columns in the Upper Plenum of a PWR. SMIRTll, Vol. B, Tokyo (1991)

8 184 Boundary Element Technology central part ( high pressure level outer surface control rod surfaces front surface of the blowdown nozzle flow pressure level) Figure 4: Boundary element discretization to describe the blowdown flow in the upper part of a nuclear reactor pressure vessel Figure 5: Calculated forces acting at the controle rods

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Dr. P. Akimov, Dr. M. Hartmann, L. Obereisenbuchner Fluid Dynamics Stuttgart, May 24, 2012 Content

More information

The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics The Finite Element Method for Solid and Structural Mechanics Sixth edition O.C. Zienkiewicz, CBE, FRS UNESCO Professor of Numerical Methods in Engineering International Centre for Numerical Methods in

More information

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS th Pan-American Congress of Applied Mechanics January 04-08, 00, Foz do Iguaçu, PR, Brazil AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS Otávio Augusto Alves

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Plate-soil elastodynamic coupling using analysis S.F.A. Baretto, H.B. Coda, W.S. Venturini Sao Carlos School of Engineering, University ofsao Paulo, Sao Carlos - SP, Brazil BEM Abstract The aim of this

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Pure bending analysis

More information

Transactions on Modelling and Simulation vol 8, 1994 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 8, 1994 WIT Press,   ISSN X Model analysis of plates using the dual reciprocity boundary element method T.W. Davies & F.A. Moslehy Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida,

More information

Stress and fatigue analyses of a PWR reactor core barrel components

Stress and fatigue analyses of a PWR reactor core barrel components Seite 1 von 10 Stress and fatigue analyses of a PWR reactor core barrel components L. Mkrtchyan, H. Schau, H. Eggers TÜV SÜD ET Mannheim, Germany Abstract: The integrity of the nuclear reactor core barrel

More information

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Non-conforming BEM elastoplastic contact problems D. Martin and M.H. Aliabadi discretisation in Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Abstract In this paper,

More information

Numerical Analysis on Pressure Propagation in Pressure Suppression System Due to Steam Bubble Collapse

Numerical Analysis on Pressure Propagation in Pressure Suppression System Due to Steam Bubble Collapse Journal of NUCLEAR SCIENCE and TECHNOLOGY, 21[4] pp.279~287 (April 1984). 279 Numerical Analysis on Pressure Propagation in Pressure Suppression System Due to Steam Bubble Collapse Motoaki UTAMURA, Energy

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,   ISSN A computational method for the analysis of viscoelastic structures containing defects G. Ghazlan," C. Petit," S. Caperaa* " Civil Engineering Laboratory, University of Limoges, 19300 Egletons, France &

More information

Plate analysis using classical or Reissner- Mindlin theories

Plate analysis using classical or Reissner- Mindlin theories Plate analysis using classical or Reissner- Mindlin theories L. Palermo Jr. Faculty of Civil Engineering, State Universiv at Campinas, Brazil Abstract Plates can be solved with classical or Reissner-Mindlin

More information

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Taewan Kim Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea. Orcid: 0000-0001-9449-7502

More information

VHTR Thermal Fluids: Issues and Phenomena

VHTR Thermal Fluids: Issues and Phenomena VHTR Thermal Fluids: Issues and Phenomena www.inl.gov Technical workshop at PHYSOR 2012: Advanced Reactor Concepts April 15, 2012 Knoxville, TN Gerhard Strydom Idaho National Laboratory (INL) Overview

More information

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit ABSTRACT Peter Hermansky, Marian Krajčovič VUJE, Inc. Okružná

More information

An accelerated predictor-corrector scheme for 3D crack growth simulations

An accelerated predictor-corrector scheme for 3D crack growth simulations An accelerated predictor-corrector scheme for 3D crack growth simulations W. Weber 1 and G. Kuhn 2 1,2 1 Institute of Applied Mechanics, University of Erlangen-Nuremberg Egerlandstraße 5, 91058 Erlangen,

