Teoria a molti-corpi della materia nucleare

Size: px
Start display at page:

Download "Teoria a molti-corpi della materia nucleare"

Transcription

1 Teoria a molti-corpi della materia nucleare

2 Lezione IV 1. Implicazioni per le stelle di neutroni 2. Cenni sulla fase superfluida 3. Indicazioni sulla EoS da dati osservativi e da collisioni fra ioni pesanti 4. Confronto con EoS fenomenologiche 5. Formulazione relativistica, l approssimazione Dirac-Brueckner 6. Transizione alla fase di quark, modelli per la fase deconfinata

3 Rappresentazione schematica di una stella massiva in condizioni pre-collasso

4 SN 1987a Exploding Before explosion

5 La nuvola espulsa e il rimanente oggetto compatto

6 Abbondanza di oggetti compatti!

7 Visione schematica di una pulsar e del suo faro

8 faro in direzione della terra faro fuori direzione

9 Distribuzione delle pulsars in cielo rispetto al piano galattico

10 A section (schematic) of a neutron star La parte piu interna di una Stella di neutroni convenzionale e dominata da materia nucleare omogenea e fortemente asimmetrica Piu avanti ci occuperemo della crosta

11 The baryonic Equations of State HHJ : Astrophys. J. 525, L45 (1999 BBG : PRC 69, (2004) AP : PRC 58, 1804 (1998)

12 Phenomenolocical area from Danielewicz et al., Science 298 (2002) 1592 Nonostante le incertezze dell analisi sembra esserci una ben definita discriminazione tra le diverse EOS Kh. Gad Nucl. Phys. 747 (2005) 655

13 Composition Composition of of asymmetric asymmetric and and beta beta-stable stable matter matter Parabolic approximation ) 0,, ( ) 1,, ( ), ( ), ( ) 0,, ( ),, ( 2x 1- parameter Asymmetry 2 p Y Y Y sym Y sym Y Y p n x A B x A B x E x E x A B x A B = = = + = = = β β β β β β Composition of stellar matter i) Chemical equilibrium among the different baryonic species ii) Charge neutrality iii) Baryon number conservation n p e p e e p n µ µ µ µ µ µ µ + = + = = + =

14 Symmetry energy as a function of density Proton fraction as a function of density in neutron stars AP becomes superluminal at high density and has no DU

15

16 Hyperon influence on hadronic EOS

17 Composition Composition of of asymmetric asymmetric and and beta beta-stable stable matter matter including including hyperons hyperons Parabolic approximation ) 0,, ( ) 1,, ( ), ( ), ( ) 0,, ( ),, ( 2x 1- parameter Asymmetry 2 p Y Y Y sym Y sym Y Y p n x A B x A B x E x E x A B x A B = = = + = = = β β β β β β Composition of stellar matter i) Chemical equilibrium among the different baryonic species ii) Charge neutrality iii) Baryon number conservation Λ Σ Σ Λ Σ = + + = = + = = + = µ µ µ µ µ µ µ µ µ µ µ µ n p e p n p n e e p n 2 extended to hyperons

18 Including hyperons inside the neutron stars Shift of the hyperon onset points down to 2-3 times saturation density At high densities N and Y present almost in the same percentage.

19 Mass-Radius relation Inclusion of Y decreases the maximum mass value

20 H.J. Schulze et al., PRC 73, (2006)

21

22

23 Including Quark matter Since we have no theory which describes both confined and deconfined phases, we uses two separate EOS for baryon and quark matter and assumes a first order phase transition. a) Baryon EOS. BBG AP HHJ b) Quark matter EOS. MIT bag model Nambu-Jona Lasinio Coloror dielectric model

24 The three baryon EOS for beta-stable neutron star matter in the pressure-chemical potential plane.

25 MIT bag model. Naive version

26 PRC, (2002)

27 Materia nucleare simmetrica Al decrescere del valore della bag constant la massa massima delle NS tende a crescere. Tuttavia B non puo essere troppo piccolo altrimenti lo stato fondamentale della materia nucleare all densita di saturazione e nella fase deconfinata!

