Transactions on Modelling and Simulation vol 13, 1996 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 13, 1996 WIT Press, ISSN X"

Transcription

1 The cooling of molten glass in a mould Ph. Simons, R. Mattheij Scientific Computing Group, Eindhoven University of Technology, 56 MB Eindhoven, The Netherlands Abstract The actual formation of glass jars consists of two stages, viz. pressing and blowing. In the first stage the hot (liquid) glass is pressed in a mould to form the 'parison'. The heat transfer in glass and mould can be solved numerically by using a combined BEM/FEM discretisation. In particular, we use a FEM approach for the discretisation of Stokes' equations and the stationary convection diffusion equation in the glass, and a Galerkin BEM approach for the diffusion equation in the mould. This way, one uses the optimal properties of both techniques. The eventual objective is to consider the full nonstationary problem. 1 Introduction The coupling of different numerical techniques has become increasingly popular. When PDEs have to be solved on various subdomains, it can be advantageous to use an appropriate technique on each subdomain. So, e.g. the Finite Element Method (FEM) and the Boundary Element Method (BEM) may be combined as we do in this paper. In order to have a consistent formulation on common BEM/FEM boundaries, we use a Galerkin BEM formulation. The problem at hand comes from Dutch glass industry which is interested in reducing energy usage. Their goal is to make thinner glass jars, which both satisfy certain strength criteria and give only limited loss in the production process. This production process consists of two stages. First, a glass 'gob' is pressed to become a 'parison'. Then this parison is blown to the final shape of the glass jar. We concentrate on the formation of the parison. In this paper, a discretisation of the energy equation is developed.

2 4 Boundary Element Technology Since it is very difficult to measure temperatures inside the mould, appropriate boundary conditions for the energy equation on the glass-mould surfaces are hard to determine. One approach is described in [6], where an analytical solution of the 1-D situation is used to determine approximate boundary conditions for the 3-D computations. We will solve the problem with a pure numerical model, in which the mould is part of the computational domain. This enables us to prescribe realistic boundary (and initial) conditions, in particular at the outer walls of the mould. During the pressing of the glass temperature differences of the order of 8*C occur but the time scale of the process is very short [6]. A concequence of this is that the variation of the temperature in the mould will be limited to a thin boundary layer only. The temperature in the mould as such is not of interest; only its effect on the glass viscosity is important for the process. Also, the volume of the mould is much larger than the gob volume. By reducing the number of unknowns in a BEM formulation on the mould and the plunger, we hope to accelerate the computation, in which a large number of time steps will be needed. The geometry and the material properties of the mould and plunger do not change in time. So the discretisation there has to be performed only once. The extra computational costs of determining the coefficients of the matrices, arising from the Galerkin BEM discretisation, has to be paid only once. For the convection diffusion equation on the glass domain, a FEM discretisation is more appropriate because the equation is the strongly convection dominated. Since remeshing on the glass domain will be necessary, and the viscosity changes in time and place, the FEM matrices need to be updated quite often. The velocity field, used in the convection diffusion equation comes from the solution of Stokes' equations on the glass domain. These latter equations are solved with standard FEM techniques and this will be discussed only briefly. In Section 2, the dimensionless equations are given and boundary conditions are chosen. Section 3 deals with the discretisation methods and the discrete coupling conditions. In Section 4 we present some numerical results for the stationary equations. Remarks and further outlooks are the subject of section 5. 2 Equations and boundary conditions The formation of a parison starts with a piece of liquid viscous glass, the gob, being cut from a flow of glass produced in a glass oven. This gob has a temperature of about 12 C and is dropped in a mould where it is pressed to become a parison, seefigure (1).