More information

Structural Integrity Assessment of a Rupture Disc Housing with Explicit FE- Simulation

Structural Integrity Assessment of a Rupture Disc Housing with Explicit FE- Simulation 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20) Espoo, Finland, August 9-14, 2009 SMiRT 20-Division 2, Paper 2503 Structural Integrity Assessment of a Rupture Disc

More information

Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems

Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems A. BulcSo, C. F. Loeffler, P. C. Oliveira Departamento de Engenharia Mecdnica,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

BEM for compressible fluid dynamics

BEM for compressible fluid dynamics BEM for compressible fluid dynamics L. gkerget & N. Samec Faculty of Mechanical Engineering, Institute of Power, Process and Environmental Engineering, University of Maribor, Slovenia Abstract The fully

More information

Domain optimisation using Trefftz functions application to free boundaries

Domain optimisation using Trefftz functions application to free boundaries Computer Assisted Mechanics and Engineering Sciences, 4: 317 326, 1997. Copyright c 1997 by Polska Akademia Nauk Domain optimisation using Trefftz functions application to free boundaries Mohamed Bouberbachene,

More information

The problem of isotropic rectangular plate with four clamped edges

The problem of isotropic rectangular plate with four clamped edges Sādhanā Vol. 32, Part 3, June 2007, pp. 181 186. Printed in India The problem of isotropic rectangular plate with four clamped edges C ERDEM İMRAK and ISMAIL GERDEMELI Istanbul Technical University, Faculty

More information

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document 19.15 Chemical and Volume Control System 19.15.1 System Description See subsection 9.3.6.2. 19.15.2 System Operation See subsection 9.3.6.4. 19.15.3 Performance during Accident Conditions See subsection

More information

Numerical Solution for Coupled MHD Flow Equations in a Square Duct in the Presence of Strong Inclined Magnetic Field

Numerical Solution for Coupled MHD Flow Equations in a Square Duct in the Presence of Strong Inclined Magnetic Field International Journal of Advanced Research in Physical Science (IJARPS) Volume 2, Issue 9, September 2015, PP 20-29 ISSN 2349-7874 (Print) & ISSN 2349-7882 (Online) www.arcjournals.org Numerical Solution

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

NOISE SOURCE IDENTIFICATION OF A RAILWAY CAR MODEL BY THE BOUNDARY ELEMENT METHOD USING SOUND PRESSURE MEASUREMENTS IN 2-D INFINITE HALF SPACE

NOISE SOURCE IDENTIFICATION OF A RAILWAY CAR MODEL BY THE BOUNDARY ELEMENT METHOD USING SOUND PRESSURE MEASUREMENTS IN 2-D INFINITE HALF SPACE Inverse Problems in Engineering: Theory and Practice 3rd Int. Conference on Inverse Problems in Engineering June 13-18, 1999, Port Ludlow, WA, USA ID01 NOISE SOURCE IDENTIFICATION OF A RAILWAY CAR MODEL

More information

Effect of fibre shape on transverse thermal conductivity of unidirectional composites

Effect of fibre shape on transverse thermal conductivity of unidirectional composites Sādhanā Vol. 4, Part 2, April 25, pp. 53 53. c Indian Academy of Sciences Effect of fibre shape on transverse thermal conductivity of unidirectional composites B RAGHAVA RAO,, V RAMACHANDRA RAJU 2 and

More information

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Prepared By: Kwangwon Ahn Prepared For: 22.314 Prepared On: December 7 th, 2006 Comparison of Silicon Carbide and Zircaloy4 Cladding during

More information

STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE

STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE XN9500220 STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE B.Mavko, L.Cizelj "Jozef Stefan" Institute, Jamova 39, 61111 Ljubljana, Slovenia G.Roussel AIB-Vingotte

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants

Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants , June 30 - July 2, 2010, London, U.K. Natural Frequencies Behavior of Pipeline System during LOCA in Nuclear Power Plants R. Mahmoodi, M. Shahriari, R. Zarghami, Abstract In nuclear power plants, loss