28 Density dependent bag constant εq =1.1 GeV 3 fm

29 Density profiles of different phases MIT bag model

30 Evidence for large mass? Nice et al. ApJ 634, 1242 (2005) PSR J M = 2.1 +/- 0.2 Ozel, astro-ph / EXO M > 1.8 Quaintrell et al. A&A 401, 313 (2003) NS in VelaX < M < 2

31 Alford et al., ApJ 629 (2005) 969 a4 = 3 3 Ω µ 4π 4π a a QM = a 2 4 µ + a Non-perturbative corrections ; Strange quark mass corresponds to the usual MIT bag model B eff Freedman & McLerran 1978

32 Maximum mass depends mainly on the parametrization and not on the transition point

33 BBG HHJ

34 The problem of nuclear matter ground state is solved. But, in any case one needs an additional repulsion in quark matter at high density

35 NJL Model The model is questionable at high density where the cutoff can be comparable with the Fermi momentum

36 Including Color Superconductivity in NJL Steiner,Reddy and Prakash 2002 Buballa & Oertel Application to NS CT + GSI, PLB 562,,153 (2003)

37 Mass radius relationship Maximum mass

38 NJL, the quark current masses as a function of density

39 Equivalence between NJL and MIT bag model above chiral transition (two flavours). For NJL B = 170 MeV The pressure is zero at zero density! (no confinement)

40 The CDM model : the equation of state for symmetric matter C. Maieron et al., PRD 70, (2004) The model is confining

41 The CDM model : maximum mass of neutron star

42 The effective Bag constsnt in the CDM model

43 Some (tentative) conclusions 1. The transition to quark matter in NS looks likely, but the amount of quark matter depends on the quak matter model. 2. If the observed high NS masses (about 2 solar mass) have to be reproduced, additional repulsion is needed with respect to naive quark models. The situation resembles the one at the beginning of NS physics with the TOV solution for the free neutron gas The confirmation of a mass definitely larger than 2 would be a major breakthrough 3. Further constraints can come from other observational data (cooling, glitches.)

44 Comparison between phenomenological forces and microscopic calculations (BBG) at sub-saturation densities. M.Baldo et al.. Nucl. Phys. A736, 241 (2004)

45 Asymmetry (isospin) dependence of EOS

46 Symmetry energy as a function of density. A comparison at low density. Microscopic results approximately fitted by 31.3 ( / ) 0.6 0

47 Trying connection with phenomenology : the case. Density functional from microscopic calculations 208 Pb rel. mean field Skyrme and Gogny microscopic functional The value of r_n - r_p from mic. fun. is consistent with data

48 A section (schematic) of a neutron star

49 The structure of nuclei and Z/N ratio are dictated by beta equilibrium µ = µ + n p µ e Negele & Vautherin classical paper. Simple functional, and no pairing.

50 Outer Crust Inner Crust No drip region Drip region Position of the neutron chemical potential

51 Looking for the energy minimum at a fixed baryon density Density = 1/30 saturation density Wigner-Seitz approximation

52 The neutron matter EOS Solid line : Fayans functional ; Dashes : SLy4 Dotted line : microscopic (Av-18)

53 Including pairing in crust structure calculations M.B., E. Saperstein et al., Nucl. Phys. A750, 409 (2005)

54 Dependence on the functionals

55 In search of the energy minimum as a function of the Z value inside the WS cell

56 Neutron density profile at different Fermi momenta

57 Proton density profile at different Fermi momenta

58 Negele & Vautherin 2 Uniform nuclear matter (M.B.,Maieron,Schuck,Vinas NPA 736, 241 (2004))

59 Comparing different Equations of State for low density Despite the quite different lattice structure, the EoS appears stable.