3 Boundary Element Technology When the parison leaves thefirstmould to be blown to its final shape in the second mould, it has a mean temperature of approximately 6 C. The initial temperature of the mould is 4*C, so very large differences in temperature occur. Glass above the glass temperature Tg behaves like a Newtonian fluid [8]. For temperatures above the glass temperature 7^, the viscosity of glass 77 as a function of the temperature T can be described by the so termed Vogel- Fulcher-Tamman relation [8]: 7; = - To)) (1) Figure 1: Boundaries and subregions of the domain. Here, K is a constant, EQ is the viscosity activation energy and TO is a fixed temperature. These three parameters are fitted in a least squares sense to certain measurements. The following abbreviations are introduced Hi the mould F, boundary of, ^2 the glass domain F%j F, fl Fj % the plunger F^rt Fj\Fj, j ^ i 2.1 Equations We will use an Eulerian formulation on the glass domain, and a Lagrangian formulation on the two mould domains. The coupling conditions (9) will then assure continuity of the global solution and of the heat flux. The advantage of this approach is that the movement of the plunger does not give rise to a convection term in the energy equation. Thus, for a material point, let us denote X for its position on time t. Assume there is a smooth invertible function <p such that x = <t>(x,t), t >. (2) Here, x = x(t) is the position of the material point at time t. Now we relate the functions T and T by ) (3) On the glass domain f^, the process can be described by the following dimensionless equations -Vp + V T] (grad v + (grad vf) = (4)

4 6 Boundary Element Technology V-w = (5) dt Pe, { + (v VT}} - AT =, (6) where the dimensionless parameters are defined as p p(x,t) the pressure 77 = 7/(T) the dynamic viscosity v = v(x,t] the velocity T T(x,t) the temperature x (xi,xtf (gradv)ij f t time Peg = ^ the glass Peclet number, ctg - is the glass diffusivity which is assumed to be a constant material parameter. Here, kg is the therm.al conductivity of the glass, pg is the mass density of the glass, Cg is the specific heat of the glass; v^ and L are a characteristic velocity and a characteristic length respectively. On the plunger % and thefixedouter mould HI, the equation is given in Langrangian form by df f ^ - Af =. (7) ot Pem = ^ is the Peclet number on the mould, which is defined like Peg, with the subscript m denoting mould. df DT dt fr-7f = + <«- " > w where Vm on the outer mould, and Vm = (, VmY is the velocity of the plunger. 2.2 The coupling conditions In order to couple the BEM and FEM solutions, we require both continuity of the temperature and of the heat flux on common boundaries: Z E I\2 U r%,3. (9) In order to model the heat transfer, due to radiation inside the glass, we use the so called Rossland approximation [8]. In this approximation, the thermal conductivity kg is enlarged to account for radiation heat transfer.

5 Boundary Element Technology 7 Let us denote kj for the thermal conductivity due to heat conduction in the glass, and kr for the "thermal conductivity' due to radiation heat transfer. Then in the Rossland approximation kg satisfies kg = kj + kr, where _ 16 *r _? 3 a with T^ being the mean temperature, n is the refraction index, <J is the Stefan- Boltzmann radiation constant and a is the heat absorption coefficient of the glass. We must emphasize that the Rossland approximation is not fully justified here, as we intend to simulate the production of transparant glass. The condition a~* <C L for the validity of the Rossland approximation is violated in this case. 2.3 Boundary conditions Stokes' equations (5) are solved only on %. We assume a no-slip condition on the glass-mould contact lines. Thus we impose the following Dirichlet boundary conditions v = /or%eri,2 (W v = (,Um)^ /orzgrgj (11) On the free surface of the moving glass F],^, the normal stress is equal to the air pressure which we set to zero, thus T-n =, (12) where the stress tensor T is defined by T := -pi + 2//SJ, [1]. / is the identity tensor and is the rate of deformation tensor: Surface tension and gravity forces may be neglected. For the energy equations (6) and (7), at this stage, Dirichlet conditions are chosen at T\^xt and T^ext- A homogeneous Neumann condition is imposed On T2,ext> 3 Formulation of the discrete problem First, we give the discrete mixed FEM formulation of the Stokes problem (5). Then, the FEM and BEM formulation for the stationary forms of equations (6) and (7) together with the discrete coupling conditions of both formulations are given.