More information

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT 54 Journal of Marine Science and Technology, Vol. 10, No. 1, pp. 54-60 (2002) DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT Sung-Shan Hsiao*, Ming-Chung Lin**, and

More information

Finite Element Analysis of Saint-Venant Torsion Problem with Exact Integration of the Elastic-Plastic Constitutive

Finite Element Analysis of Saint-Venant Torsion Problem with Exact Integration of the Elastic-Plastic Constitutive Finite Element Analysis of Saint-Venant Torsion Problem with Exact Integration of the Elastic-Plastic Constitutive Equations W. Wagner Institut für Baustatik Universität Karlsruhe (TH) Kaiserstraße 12

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B.Tech I Semester Regular/Supple. Examinations Nov./Dec. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem. E, Aero E, AME, Min E, PE, Metal E, Textile Engg.) Time: 3 hours

More information

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Bruce Butler Walt Disney World, Orlando, Florida bruce.butler@disney.com Manoj Chopra, Member, ASCE University of Central

More information

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method Center for Turbulence Research Annual Research Briefs 2006 313 Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method By Y. Khalighi AND D. J. Bodony 1. Motivation

More information

A Method For the Burnup Analysis of Power Reactors in Equilibrium Operation Cycles

A Method For the Burnup Analysis of Power Reactors in Equilibrium Operation Cycles Journal of NUCLEAR SCIENCE and TECHNOLOGY, 3[5], p.184~188 (May 1966). A Method For the Burnup Analysis of Power Reactors in Equilibrium Operation Cycles Shoichiro NAKAMURA* Received February 7, 1966 This

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 17

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 17 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil engineering Indian Institute of Technology, Madras Module - 01 Lecture - 17 In the last class, we were looking at this general one-dimensional

More information

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D

THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D THERMAL HYDRAULIC REACTOR CORE CALCULATIONS BASED ON COUPLING THE CFD CODE ANSYS CFX WITH THE 3D NEUTRON KINETIC CORE MODEL DYN3D A. Grahn, S. Kliem, U. Rohde Forschungszentrum Dresden-Rossendorf, Institute

More information

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments C. Lifante 1, B. Krull 1, Th. Frank 1, R. Franz 2, U. Hampel 2 1 PBU, ANSYS Germany, Otterfing 2 Institute of Safety Research,

More information

Transactions on Modelling and Simulation vol 13, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 13, 1996 WIT Press,  ISSN X The cooling of molten glass in a mould Ph. Simons, R. Mattheij Scientific Computing Group, Eindhoven University of Technology, 56 MB Eindhoven, The Netherlands Abstract The actual formation of glass jars

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Unsteady Hydromagnetic Couette Flow within a Porous Channel

Unsteady Hydromagnetic Couette Flow within a Porous Channel Tamkang Journal of Science and Engineering, Vol. 14, No. 1, pp. 7 14 (2011) 7 Unsteady Hydromagnetic Couette Flow within a Porous Channel G. S. Seth*, Md. S. Ansari and R. Nandkeolyar Department of Applied

More information

Thermoelastic Stresses in a Rod Subjected to Periodic Boundary Condition: An Analytical Treatment

Thermoelastic Stresses in a Rod Subjected to Periodic Boundary Condition: An Analytical Treatment Thermoelastic Stresses in a Rod Subjected to Periodic Boundary Condition: An Analytical Treatment Ahmet N. Eraslan Department of Engineering Sciences Middle East Technical University Ankara 06531, Turkey

More information

Department of Structural, Faculty of Civil Engineering, Architecture and Urban Design, State University of Campinas, Brazil

Department of Structural, Faculty of Civil Engineering, Architecture and Urban Design, State University of Campinas, Brazil Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm A SIMPLIFIED FORMULATION FOR STRESS AND TRACTION BOUNDARY IN- TEGRAL EQUATIONS USING THE

More information

1 Acoustic displacement triangle based on the individual element test

1 Acoustic displacement triangle based on the individual element test 2(2012) 1 12 1 Acoustic displacement triangle based on the individual element test Abstract A three node -displacement based- acoustic element is developed. In order to avoid spurious rotational modes,