The crust-core transition and the stellar matter equation of state

The crust-core transition and the stellar matter equation of state The crust-core transition and the stellar matter equation of state Helena Pais CFisUC, University of Coimbra, Portugal Nuclear Physics, Compact Stars, and Compact Star Mergers YITP, Kyoto, Japan, October

More information

Superfluidity in the inner crust of neutron stars

Superfluidity in the inner crust of neutron stars Superfluidity in the inner crust of neutron stars P. Avogadro S. Baroni P.F.Bortignon R.A.Broglia G. Colo F. Raimondi E. Vigezzi University of Milan, Italy INFN Sez. Milano F. Barranco University of Sevilla,

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints. David Blaschke (Wroclaw University, JINR Dubna) Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna) Facets of Strong Interaction Physics, Hirschegg, January 17, 2012 Structure and Cooling

More information

Neutron star properties from an NJL model modified to simulate confinement

Neutron star properties from an NJL model modified to simulate confinement Nuclear Physics B (Proc. Suppl.) 141 (25) 29 33 www.elsevierphysics.com Neutron star properties from an NJL model modified to simulate confinement S. Lawley a W. Bentz b anda.w.thomas c a Special Research

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

arxiv:nucl-th/ v1 10 Jul 1996

arxiv:nucl-th/ v1 10 Jul 1996 Microscopic nuclear equation of state with three-body forces and neutron star structure M. Baldo, G.F. Burgio Dipartimento di Fisica, Universitá di Catania and I.N.F.N. Sezione di Catania, c.so Italia

More information

Dense Matter and Neutrinos. J. Carlson - LANL

Dense Matter and Neutrinos. J. Carlson - LANL Dense Matter and Neutrinos J. Carlson - LANL Neutron Stars and QCD phase diagram Nuclear Interactions Quantum Monte Carlo Low-Density Equation of State High-Density Equation of State Neutron Star Matter

More information

Structure and propermes of nuclear ma3er in compact stars

Structure and propermes of nuclear ma3er in compact stars Structure and propermes of nuclear ma3er in compact stars Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA) Toshitaka Tatsumi (Kyoto Univ.) Low-

More information

arxiv: v1 [astro-ph.sr] 11 Jul 2013

arxiv: v1 [astro-ph.sr] 11 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 12-15, 2012, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Dark matter effect on the mass measurement of neutron stars arxiv:1307.2956v1

More information

The maximum mass of neutron star. Ritam Mallick, Institute of Physics

The maximum mass of neutron star. Ritam Mallick, Institute of Physics The maximum mass of neutron star Ritam Mallick, Institute of Physics Introduction The study of phase transition of matter at extreme condition (temperature/density) is important to understand the nature

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

User s Guide for Neutron Star Matter EOS

User s Guide for Neutron Star Matter EOS User s Guide for Neutron Star Matter EOS CQMC model within RHF approximation and Thomas-Fermi model Tsuyoshi Miyatsu (Tokyo Univ. of Sci.) Ken ichiro Nakazato (Kyushu University) May 1 2016 Abstract This

More information

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress

Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress Self-Consistent Equation of State for Hot Dense Matter: A Work in Progress W.G.Newton 1, J.R.Stone 1,2 1 University of Oxford, UK 2 Physics Division, ORNL, Oak Ridge, TN Outline Aim Self-consistent EOS

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Strange nuclear matter in core-collapse supernovae

Strange nuclear matter in core-collapse supernovae Strange nuclear matter in core-collapse supernovae I. Sagert Michigan State University, East Lansing, Michigan, USA EMMI Workshop on Dense Baryonic Matter in the Cosmos and the Laboratory Tuebingen, Germany

More information

VIETNAM ATOMIC ENERGY INSTITUTE INSTITUTE FOR NUCLEAR SCIENCE AND TECHNOLOGY

VIETNAM ATOMIC ENERGY INSTITUTE INSTITUTE FOR NUCLEAR SCIENCE AND TECHNOLOGY VIETNAM ATOMIC ENEGY INSTITUTE INSTITUTE FO NUCLEA SCIENCE AND TECHNOLOGY Address: 179 - Hoang Quoc Viet, Nghia Do, Cau Giay - Hanoi - Vietnam Tel: 84-4-37564926; Fax.: 84-4-38363295 Website: http://www.inst.gov.vn;

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Symmetry energy and the neutron star core-crust transition with Gogny forces

Symmetry energy and the neutron star core-crust transition with Gogny forces Symmetry energy and the neutron star core-crust transition with Gogny forces Claudia Gonzalez-Boquera, 1 M. Centelles, 1 X. Viñas 1 and A. Rios 2 1 Departament de Física Quàntica i Astrofísica and Institut