6 8 Boundary Element Technology 3.1 The momentum and continuity equations The glass domain is subdivided into triangular finite elements. We use modified P% P\ Crouzeix-Raviart elements, cf. [3]. In matrix form, the discrete form of equation (5) is then, cf. [4],»r?W"U. (14) B* ){ p } / where the vectors v and p contain the values of the velocities and the pressure in the nodal points respectively. The velocity is thus approximated by piecewise quadratic shape functions; the pressure is approximated by piecewise linear shape functions. 3.2 The energy equation The same mesh of triangular finite elements is used for the discretisation of the convection-diffusion equation (6). Thus, the temperature T in the glass is approximated by i where the fa are the same piecewise quadratic 2-D shape functions as those used for the velocity. On glass-mould boundaries I\2 and I\3, no boundary conditions are given. We approximate the normal derivative of the temperature by shape functions Aj. These latter shape functions can for instance be the restriction of fa to I\2 and I\3, cf. [2], on E/W*), * e ri,2ur,,3. (16) Application of the usual Galerkin weighting procedure leads to the following FEM system The FEM «~ I 1 _ I I nil n o I matrices satisfy (17) gi. = j faxjdt,, (19) Q?. = / *A,-dT3, (2)

7 Boundary Element Technology 9 where fa is the shape function belonging to node #,. The vector a^ contains 7 on %\(Fi,2 U Fz,3), whereas a^'\ /9*'\ a^^ and /3^'^ contain T and 9 on Fi,2 and ^,3- Usage of BEM necessitates a discretisation of the boundaries only. The restriction of the piecewise quadratic shape functions in % are piecewise quadratic on ^ Therefore, we use piecewise quadratic shape functions </>i(x) as the basis for our BEM approximation. In addition to the function values, the normal derivatives of the function have to be approximated in BEM. Thus, we seek a solution T(x) = T(X) on the boundaries of the BEM domain in the following form = E/U'(*), * F,, Ts.(21) Application of the Galerkin BEM to the stationary form of equation (7) on the outer mould fii yields, c.f. [5], The BEM matrices satisfy ^-(*)+/ ^(y)9*^r» )^.-(*) ft*, (23) - JTy G,j =11 ^-(»)u"dr, h(x) dt;, (24) JTx J^y where fa is the 1-D shape function belonging to node #,. The vectors a^ and fr contain T and q on Fi\i\2 respectively, whereas #^ and f3^^ contain those on FI^. u* = u*(x,y) is the fundamental solution in 2-D of the Laplace equation, and g* is the normal derivative of u* with respect to y: The norm denotes the Euclidian norm. F FI, and by the vector we mean the outward pointing normal at a boundary point y. Similarly to equation (22), the discrete system on % is

8 1 Boundary Element Technology The assembled system of the discrete stationary energy equation can then be written as follows: KG Q' H3 rr2,3 ±1 K* K \ «a'.: \ \ -G* -KG**' fi 1,2 (%3 Q^ *= : <%2,3 K* ) ff fp* = (27) ^ We have multiplied the BEM matrices G*'^ and G^^ by the factor *>= - *- to ensure the continuity of the heat flux, see equation (9). In this way, the vectors /3*'^ and /3^ contain the values of the normal derivative of T with respect to %. 4 Some numerical results For our computations, we use the Finite Element program SEPRAN. The BEM subregions are considered as FEM superelements, so that the BEM matrices can be generated in our own element subroutine. The boundaries of the BEM domains are thus represented by line elements, whereas the FEM elements are 2-D triangular elements. For the generation of the Q matrices (see equation (17)), also line elements are used. The shape functions A* for q are chosen to be the same as the shape functions <^ for T. The weakly singular integrals GH in equation(24) are difficult to evaluate analytically way because of the quadratic nature of the BEM elements (see also [5], pg. 333). Therefore, we have developed special cubature formulae of the kind (28) for the weight function u;(f,c) = log f C II (see [9]). The function / depends on the Jacobian of the transformation to the standard element (including the curvature) and of the shape functions cj>(x( )) and </>(y(c))- Figure (3) shows results for the velocity field and the stationary temperature distribution.