More information

3D Frictionless Contact Case between the Structure of E-bike and the Ground Lele ZHANG 1, a, Hui Leng CHOO 2,b * and Alexander KONYUKHOV 3,c *

3D Frictionless Contact Case between the Structure of E-bike and the Ground Lele ZHANG 1, a, Hui Leng CHOO 2,b * and Alexander KONYUKHOV 3,c * 3D Frictionless Contact Case between the Structure of E-bike and the Ground Lele ZHANG 1, a, Hui Leng CHOO 2,b * and Alexander KONYUKHOV 3,c * 1 The University of Nottingham, Ningbo, China, 199 Taikang

More information

Journal of Solid and Fluid Mechanics. An approximate model for slug flow heat transfer in channels of arbitrary cross section

Journal of Solid and Fluid Mechanics. An approximate model for slug flow heat transfer in channels of arbitrary cross section Vol. 2, No. 3, 2012, 1 7 Journal of Solid and Fluid Mechanics Shahrood University of Technology An approximate model for slug flow heat transfer in channels of arbitrary cross section M. Kalteh 1,*, A.

More information

Transient Thermal Flow and Thermal Stress Analysis Coupled NASTRAN and SC/Tetra

Transient Thermal Flow and Thermal Stress Analysis Coupled NASTRAN and SC/Tetra Transient Thermal Flow and Thermal Stress Analysis Coupled NASTRAN and SC/Tetra Qin Yin Fan Software CRADLE Co., Ltd. ABSTRACT In SAE paper 2004-01-1345, author focused on how to use a steady state temperature

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 03 Quiz # April 8, 03 Name: SOUTION ID#: PS.: A the

More information

Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions, corners, slits, and symmetry

Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions, corners, slits, and symmetry Computer Assisted Mechanics and Engineering Sciences, 4: 501 519, 1997. Copyright c 1997 by Polska Akademia Nauk Trefftz-type procedure for Laplace equation on domains with circular holes, circular inclusions,

More information

A METHOD TO ASSESS IMPACT DAMAGE USING A SMOOTHED PARTICLE HYDRODYNAMICS AND FINITE ELEMENT COUPLED APPROACH

A METHOD TO ASSESS IMPACT DAMAGE USING A SMOOTHED PARTICLE HYDRODYNAMICS AND FINITE ELEMENT COUPLED APPROACH Transactions, SMiRT-23, Paper ID 315 A METHOD TO ASSESS IMPACT DAMAGE USING A SMOOTHED PARTICLE HYDRODYNAMICS AND FINITE ELEMENT COUPLED APPROACH 1 Consultant, Amec Foster Wheeler, UK 2 Principal Consultant,

More information

LOSSES DUE TO PIPE FITTINGS

LOSSES DUE TO PIPE FITTINGS LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall

More information

Process Dynamics, Operations, and Control Lecture Notes 2

Process Dynamics, Operations, and Control Lecture Notes 2 Chapter. Dynamic system.45 Process Dynamics, Operations, and Control. Context In this chapter, we define the term 'system' and how it relates to 'process' and 'control'. We will also show how a simple

More information

Applications in Fluid Mechanics

Applications in Fluid Mechanics CHAPTER 8 Applications in Fluid 8.1 INTRODUCTION The general topic of fluid mechanics encompasses a wide range of problems of interest in engineering applications. The most basic definition of a fluid

More information

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS T. Kozlowski, R. M. Miller, T. Downar School of Nuclear Engineering Purdue University United States

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION A NODAL SP 3 APPROACH FOR REACTORS WITH HEXAGONAL FUEL ASSEMBLIES S. Duerigen, U. Grundmann, S. Mittag, B. Merk, S. Kliem Forschungszentrum Dresden-Rossendorf e.v. Institute of Safety Research P.O. Box