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen 申虹 In collaboration with Nankai University, Tianjin, China 南開大学 天津 中国 H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College

More information

b - stable matter of protoneutron star

b - stable matter of protoneutron star Mean-field study of the hot b - stable matter of protoneutron star Dao Tien Khoa INST Hanoi, VINATOM EOS of hot nuclear matter with a high neutron-proton asymmetry. EOS of hot b - stable baryon-lepton

More information

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars

THE NEUTRON STAR CRUST AND SURFACE WORKSHOP. Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars THE NEUTRON STAR CRUST AND SURFACE WORKSHOP Seattle 25-29 June 2007 Quantum calculation of nucleus-vortex interaction in the inner crust of neutron stars P. Avogadro, F.Barranco, R.A.Broglia, E.Vigezzi

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta

Phase transitions in dilute stellar matter. Francesca Gulminelli & Adriana Raduta Phase transitions in dilute stellar matter Francesca Gulminelli & Adriana Raduta LPC Caen, France IFIN Bucharest Supernova remnant and neutron star in Puppis A (ROSAT x-ray) χ 1/2 Τ 10 12 Κ Motivation:

More information

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties

Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Correlating the density dependence of the symmetry y energy to neutron skins and neutron-star properties Farrukh J Fattoyev Texas A&M University-Commerce i My TAMUC collaborators: B.-A. Li, W. G. Newton

More information

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline

Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi Outline Hyperon equation of state for core-collapse simulations based on the variational many-body theory Hajime Togashi RIKEN Nishina Center, RIKEN Collaborators: E. Hiyama (RIKEN), M. Takano (Waseda University)

More information

Neutron vs. Quark Stars. Igor Shovkovy

Neutron vs. Quark Stars. Igor Shovkovy Neutron vs. Quark Stars Igor Shovkovy Neutron stars Radius: R 10 km Mass: 1.25M M 2M Period: 1.6 ms P 12 s? Surface magnetic field: 10 8 G B 10 14 G Core temperature: 10 kev T 10 MeV April 21, 2009 Arizona

More information

arxiv:nucl-th/ v1 21 Mar 2001

arxiv:nucl-th/ v1 21 Mar 2001 Relativistic Hartree-Bogoliubov Calculation of Specific Heat of the Inner Crust of Neutron Stars arxiv:nucl-th/5v Mar akuya Nakano and Masayuki Matsuzaki Department of Physics, Kyushu University, Fukuoka

More information

Neutron star in the presence of strong magnetic field

Neutron star in the presence of strong magnetic field PRAMANA c Indian Academy of Sciences Vol. 82, No. 5 journal of May 2014 physics pp. 797 807 Neutron star in the presence of strong magnetic field K K MOHANTA 1, R MALLICK 2, N R PANDA 2, L P SINGH 3 and

More information

Constraining the nuclear EoS by combining nuclear data and GW observations

Constraining the nuclear EoS by combining nuclear data and GW observations Constraining the nuclear EoS by combining nuclear data and GW observations Michael McNeil Forbes Washington State University (Pullman) and University of Washington A Minimal Nuclear Energy Density Functional

More information

Equation-of-State of Nuclear Matter with Light Clusters

Equation-of-State of Nuclear Matter with Light Clusters Equation-of-State of Nuclear Matter with Light Clusters rmann Wolter Faculty of Physics, University of Munich, D-878 Garching, Germany E-mail: hermann.wolter@lmu.de The nuclear equation-of-state (EoS)

More information

a model-independent view

a model-independent view The state of cold quark matter: a model-independent view Renxin Xu ( 徐仁新 ) School of Physics, Peking University Compact stars in the QCD phase diagram II (CSQCD II), PKU May 24th, 2009. What s the nature

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Equation of state for supernovae and neutron stars

Equation of state for supernovae and neutron stars Equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹南開大学天津中国 In collaboration with H. Toki RCNP, Osaka University, Japan K. Sumiyoshi Numazu College of Technology,