9 Boundary Element Technology 11 The mesh we use (see figure (2)) consists of, in total, 53 nodes. The number of extra nodes we added for the additional discretisation of the mould and the plunger, is 113. Figure 2: The mesh. For our computations, we have chosen the dimensionless quantities as 77 =.2, Peg = 1 and Pem = 3. This is based on a glass temperature of T 8*C, a plunger velocity (v^)\ = Vk =.5^ and a length L =.1m. Stokes' equations are solved by the Penalty Method [3]. In these computations, we assumed that ~ =. Figure 3: Velocities (left) and contour lines of the temperature (right).

10 12 Boundary Element Technology 5 Remarks and further outlook In our paper, we formulated a discretisation method for a domain, consisting of a subdomain where a convection diffusion equation has to be solved, and two other subdomains where a diffusion equation has to be solved. Galerkin BEM together with FEM were used in the combined problem. We plan to extend our model to instationairy problems. For the FEM discretisation, this is quite standard as is shown by the extensive use of the Method of Lines. BEM can be used for these time dependent problems, too, if a fundamental solution of the instationairy equation is known, as is the case for the heat equation [1]. Yet, combination of the Method of Lines together with a spatial FEM discretisation on one hand, and time dependent BEM on the other, appears to be difficult. Therefore, we consider the use of the Dual Reciprocity BEM, where a similar matrix system is obtained as is in the Method of Lines [7]. This will enable us to combine BEM and FEM, also for the actual time dependent problem. References [1] P.K. Banerjee - The Boundary Element Methods in Engineering, McGraw Hill, London [2] C.A. Brebbia and J.Dominguez - Boundary Elements - An Introductory Course, Computational Mechanics Publications, Southampton [3] F. Brezzi and M. Fortin - Mixed and Hybrid Finite Element Methods, Springer- Verlag, New York Inc [4] W. Hackbusch - Elliptic Differential Equations, Springer Verlag, Berlin [5] W. Hackbusch - Integral Equations - Theory and Numerical Treatment, Birkhauser Verlag, Basel-Boston-Berlin [6] C.E. Humphreys, D.M. Burley and M. Cable - Modelling of Glass Flow during a Pressing Operation, Num. Meth. in Eng. '92, pg , Ed. Ch. Hirsch, O.C. Zienkiewicz and E. Onate, [7] P.W. Partridge, C.A. Brebbia and L.C. Wrobel - The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton [8] F.Simonis- NCNG-Glass Course, Handbook for the Dutch Glass Production (in Dutch), TNO-TPD-Glass Technology Eindhoven. [9] A.H. Stroud - Integration Formulas and Orthogonal Polynomials for Two Variables, SIAM J. Numer. Anal. Vol.6, No.2, [1] G.A.L. van de Vorst - Modelling and Numerical Simulation of Viscous Sintering, Ph.D. Thesis, Eindhoven 1994.

Numerical modelling of the blowing phase in the production of glass containers

Numerical modelling of the blowing phase in the production of glass containers Numerical modelling of the blowing phase in the production of glass containers W. Dijkstra a, R.M.M. Mattheij Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box

More information

Modelling the Glass Press-Blow Process

Modelling the Glass Press-Blow Process Modelling the Glass Press-Blow Process S.M.A. Allaart-Bruin, B.J. van der Linden, and R.M.M. Mattheij TUE, CASA, Eindhoven, The Netherlands sbruin@win.tue.nl Summary. For the modelling of the glass press-blow