More information

TWO BOUNDARY ELEMENT APPROACHES FOR THE COMPRESSIBLE FLUID FLOW AROUND A NON-LIFTING BODY

TWO BOUNDARY ELEMENT APPROACHES FOR THE COMPRESSIBLE FLUID FLOW AROUND A NON-LIFTING BODY U.P.B. Sci. Bull., Series A, Vol. 7, Iss., 9 ISSN 3-77 TWO BOUNDARY ELEMENT APPROACHES FOR THE COMPRESSIBLE FLUID FLOW AROUND A NON-LIFTING BODY Luminiţa GRECU, Gabriela DEMIAN, Mihai DEMIAN 3 În lucrare

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

Math 2J Lecture 16-11/02/12

Math 2J Lecture 16-11/02/12 Math 2J Lecture 16-11/02/12 William Holmes Markov Chain Recap The population of a town is 100000. Each person is either independent, democrat, or republican. In any given year, each person can choose to

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

The Evaluation Of early Singular Integrals In The Direct Regularized Boundary Element Method

The Evaluation Of early Singular Integrals In The Direct Regularized Boundary Element Method The Evaluation Of early Singular Integrals In The Direct Regularized Boundary Element Method * School of Science Shandong university of technology Zhangzhou Road #, Zibo, Shandong, 55049 China Zhengbin60@6.com

More information

FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS

FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS Transactions, SMiRT-22 FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS Shengjun Yin 1, Gary L. Stevens 2, and B. Richard Bass 3 1 Senior Research Staff, Oak Ridge National Laboratory,

More information

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1 Lecture 4: Topics: Linear Algebra II Vector/Matrix operations Homework: HW, Part *Remember: All parts of HW are due on / or / Solving Axb Row reduction method can be used Simple operations on equations

More information

On the use of multipole methods for domain integration in the BEM

On the use of multipole methods for domain integration in the BEM On the use of multipole methods for domain integration in the BEM A.A. Mammoii, M.S. Ingber & M.J. Brown Department of Mechanical Engineering, University of New Mexico, USA Abstract Often, a single application

More information

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation VVER-1000 Reflooding Scenario Simulation with MELCOR 1.8.6 Code in Comparison with MELCOR 1.8.3 Simulation Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor

More information

Parametric study of the force acting on a target during an aircraft impact

Parametric study of the force acting on a target during an aircraft impact Parametric study of the force acting on a target during an aircraft impact Lili Eszter Laczák * and György Károlyi ** * Department of Structural Engineering, Budapest University of Technology and Economics,

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head. Groundwater Seepage 1 Groundwater Seepage Simplified Steady State Fluid Flow The finite element method can be used to model both steady state and transient groundwater flow, and it has been used to incorporate

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

More information

First- and second-order sensitivity analysis schemes by collocation-type Trefftz method

First- and second-order sensitivity analysis schemes by collocation-type Trefftz method Computer Assisted Mechanics and Engineering Sciences, 4: 477 489, 1997 Copyright c 1997 by Polska Akademia Nauk First- and second-order sensitivity analysis schemes by collocation-type Trefftz method Eisuke

More information

REFLECTION OF WATER WAVES BY A CURVED WALL

REFLECTION OF WATER WAVES BY A CURVED WALL International Research Journal of Engineering Technology (IRJET) e-issn: 2395-0056 REFLECTION OF WATER WAVES BY A CURVED WALL Rina Sahoo 1, Partha Agasti 2, P K Kundu 3 1 Student, Department of Mathematics,

More information

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Author: Yann Périn Organisation: GRS Introduction In a nuclear reactor core, different fields of physics

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 5151890, 8 pages https://doi.org/10.1155/2017/5151890 Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal

More information

An adaptive fast multipole boundary element method for the Helmholtz equation

An adaptive fast multipole boundary element method for the Helmholtz equation An adaptive fast multipole boundary element method for the Helmholtz equation Vincenzo Mallardo 1, Claudio Alessandri 1, Ferri M.H. Aliabadi 2 1 Department of Architecture, University of Ferrara, Italy