More information

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010

TRIUMF. Three-body forces in nucleonic matter. Weakly-Bound Systems in Atomic and Nuclear Physics. Kai Hebeler (TRIUMF) INT, Seattle, March 11, 2010 Three-body forces in nucleonic matter Kai Hebeler (TRIUMF) INT, Seattle, March 11, 21 TRIUMF A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl Weakly-Bound Systems in Atomic and Nuclear Physics

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors Gordon Baym University of Illinois, Urbana Workshop on Universal Themes of Bose-Einstein Condensation Leiden

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

arxiv:nucl-th/ v2 12 Jan 2005

arxiv:nucl-th/ v2 12 Jan 2005 Neutron stars with isovector scalar correlations B. Liu 1,2, H. Guo 1,3, M. Di Toro 4, V. Greco 4,5 1 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 73, China

More information

Phases of cold nuclear matter and the equation of state of neutron stars

Phases of cold nuclear matter and the equation of state of neutron stars Phases of cold nuclear matter and the equation of state of neutron stars Gordon Baym University of Illinois, Urbana New perspectives on Neutron Star Interiors ECT*, Trento 10 October 2017 Better understanding

More information

Nuclear equation of state for supernovae and neutron stars

Nuclear equation of state for supernovae and neutron stars Nuclear equation of state for supernovae and neutron stars H. Shen Nankai University, Tianjin, China 申虹 In collaboration with 南開大学 天津 H. Toki RCNP, Osaka University, Japan 中国 K. Sumiyoshi Numazu College

More information

Few-particle correlations in nuclear systems

Few-particle correlations in nuclear systems Trento, 9. 4. 2014 Few-particle correlations in nuclear systems Gerd Röpke, Rostock Outline Quantum statistical approach to nuclear systems at subsaturation densities, spectral function Correlations and

More information

Symmetry energy and composition of the outer crust of neutron stars

Symmetry energy and composition of the outer crust of neutron stars IL NUOVO CIMENTO 39 C (2016) 400 DOI 10.1393/ncc/i2016-16400-1 Colloquia: IWM-EC 2016 Symmetry energy and composition of the outer crust of neutron stars A. F. Fantina( 1 )( 2 ),N.Chamel( 2 ),J.M.Pearson(

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas

Origin of the Nuclear EOS in Hadronic Physics and QCD. Anthony W. Thomas Origin of the Nuclear EOS in Hadronic Physics and QCD Anthony W. Thomas XXX Symposium on Nuclear Physics - Cocoyoc: Jan 5 th 2007 Operated by Jefferson Science Associates for the U.S. Department of Energy

More information

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Symmetry Energy within the Brueckner-Hartree-Fock approximation Symmetry Energy within the Brueckner-Hartree-Fock approximation Isaac Vidaña CFC, University of Coimbra International Symposium on Nuclear Symmetry Energy Smith College, Northampton ( Massachusetts) June

More information

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE

Stellar and terrestrial observations from the mean. MANJARI BAGCHI PDF, TIFR, Mumbai. MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Stellar and terrestrial observations from the mean field QCD model MANJARI BAGCHI PDF, TIFR, Mumbai MONIKA SINHA PDF, SINP, Kolkata SUBHARTHI RAY PDF, IUCAA, PUNE Mira & Jishnu Dey, Presidency College,

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

Stochastic Mean Field (SMF) description TRANSPORT Maria Colonna INFN - Laboratori Nazionali del Sud (Catania)

Stochastic Mean Field (SMF) description TRANSPORT Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) Stochastic Mean Field (SMF) description TRANSPORT 2017 March 27-30, 2017 FRIB-MSU, East Lansing, Michigan, USA Maria Colonna INFN - Laboratori Nazionali del Sud (Catania) Dynamics of many-body system I

More information

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES

COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING QUARK CORES David Blaschke Universität Bielefeld & JINR Dubna Collaboration: D. Aguilera, H. Grigorian, D. Voskresensky EoS and QCD Phase Transition

More information

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan The strangeness quark mean field theory Jinniu Hu School of Physics, Nankai