More information

Chapter 2. General concepts. 2.1 The Navier-Stokes equations

Chapter 2. General concepts. 2.1 The Navier-Stokes equations Chapter 2 General concepts 2.1 The Navier-Stokes equations The Navier-Stokes equations model the fluid mechanics. This set of differential equations describes the motion of a fluid. In the present work

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,   ISSN X Analysis of complexfluid-structureinteraction problems using a triangular boundary element for the fluid dynamics A. Hopf, G. Hailfmger, R. Krieg Forschungszentrum Karlsruhe GmbH, Institutfur D- 7^027

More information

Finite Element Model of a complex Glass Forming Process as a Tool for Control Optimization

Finite Element Model of a complex Glass Forming Process as a Tool for Control Optimization Excerpt from the Proceedings of the COMSOL Conference 29 Milan Finite Element Model of a complex Glass Forming Process as a Tool for Control Optimization Felix Sawo and Thomas Bernard Fraunhofer Institute

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Plate-soil elastodynamic coupling using analysis S.F.A. Baretto, H.B. Coda, W.S. Venturini Sao Carlos School of Engineering, University ofsao Paulo, Sao Carlos - SP, Brazil BEM Abstract The aim of this

More information

On the use of multipole methods for domain integration in the BEM

On the use of multipole methods for domain integration in the BEM On the use of multipole methods for domain integration in the BEM A.A. Mammoii, M.S. Ingber & M.J. Brown Department of Mechanical Engineering, University of New Mexico, USA Abstract Often, a single application

More information

Analysis of the solver performance for stokes flow problems in glass forming process simulation models

Analysis of the solver performance for stokes flow problems in glass forming process simulation models Eindhoven University of Technology MASTER Analysis of the solver performance for stokes flow problems in glass forming process simulation models Groot, J.A.W.M. Award date: 2007 Link to publication Disclaimer

More information

Mathematical modelling of glass forming processes

Mathematical modelling of glass forming processes Mathematical modelling of glass forming processes Groot, J.A.W.M.; Mattheij, R.M.M.; Laevsky, K.Y. Published: 01/01/2009 Document Version Publisher s PDF, also known as Version of Record (includes final

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X High temperature heat transfer in glass during cooling - an experimental and computational approach K. Storck, M. Karlsson, B. Augustsson,* D. Loyd Applied Thermodynamics and Fluid Mechanics, Department

More information

Structural Acoustics Applications of the BEM and the FEM

Structural Acoustics Applications of the BEM and the FEM Structural Acoustics Applications of the BEM and the FEM A. F. Seybert, T. W. Wu and W. L. Li Department of Mechanical Engineering, University of Kentucky Lexington, KY 40506-0046 U.S.A. SUMMARY In this

More information

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials

A simple Galerkin boundary element method for three-dimensional crack problems in functionally graded materials Materials Science Forum Vols. 492-493 (2005) pp 367-372 Online available since 2005/Aug/15 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.492-493.367

More information

Transactions on Modelling and Simulation vol 12, 1996 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 12, 1996 WIT Press,   ISSN X Simplifying integration for logarithmic singularities R.N.L. Smith Department ofapplied Mathematics & OR, Cranfield University, RMCS, Shrivenham, Swindon, Wiltshire SN6 SLA, UK Introduction Any implementation

More information

Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations

Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations Peter Benner and Jan Heiland November 5, 2015 Seminar Talk at Uni Konstanz Introduction Motivation A controlled physical processes

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report March2008

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report March2008 EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 08-08 March2008 The complexe flux scheme for spherically symmetrie conservation laws by J.H.M. ten Thije Boonkkamp,

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media

A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media Archive of Applied Mechanics 74 25 563--579 Springer-Verlag 25 DOI 1.17/s419-5-375-8 A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media H. Wang, Q.-H.