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT -3 Stability analysis of the numerical density-enthalpy model Ibrahim, F J Vermolen, C Vui ISSN 389-65 Reports of the Department of Applied Mathematical Analysis Delft

More information

A study of forming pressure in the tube-hydroforming process

A study of forming pressure in the tube-hydroforming process Journal of Materials Processing Technology 192 19 (2007) 404 409 A study of forming pressure in the tube-hydroforming process Fuh-Kuo Chen, Shao-Jun Wang, Ray-Hau Lin Department of Mechanical Engineering,

More information

High-Order Finite Difference Nodal Method for Neutron Diffusion Equation

High-Order Finite Difference Nodal Method for Neutron Diffusion Equation Journal of NUCLEAR SCIENCE and TECHNOLOGY, 28[4], pp. 285~292 (April 1991) 285 High-Order Finite Difference Nodal Method for Neutron Diffusion Equation Kazuo AZEKURA and Kunitoshi KURIHARA Energy Research

More information

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method University of Hertfordshire Department of Mathematics Study on the Dual Reciprocity Boundary Element Method Wattana Toutip Technical Report 3 July 999 Preface The boundary Element method (BEM) is now recognised

More information

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan SPACE-DEPENDENT DYNAMICS OF PWR T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun 319-11 Japan E. Türkcan and J.P. Verhoef Netherlands Energy Research Foundation P.O. Box 1,

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

More information

Back Matter Index The McGraw Hill Companies, 2004

Back Matter Index The McGraw Hill Companies, 2004 INDEX A Absolute viscosity, 294 Active zone, 468 Adjoint, 452 Admissible functions, 132 Air, 294 ALGOR, 12 Amplitude, 389, 391 Amplitude ratio, 396 ANSYS, 12 Applications fluid mechanics, 293 326. See

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

Structural Acoustics Applications of the BEM and the FEM

Structural Acoustics Applications of the BEM and the FEM Structural Acoustics Applications of the BEM and the FEM A. F. Seybert, T. W. Wu and W. L. Li Department of Mechanical Engineering, University of Kentucky Lexington, KY 40506-0046 U.S.A. SUMMARY In this

More information

2016 ENGINEERING MECHANICS

2016 ENGINEERING MECHANICS Set No 1 I B. Tech I Semester Regular Examinations, Dec 2016 ENGINEERING MECHANICS (Com. to AE, AME, BOT, CHEM, CE, EEE, ME, MTE, MM, PCE, PE) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part-A

More information

Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor

Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor design. All the mod Part 1 cons In recent years, great

More information

Effect Analysis of Volume Fraction of Nanofluid Al2O3-Water on Natural Convection Heat Transfer Coefficient in Small Modular Reactor

Effect Analysis of Volume Fraction of Nanofluid Al2O3-Water on Natural Convection Heat Transfer Coefficient in Small Modular Reactor World Journal of Nuclear Science and Technology, 2016, 6, 79-88 Published Online January 2016 in SciRes. http://www.scirp.org/journal/wjnst http://dx.doi.org/10.4236/wjnst.2016.61008 Effect Analysis of

More information

Transactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 5, 1994 WIT Press,  ISSN Convergence of numerical solutions of free convection equations obtained by direct method T. Wlodarczyk" & S. Wyczolkowski& ^Institute of Mechanics and Machine Design Foundations ^Department of Industrial

More information

A comparison of velocity and potential based boundary element methods for the analysis of steady 2D flow around foils

A comparison of velocity and potential based boundary element methods for the analysis of steady 2D flow around foils A comparison of velocity and potential based boundary element methods for the analysis of steady 2D flow around foils G.B. Vaz, L. E a, J.A.C. Falcao de Campos Department of Mechanical Engineering, Institute

More information

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS

HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS HEAT TRANSFER AND THERMAL STRESS ANALYSIS OF WATER COOLING JACKET FOR ROCKET EXHAUST SYSTEMS Mihai MIHAILA-ANDRES 1 Paul Virgil ROSU 2 Ion FUIOREA 3 1 PhD., Structure Analysis and Simulation Division,

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information