More information

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós

The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter. Laura Tolós The Equation of State for Neutron Stars from Fermi Gas to Interacting Baryonic Matter Laura Tolós Outline Outline Neutron Star (I) first observations by the Chinese in 1054 A.D. and prediction by Landau

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Crust-core transitions in neutron stars revisited

Crust-core transitions in neutron stars revisited Crust-core transitions in neutron stars revisited X. Viñas a, C. González-Boquera a, B.K. Sharma a,b M. Centelles a a Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat

More information

arxiv: v1 [nucl-th] 19 Nov 2018

arxiv: v1 [nucl-th] 19 Nov 2018 Effects of hadron-quark phase transition on properties of Neutron Stars arxiv:1811.07434v1 [nucl-th] 19 Nov 2018 Debashree Sen, and T.K. Jha BITS-Pilani, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726,

More information

PoS(QNP2012)029. Quark Matter in Compact Stars

PoS(QNP2012)029. Quark Matter in Compact Stars Institute for Theoretical Physics, University of Wrocław (Poland) E-mail: thomas.klaehn@gmail.com Neutron stars by their very nature are the most likely physical systems in nature where pure, deconfined

More information

The isospin dependence of the nuclear force and its impact on the many-body system

The isospin dependence of the nuclear force and its impact on the many-body system Journal of Physics: Conference Series OPEN ACCESS The isospin dependence of the nuclear force and its impact on the many-body system To cite this article: F Sammarruca et al 2015 J. Phys.: Conf. Ser. 580

More information

Current Status of Equation of State in Nuclear Matter and Neutron Stars

Current Status of Equation of State in Nuclear Matter and Neutron Stars Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone 1,2, J.C. Miller 1,3 and W.G.Newton 1 1 Oxford University,

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Nuclear matter inspired Energy density functional for finite nuc

Nuclear matter inspired Energy density functional for finite nuc Nuclear matter inspired Energy density functional for finite nuclei: the BCP EDF M. Baldo a, L.M. Robledo b, P. Schuck c, X. Vinyes d a Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania,

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

Bao-An Li. Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong

Bao-An Li. Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong Probing High-Density Symmetry Energy with Heavy-Ion Reactions Bao-An Li Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong Outline What is symmetry energy? Why

More information

Calculation of realistic electrostatic potentials in star crusts

Calculation of realistic electrostatic potentials in star crusts Calculation of realistic electrostatic potentials in star crusts Claudio Ebel 1 2 November 3, 212 1 Strong electric fields induced on a sharp stellar boundary I.N.Mishustin, C.Ebel, and W.Greiner, J.Phys.G

More information

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois

Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Inside neutron stars: from hadrons to quarks Gordon Baym University of Illinois Crab nebula in X-ray GSI 22 November2016 Compress the sun (radius 700,000 km) down to a radius of 10-12 km Neutron star over

More information

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra

Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Microscopic calculation of the neutrino mean free path inside hot neutron matter Isaac Vidaña CFisUC, University of Coimbra Landau Fermi liquid theory in nuclear & many-body theory May 22 nd 26 th 2017,

More information

Pairing in Nuclear and Neutron Matter Screening effects

Pairing in Nuclear and Neutron Matter Screening effects Pairing Degrees of Freedom in Nuclei and Nuclear Medium Seattle, Nov. 14-17, 2005 Outline: Pairing in Nuclear and Neutron Matter Screening effects U. Lombardo pairing due to the nuclear (realistic) interaction

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Nuclear Binding Energy in Terms of a Redefined (A)symmetry Energy

Nuclear Binding Energy in Terms of a Redefined (A)symmetry Energy Nuclear Binding Energy in Terms of a Redefined (A)symmetry Energy Author: Paul Andrew Taylor Persistent link: http://hdl.handle.net/345/460 This work is posted on escholarship@bc, Boston College University

More information

Neutron Star Core Equations of State and the Maximum Neutron Star Mass

Neutron Star Core Equations of State and the Maximum Neutron Star Mass PORTILLO 1 Neutron Star Core Equations of State and the Maximum Neutron Star Mass Stephen K N PORTILLO Introduction Neutron stars are the compact remnants of massive stars after they undergo core collapse.