More information

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information

BEM for compressible fluid dynamics

BEM for compressible fluid dynamics BEM for compressible fluid dynamics L. gkerget & N. Samec Faculty of Mechanical Engineering, Institute of Power, Process and Environmental Engineering, University of Maribor, Slovenia Abstract The fully

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

A simplified boundary element approach for heat transfer in aerospace applications LA. Ali" & J.J. Rencis&

A simplified boundary element approach for heat transfer in aerospace applications LA. Ali & J.J. Rencis& A simplified boundary element approach for heat transfer in aerospace applications LA. Ali" & J.J. Rencis& M.4 ^ Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Weak Galerkin Finite Element Scheme and Its Applications

Weak Galerkin Finite Element Scheme and Its Applications Weak Galerkin Finite Element Scheme and Its Applications Ran Zhang Department of Mathematics Jilin University, China IMS, Singapore February 6, 2015 Talk Outline Motivation WG FEMs: Weak Operators + Stabilizer

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. Alouges, et al., Int. J. Comp. Meth. and Ep. Meas., Vol. 5, No. 3 (07) 387 394 APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. ALOUGES, M. AUSSAL, A. LEFEBVRE-LEPOT, F. PIGEONNEAU

More information

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method

University of Hertfordshire Department of Mathematics. Study on the Dual Reciprocity Boundary Element Method University of Hertfordshire Department of Mathematics Study on the Dual Reciprocity Boundary Element Method Wattana Toutip Technical Report 3 July 999 Preface The boundary Element method (BEM) is now recognised

More information

A. Kovacevic N. Stosic I. Smith. Screw Compressors. Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction.

A. Kovacevic N. Stosic I. Smith. Screw Compressors. Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction. Screw Compressors A. Kovacevic N. Stosic I. Smith Screw Compressors Three Dimensional Computational Fluid Dynamics and Solid Fluid Interaction With 83 Figures Ahmed Kovacevic Nikola Stosic Ian Smith School

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

Numerical Analysis of Electromagnetic Fields

Numerical Analysis of Electromagnetic Fields Pei-bai Zhou Numerical Analysis of Electromagnetic Fields With 157 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Part 1 Universal Concepts

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA)

INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) INTRODUCCION AL ANALISIS DE ELEMENTO FINITO (CAE / FEA) Title 3 Column (full page) 2 Column What is Finite Element Analysis? 1 Column Half page The Finite Element Method The Finite Element Method (FEM)

More information

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL Proceedings of ALGORITMY 212 pp. 29 218 NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL MARTIN HADRAVA, MILOSLAV FEISTAUER, AND PETR SVÁČEK Abstract. The present paper

More information

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS

NATURAL CONVECTION OF AIR IN TILTED SQUARE CAVITIES WITH DIFFERENTIALLY HEATED OPPOSITE WALLS Proceedings of the International onference on Mechanical Engineering 0 (IME0 8-0 December 0, Dhaka, Bangladesh IME- NATURAL ONVETION OF AIR IN TILTED SQUARE AVITIES WIT DIFFERENTIALLY EATED OPPOSITE WALLS

More information

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM)

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1.1 Introduction In this work, performances of two most widely

More information

A Mixed Nonconforming Finite Element for Linear Elasticity

A Mixed Nonconforming Finite Element for Linear Elasticity A Mixed Nonconforming Finite Element for Linear Elasticity Zhiqiang Cai, 1 Xiu Ye 2 1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 2 Department of Mathematics and Statistics,

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS IJRET: International Journal of Research in Engineering and Technology eissn: 39-63 pissn: 3-738 FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS Asish Mitra Reviewer: Heat

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

BEM for turbulentfluidflow. L. Skerget & M. Hribersek Faculty of Mechanical Engineering, University ofmaribor, Slovenia.

BEM for turbulentfluidflow. L. Skerget & M. Hribersek Faculty of Mechanical Engineering, University ofmaribor, Slovenia. BEM for turbulentfluidflow L. Skerget & M. Hribersek Faculty of Mechanical Engineering, University ofmaribor, Slovenia. Abstract Boundary-Domain Integral Method is applied for the solution of incompressible

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Numerical Methods for the Navier-Stokes equations

Numerical Methods for the Navier-Stokes equations Arnold Reusken Numerical Methods for the Navier-Stokes equations January 6, 212 Chair for Numerical Mathematics RWTH Aachen Contents 1 The Navier-Stokes equations.............................................

More information

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions

Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Boundary Element Model for Stress Field - Electrochemical Dissolution Interactions Bruce Butler Walt Disney World, Orlando, Florida bruce.butler@disney.com Manoj Chopra, Member, ASCE University of Central

More information

1 Exercise: Linear, incompressible Stokes flow with FE

1 Exercise: Linear, incompressible Stokes flow with FE Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast problem. 1 Exercise: Linear, incompressible Stokes flow with FE Reading Hughes (2000), sec. 4.2-4.4 Dabrowski

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS th Pan-American Congress of Applied Mechanics January 04-08, 00, Foz do Iguaçu, PR, Brazil AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS Otávio Augusto Alves

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems

A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems A Moving-Mesh Finite Element Method and its Application to the Numerical Solution of Phase-Change Problems M.J. Baines Department of Mathematics, The University of Reading, UK M.E. Hubbard P.K. Jimack

More information

Interpreting Differential Equations of Transport Phenomena

Interpreting Differential Equations of Transport Phenomena Interpreting Differential Equations of Transport Phenomena There are a number of techniques generally useful in interpreting and simplifying the mathematical description of physical problems. Here we introduce

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Automatic optimization of the cooling of injection mold based on the boundary element method

Automatic optimization of the cooling of injection mold based on the boundary element method Automatic optimization of the cooling of injection mold based on the boundary element method E. Mathey, L. Penazzi, F.M. Schmidt and F. Rondé-Oustau Research Center on Tools, Materials and Forming Processes,

More information

An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem

An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem Yifan Wang University of Houston, Department of Mathematics

More information

Appendix 1. Numerical Integration: Regular Integrals

Appendix 1. Numerical Integration: Regular Integrals The Dual Reciprocity 269 Appendix 1 Numerical Integration: Regular Integrals 1 Introduction The numerical integration formulae given in this Appendix are used for integration over boundary elements which

More information

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ.

Find (u,p;λ), with u 0 and λ R, such that u + p = λu in Ω, (2.1) div u = 0 in Ω, u = 0 on Γ. A POSTERIORI ESTIMATES FOR THE STOKES EIGENVALUE PROBLEM CARLO LOVADINA, MIKKO LYLY, AND ROLF STENBERG Abstract. We consider the Stokes eigenvalue problem. For the eigenvalues we derive both upper and

More information

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer Copyright c 2008 ICCES ICCES, vol.6, no.1, pp.13-18 A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer K agamani Devi 1,D.W.Pepper 2 Summary Over the past few years, efforts have

More information

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION JOHNNY GUZMÁN, ABNER J. SALGADO, AND FRANCISCO-JAVIER SAYAS Abstract. The analysis of finite-element-like Galerkin discretization techniques for the

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

On a variational inequality of Bingham and Navier-Stokes type in three dimension

On a variational inequality of Bingham and Navier-Stokes type in three dimension PDEs for multiphase ADvanced MATerials Palazzone, Cortona (Arezzo), Italy, September 17-21, 2012 On a variational inequality of Bingham and Navier-Stokes type in three dimension Takeshi FUKAO Kyoto University

More information

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Jie Shen Department of Mathematics, Penn State University University Par, PA 1680, USA Abstract. We present in this

More information

Temperature rise in the human body exposed to radiation from base station antennas

Temperature rise in the human body exposed to radiation from base station antennas Temperature rise in the human body exposed to radiation from base station antennas D. Poljak 1, N. Kovac 1, T. Samardzioska 2, A. Peratta 2 & C. A. Brebbia 2 1 University of Split, 2 Wessex Institute of

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation Chapter 12 Partial di erential equations 12.1 Di erential operators in R n The gradient and Jacobian We recall the definition of the gradient of a scalar function f : R n! R, as @f grad f = rf =,..., @f