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

arxiv:astro-ph/ v2 24 Apr 2001

arxiv:astro-ph/ v2 24 Apr 2001 Neutron Star Structure and the Neutron Radius of 208 Pb C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 47405 J. Piekarewicz Department of Physics Florida

More information

Nucelon self-energy in nuclear matter and how to probe ot with RIBs

Nucelon self-energy in nuclear matter and how to probe ot with RIBs Nucelon self-energy in nuclear matter and how to probe ot with RIBs Christian Fuchs University of Tübingen Germany Christian Fuchs - Uni Tübingen p.1/?? Outline relativistic dynamics E/A [MeV] 6 5 4 3

More information

Equations of State of different phases of dense quark matter

Equations of State of different phases of dense quark matter Journal of Physics: Conference Series PAPER OPEN ACCESS Equations of State of different phases of dense quark matter To cite this article: E J Ferrer 217 J. Phys.: Conf. Ser. 861 122 View the article online

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars

The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars Brazilian Journal of Physics, vol. 36, no. 4B, December, 2006 1391 The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars L. P. Linares 1, M. Malheiro 1,2, 1 Instituto de Física, Universidade

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model ---

Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- Quarks and Compact Stars (QCS2014) KIAA, Peking Univ., Oct.20-22.2014 Massive Neutron Stars with Hadron-Quark Transient Core --- phenomenological approach by 3-window model --- T. Takatsuka (RIKEN; Prof.

More information

Medium polarization effects and pairing interaction in finite nuclei

Medium polarization effects and pairing interaction in finite nuclei Medium polarization effects and pairing interaction in finite nuclei S. Baroni, P.F. Bortignon, R.A. Broglia, G. Colo, E. Vigezzi Milano University and INFN F. Barranco Sevilla University Commonly used

More information

Microscopic nuclear equation of state with three-body forces and neutron star structure

Microscopic nuclear equation of state with three-body forces and neutron star structure Astron. Astrophys. 328, 274 282 (1997) ASTRONOMY AND ASTROPHYSICS Microscopic nuclear equation of state with three-body forces and neutron star structure M. Baldo 1, I. Bombaci 2, and G.F. Burgio 1 1 Dipartimento

More information

Extreme Properties of Neutron Stars

Extreme Properties of Neutron Stars Extreme Properties of The most compact and massive configurations occur when the low-density equation of state is soft and the high-density equation of state is stiff (Koranda, Stergioulas & Friedman 1997).

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University Nuclear Symmetry Energy Constrained by Cluster Radioactivity Chang Xu ( 许昌 ) Department of Physics, Nanjing University 2016.6.13-18@NuSym2016 Outline 1. Cluster radioactivity: brief review and our recent

More information

Quark Matter in Neutron Stars: from a QCD perspective. Eduardo S. Fraga

Quark Matter in Neutron Stars: from a QCD perspective. Eduardo S. Fraga Quark Matter in Neutron Stars: from a QCD perspective Neutron stars at CERN??!! The very title of this workshop points to a new future, one that deeply connects high-energy nuclear & particle physics under

More information

Equation of state constraints from modern nuclear interactions and observation

Equation of state constraints from modern nuclear interactions and observation Equation of state constraints from modern nuclear interactions and observation Kai Hebeler Seattle, March 12, 218 First multi-messenger observations of a neutron star merger and its implications for nuclear

More information

Strange Stars: Can Their Crust Reach the Neutron Drip Density?

Strange Stars: Can Their Crust Reach the Neutron Drip Density? Chin. J. Astron. Astrophys. Vol. 3 (2003), No. 6, 535 542 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Strange Stars: Can Their Crust Reach the Neutron

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Quantum field theory for quark hadron matter

Quantum field theory for quark hadron matter Quantum field theory for quark hadron matter David.Blaschke@gmail.com (Wroclaw University & JINR Dubna & MEPhI Moscow) 1. Mott dissociation of pions in a Polyakov - NJL model 2. Thermodynamics of Mott-HRG

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Hyperons and Resonances in Nuclei and Neutron Stars H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt Agenda: Hyperon interactions and hypernuclei Neutron star matter The hyperonization

More information