More information

Chapter 1. Condition numbers and local errors in the boundary element method

Chapter 1. Condition numbers and local errors in the boundary element method Chapter 1 Condition numbers and local errors in the boundary element method W. Dijkstra, G. Kakuba and R. M. M. Mattheij Eindhoven University of Technology, Department of Mathematics and Computing Science,

More information

Entropy generation and transport

Entropy generation and transport Chapter 7 Entropy generation and transport 7.1 Convective form of the Gibbs equation In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

Domain optimisation using Trefftz functions application to free boundaries

Domain optimisation using Trefftz functions application to free boundaries Computer Assisted Mechanics and Engineering Sciences, 4: 317 326, 1997. Copyright c 1997 by Polska Akademia Nauk Domain optimisation using Trefftz functions application to free boundaries Mohamed Bouberbachene,

More information

Transactions on Engineering Sciences vol 14, 1997 WIT Press, ISSN

Transactions on Engineering Sciences vol 14, 1997 WIT Press,  ISSN On the Computation of Elastic Elastic Rolling Contact using Adaptive Finite Element Techniques B. Zastrau^, U. Nackenhorst*,J. Jarewski^ ^Institute of Mechanics and Informatics, Technical University Dresden,

More information

Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems

Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems Boundary element method, finite element method and thefluxspline method: a performance comparison for scalar potential problems A. BulcSo, C. F. Loeffler, P. C. Oliveira Departamento de Engenharia Mecdnica,

More information

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method Center for Turbulence Research Annual Research Briefs 2006 313 Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method By Y. Khalighi AND D. J. Bodony 1. Motivation

More information

ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS. Chun Liu and Jie Shen

ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS. Chun Liu and Jie Shen DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 7, Number2, April2001 pp. 307 318 ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS Chun Liu and Jie Shen Department

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO

PREPRINT 2010:23. A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO PREPRINT 2010:23 A nonconforming rotated Q 1 approximation on tetrahedra PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations Songul Kaya and Béatrice Rivière Abstract We formulate a subgrid eddy viscosity method for solving the steady-state

More information

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36

Finite Difference Method for PDE. Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 Finite Difference Method for PDE Y V S S Sanyasiraju Professor, Department of Mathematics IIT Madras, Chennai 36 1 Classification of the Partial Differential Equations Consider a scalar second order partial

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint. " = " x,t,#, #

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint.  =  x,t,#, # Notes Assignment 4 due today (when I check email tomorrow morning) Don t be afraid to make assumptions, approximate quantities, In particular, method for computing time step bound (look at max eigenvalue

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK

elastoplastic contact problems D. Martin and M.H. Aliabadi Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Non-conforming BEM elastoplastic contact problems D. Martin and M.H. Aliabadi discretisation in Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton, SO40 7AA, UK Abstract In this paper,

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS Jennifer Proft Outline Definitions A simple example Issues Historical development elliptic equations hyperbolic equations Discontinuous vs. continuous

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2007 M. Papadrakakis, E. Oñate and B. Schrefler (Eds) c CIMNE, Barcelona, 2007 ALGEBRAIC FLUX CORRECTION

More information

Adaptive Time Space Discretization for Combustion Problems

Adaptive Time Space Discretization for Combustion Problems Konrad-Zuse-Zentrum fu r Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany JENS LANG 1,BODO ERDMANN,RAINER ROITZSCH Adaptive Time Space Discretization for Combustion Problems 1 Talk

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #2 April 14, 2014 Name: SOLUTION ID#: PS1.:

More information

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT

DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT 54 Journal of Marine Science and Technology, Vol. 10, No. 1, pp. 54-60 (2002) DRBEM ANALYSIS OF COMBINED WAVE REFRACTION AND DIFFRACTION IN THE PRESENCE OF CURRENT Sung-Shan Hsiao*, Ming-Chung Lin**, and

More information